Next Article in Journal
Groundwater Amphipods of the Hyporheic Interstitial: A Case Study from Luxembourg and The Greater Region
Next Article in Special Issue
Two New Edible Lyophyllum Species from Tibetan Areas, China
Previous Article in Journal
Diversity of Parasitic Animals in Hypersaline Waters: A Review
Previous Article in Special Issue
Insight into the Taxonomic Resolution of Apiospora: Introducing Novel Species and Records from Bamboo in China and Thailand
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Exploring More on Dictyosporiaceae: The Species Geographical Distribution and Intriguing Novel Additions from Plant Litter

by
Danushka S. Tennakoon
1,2,
Nimali I. de Silva
1,2,
Sajeewa S. N. Maharachchikumbura
3,
Darbhe J. Bhat
4,5,
Jaturong Kumla
1,2,
Nakarin Suwannarach
1,2 and
Saisamorn Lumyong
1,2,6,*
1
Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
2
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3
School of Life Science and Technology, Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
4
College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
5
Vishnugupta Vishwavidyapeetam, Gokarna-581326, India
6
Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
*
Author to whom correspondence should be addressed.
Diversity 2023, 15(3), 410; https://doi.org/10.3390/d15030410
Submission received: 30 December 2022 / Revised: 25 February 2023 / Accepted: 27 February 2023 / Published: 10 March 2023
(This article belongs to the Special Issue The Hidden Fungal Diversity in Asia 2.0)

Abstract

:
Five fungal taxa collected from plant litter in Chiang Mai province, Thailand, are described with illustrations. The maximum likelihood, maximum parsimony, and Bayesian analyses of combined loci of the internal transcribed spacer (ITS), large subunit nuclear ribosomal DNA (LSU), and translation extension factor 1-α (tef1-α) region were used for phylogeny analyses. Dictyocheirospora acaciae is introduced as a new species from Acacia dealbata. Based on size differences in conidiomata, conidia, and DNA sequence data, it is separated from the other species in the genus. Four new host records, Dictyocheirospora garethjonesii, Di. taiwanense, Dictyosporium digitatum, and Pseudocoleophoma zingiberacearum are also reported from Bismarkia nobilis, Ficus benjamina, Cyperus aggregatus, and Hedychium spicatum, respectively. Detailed descriptions, microphotographs, and phylogenetic information were provided, and all the species were compared to similar taxa. It is noted that there is still a necessity for a collective worldwide account of the distribution of Dictyosporiaceae species. Therefore, we compiled the geographical distributions and host species associations of all the so far known Dictyosporiaceae species and discussed them here.

1. Introduction

Plant litter decomposition is one of the most important processes of the global carbon budget [1,2]. In particular, it signifies a crucial pathway for nutrient recycling in any ecosystem [3,4]. The decomposition of plant litter mainly refers to a variety of complicated processes involving chemical, physical, and biological components [4,5,6,7]. The breakdown of plant litter is affected by a wide range of aspects, such as environmental variables (e.g., temperature, rainfall, moisture condition, seasonal variations, and soil characteristics), plant litter quality (e.g., toughness, surface properties, and chemical components), and decomposer communities (e.g., bacteria, fungi, and detritivores) [6,8,9]. Particularly with a greater than 75% capacity to reduce organic matter than other microbes, fungi are among the top-level decomposers [10]. Thus, saprobic fungal species surveys in various host species and regions are crucial to understanding the fungal diversity in plant litter.
Boonmee et al. [11] introduced Dictyosporiaceae to include species having brown, cheiroid, digitate, multi-septate, palmate, and/or dictyosporous conidia. The sexual morphs have dark brown to black, superficial ascomata, bitunicate, fissitunicate asci, and hyaline, septate ascospores with a mucilaginous sheath [11,12,13]. Most known Dictyosporiaceae species occur as saprobes and pathogenicity seems doubtful since infected host records are not known so far [11,13]. There is an astounding global distribution of Dictyosporiaceae species, reported from plant litter in terrestrial and aquatic habitats [11,14,15,16,17]. Numerous novel Dictyosporiaceae genera were discovered in recent studies. For instance, five new genera, such as Pseudoconiothyrium [18], Sajamaea [19], Paradictyocheirospora [16], Verrucoccum [20], and Neodigitodesmium [21] were established in just three years. However, Tian et al. [21] reanalyzed the morphological characteristics of the type of Paradictyocheirospora (P. tectonae) and demonstrated that Paradictyocheirospora and Digitodesmium are congeneric. Thus, to date there are 20 accepted genera in Dictyosporiaceae: viz. Aquadictyospora, Aquaticheirospora, Cheirosporium, Dendryphiella, Dictyocheirospora, Dictyopalmispora, Dictyosporium, Digitodesmium, Gregarithecium, Immotthia, Jalapriya, Neodendryphiella, Neodigitodesmium, Pseudocoleophoma, Pseudoconiothyrium, Pseudocyclothyriella, Pseudodictyosporium, Sajamaea, Verrucoccum, and Vikalpa [22].
We study the plant litter inhabiting fungal diversity in Thailand. In this paper, we aimed to introduce Dictyocheirospora acaciae, a new species isolated from Acacia dealbata and four new host records: Di. garethjonesii, Di. taiwanense, Dictyosporium digitatum, and Pseudocoleophoma zingiberacearum from Bismarkia nobilis, Ficus benjamina, Cyperus aggregatus, and Hedychium spicatum, respectively. Phylogenetic placements were confirmed based on the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BYPP) analyses using combined ITS, LSU, and tef1-α sequence data. We also discovered that there is still a need for an updated checklist of Dictyosporiaceae species. Thus, we listed all the so far known Dictyosporiaceae species’ geographic distribution and host associations. We expect that this comprehensive list will be helpful for coming studies in understanding the distribution of Dictyosporiaceae