Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes
Abstract
1. Introduction
2. Materials and Method
2.1. Tap Water Filtration Set
2.2. Heterotrophic Plate Counts and Antibiotic-Resistant Bacteria
2.3. DNA Extraction
2.4. Bacterial Community Analysis
2.5. Statistical Analysis
3. Results
3.1. Heterotrophic Plate Counts and Antibiotic-Resistant Bacteria
3.2. Bacterial Community Analysis
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Chakhtoura, J.; Saikaly, P.E.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Impact of distribution and network flushing on the drinking water microbiome. Front. Microbiol. 2018, 9, 2205. [Google Scholar] [CrossRef] [PubMed]
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Spatiotemporal Changes of Antibiotic Resistance and Bacterial Communities in Drinking Water Distribution System in Wrocław, Poland. Water 2020, 12, 2601. [Google Scholar] [CrossRef]
- Luo, L.W.; Wu, Y.H.; Yu, T.; Wang, Y.H.; Chen, G.Q.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.B.; Ikuno, N.; et al. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef] [PubMed]
- Siedlecka, A.; Wolf-Baca, M.J.; Piekarska, K. Antibiotic and disinfectant resistance in tap water strains—Insight into the resistance of environmental bacteria. Pol. J. Microbiol. 2021, 70, 57–67. [Google Scholar] [CrossRef]
- Bodzek, M.; Konieczny, K.; Rajca, M. Membranes in water and wastewater disinfection—Review. Arch. Environ. Prot. 2019, 45, 3–18. [Google Scholar] [CrossRef]
- Potgieter, S.; Pinto, A.; Sigudu, M.; du Preez, H.; Ncube, E.; Venter, S. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes. Water Res. 2018, 139, 406–419. [Google Scholar] [CrossRef]
- Nescerecka, A.; Juhna, T.; Hammes, F. Identifying the underlying causes of biological instability in a full-scale drinking water supply system. Water Res. 2018, 135, 11–21. [Google Scholar] [CrossRef]
- Liu, G.; Verberk, J.Q.J.C.; Van Dijk, J.C. Bacteriology of drinking water distribution systems: An integral and multidimensional review. Appl. Microbiol. Biotechnol. 2013, 97, 9265–9276. [Google Scholar] [CrossRef]
- Wingender, J.; Flemming, H.C. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 2011, 214, 417–423. [Google Scholar] [CrossRef]
- Kimbell, L.K.; Wang, Y.; McNamara, P.J. The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl. Microbiol. Biotechnol. 2020, 104, 7673–7688. [Google Scholar] [CrossRef]
- Jin, M.; Liu, L.; Wang, D.N.; Yang, D.; Liu, W.L.; Yin, J.; Yang, Z.W.; Wang, H.R.; Qiu, Z.G.; Shen, Z.Q.; et al. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J. 2020, 14, 1847–1856. [Google Scholar] [CrossRef]
- Wright, G.D. The antibiotic resistome: The nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007, 5, 175–186. [Google Scholar] [CrossRef]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef]
- Sanderson, H.; Fricker, C.; Brown, R.S.; Majury, A. Antibiotic Resistance Genes as an Emerging Environmental Contaminant. Environ. Rev. 2016, 24, 2. [Google Scholar] [CrossRef]
- Montoya-Pachongo, C.; Douterelo, I.; Noakes, C.; Camargo-Valero, M.A.; Sleigh, A.; Escobar-Rivera, J.C.; Torres-Lozada, P. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks. Sci. Total Environ. 2018, 616–617, 345–354. [Google Scholar] [CrossRef]
- Perrin, Y.; Bouchon, D.; Delafont, V.; Moulin, L.; Héchard, Y. Microbiome of drinking water: A full-scale spatio-temporal study to monitor water quality in the Paris distribution system. Water Res. 2019, 149, 375–385. [Google Scholar] [CrossRef]
- Jiang, R.; Li, Z.; Li, Q.; Liu, Y.; Zhu, Y.; Chen, Z.; Liu, P.; Jia, S.; Ren, H.; Zhang, X.-X. Metagenomic insights into the variation of bacterial communities and potential pathogenic bacteria in drinking water treatment and distribution systems. Natl. Sci. Open 2022, 1, 20220015. [Google Scholar] [CrossRef]
- Stüken, A.; Haverkamp, T.H.A.; Dirven, H.A.A.M.; Gilfillan, G.D.; Leithaug, M.; Lund, V. Microbial Community Composition of Tap Water and Biofilms Treated with or without Copper-Silver Ionization. Environ. Sci. Technol. 2018, 52, 3354–3364. [Google Scholar] [CrossRef]
- Proctor, C.R.; Reimann, M.; Vriens, B.; Hammes, F. Biofilms in shower hoses. Water Res. 2018, 131, 274–286. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Z.; Guo, H.; Liu, M.; Zhang, H.; Yang, M. Pyrosequencing analysis of eukaryotic and bacterial communities in faucet biofilms. Sci. Total Environ. 2012, 435–436, 124–131. [Google Scholar] [CrossRef]
- Lin, W.; Yu, Z.; Chen, X.; Liu, R.; Zhang, H. Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system. Appl. Microbiol. Biotechnol. 2013, 97, 8393–8401. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, J.; Turk, M.; Črnigoj, M.; Ambrožič Avguštin, J.; Gunde-Cimerman, N. The dishwasher rubber seal acts as a reservoir of bacteria in the home environment. BMC Microbiol. 2019, 19, 300. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jia, R.B.; Li, L. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water. Environ. Sci. Process. Impacts 2013, 15, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Waak, M.B.; Hozalski, R.M.; Hallé, C.; Lapara, T.M. Comparison of the microbiomes of two drinking water distribution systems—With and without residual chloramine disinfection. Microbiome 2019, 7, 87. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Schroeder, J.; Lunn, M.; Sloan, W.; Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 2014, 5, e01135-14. [Google Scholar] [CrossRef] [PubMed]
- Ley, C.J.; Proctor, C.R.; Singh, G.; Ra, K.; Noh, Y.; Odimayomi, T.; Salehi, M.; Julien, R.; Mitchell, J.; Nejadhashemi, A.P.; et al. Drinking water microbiology in a water-efficient building: Stagnation, seasonality, and physicochemical effects on opportunistic pathogen and total bacteria proliferation. Environ. Sci. Water Res. Technol. 2020, 6, 2902–2913. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Huang, T.; Yan, M.; Liu, K.; Miao, Y.; He, H.; Li, S.; Sekar, R. Combined effects of seasonality and stagnation on tap water quality: Changes in chemical parameters, metabolic activity and co-existence in bacterial community. J. Hazard. Mater. 2021, 403, 124018. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.B.; Simões, M.; Simões, L.C. An overview on the reactors to study drinking water biofilms. Water Res. 2014, 62, 63–87. [Google Scholar] [CrossRef]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, R.; Fish, K.E.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef]
- Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. Water Res. 2017, 123, 761–772. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, D.; Wan, K.; Chen, C.; Yu, X.; Lin, H. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching. Front. Environ. Sci. Eng. 2021, 15, 28. [Google Scholar] [CrossRef]
- Siedlecka, A.; Wolf-Baca, M.; Pierkarska, K. Seasonal variabilitiy of antibiotic resistance and biodiversity of tap water bacteria in Wrocław, Poland. Environ. Prot. Eng. 2020, 46, 93–109. [Google Scholar] [CrossRef]
- Available online: https://aquafilter.com/pl/product/25/88/fp3-hj-k1n (accessed on 30 December 2022).
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Microbial communities of biofilms developed in a chlorinated drinking water distribution system: A field study of antibiotic resistance and biodiversity. Sci. Total Environ. 2021, 774, 145113. [Google Scholar] [CrossRef] [PubMed]
- Polish Ministry of Health. Regulation of the Minister of Health from December 7, 2017 on the Quality of Water Intended for Human Consumption; Polish Ministry of Health: Warsaw, Poland, 2017; p. 2294. (In Polish) [Google Scholar]
- Wolf-Baca, M.; Piekarska, K. Biodiversity of organisms inhabiting the water supply network of Wroclaw. Detection of pathogenic organisms constituting a threat for drinking water recipients. Sci. Total Environ. 2020, 715, 136732. [Google Scholar] [CrossRef]
- Siedlecka, A.; Wolf-Baca, M.; Piekarska, K. Molecular insight into bacterial communities of consumer tap water—A case study. Desalin. Water Treat. 2021, 222, 114–126. [Google Scholar] [CrossRef]
- Bertelli, C.; Courtois, S.; Rosikiewicz, M.; Piriou, P.; Aeby, S.; Robert, S.; Loret, J.F.; Greub, G. Reduced chlorine in drinking water distribution systems impacts bacterial biodiversity in biofilms. Front. Microbiol. 2018, 9, 2520. [Google Scholar] [CrossRef]
- Liu, G.; Bakker, G.L.; Li, S.; Vreeburg, J.H.G.; Verberk, J.Q.J.C.; Medema, G.J.; Liu, W.T.; Van Dijk, J.C. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: An integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ. Sci. Technol. 2014, 48, 5467–5476. [Google Scholar] [CrossRef]
- Bian, K.; Wang, C.; Jia, S.; Shi, P.; Zhang, H.; Ye, L.; Zhou, Q.; Li, A. Spatial dynamics of bacterial community in chlorinated drinking water distribution systems supplied with two treatment plants: An integral study of free-living and particle-associated bacteria. Environ. Int. 2021, 154, 106552. [Google Scholar] [CrossRef]
- Wolf-Baca, M.; Siedlecka, A. Detection of pathogenic bacteria in hot tap water using the qPCR method: Preliminary research. SN Appl. Sci. 2019, 1, 840. [Google Scholar] [CrossRef]
- Gomez-Smith, C.K.; Lapara, T.M.; Hozalski, R.M. Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system. Environ. Sci. Technol. 2015, 49, 8432–8440. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Huang, T.; Ma, B.; Sun, W.; Zhao, K.; Sekar, R.; Xing, Y. Stagnation trigger changes to tap water quality in winter season: Novel insights into bacterial community activity and composition. Sci. Total Environ. 2022, 844, 157240. [Google Scholar] [CrossRef]
- Jäger, T.; Alexander, J.; Kirchen, S.; Dötsch, A.; Wieland, A.; Hiller, C.; Schwartz, T. Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants. Environ. Pollut. 2018, 232, 571–579. [Google Scholar] [CrossRef]
- Diviccaro, S.; Giatti, S.; Cioffi, L.; Falvo, E.; Piazza, R.; Caruso, D.; Melcangi, R.C. Paroxetine effects in adult male rat colon: Focus on gut steroidogenesis and microbiota. Psychoneuroendocrinology 2022, 143, 105828. [Google Scholar] [CrossRef]
- Díaz-Regañón, D.; García-Sancho, M.; Villaescusa, A.; Sainz, Á.; Agulla, B.; Reyes-Prieto, M.; Rodríguez-Bertos, A.; Rodríguez-Franco, F. Characterization of the Fecal and Mucosa-Associated Microbiota in Dogs with Chronic Inflammatory Enteropathy. Animals 2023, 13, 326. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Lin, T.; Jiang, F.C.; Zhang, X.; Wang, S.Y.; Zhang, S. Impact of pipe material and chlorination on the biofilm structure and microbial communities. Chemosphere 2022, 289, 133218. [Google Scholar] [CrossRef]
- Lugli, G.A.; Longhi, G.; Mancabelli, L.; Alessandri, G.; Tarracchini, C.; Fontana, F.; Turroni, F.; Milani, C.; van Sinderen, D.; Ventura, M. Tap water as a natural vehicle for microorganisms shaping the human gut microbiome. Environ. Microbiol. 2022, 24, 3912–3923. [Google Scholar] [CrossRef]
- Narciso-da-Rocha, C.; Vaz-Moreira, I.; Manaia, C.M. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci. Total Environ. 2014, 466–467, 127–135. [Google Scholar] [CrossRef]
- Vincenti, S.; Quaranta, G.; De Meo, C.; Bruno, S.; Ficarra, M.G.; Carovillano, S.; Ricciardi, W.; Laurenti, P. Non-fermentative gram-negative bacteria in hospital tap water and water used for haemodialysis and bronchoscope flushing: Prevalence and distribution of antibiotic resistant strains. Sci. Total Environ. 2014, 499, 47–54. [Google Scholar] [CrossRef]
- Khan, H.; Miao, X.; Liu, M.; Ahmad, S.; Bai, X. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ. Pollut. 2020, 259, 113818. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf-Baca, M.; Siedlecka, A. Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. Diversity 2023, 15, 427. https://doi.org/10.3390/d15030427
Wolf-Baca M, Siedlecka A. Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. Diversity. 2023; 15(3):427. https://doi.org/10.3390/d15030427
Chicago/Turabian StyleWolf-Baca, Mirela, and Agata Siedlecka. 2023. "Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes" Diversity 15, no. 3: 427. https://doi.org/10.3390/d15030427
APA StyleWolf-Baca, M., & Siedlecka, A. (2023). Community Composition and Antibiotic Resistance of Tap Water Bacteria Retained on Filtration Membranes. Diversity, 15(3), 427. https://doi.org/10.3390/d15030427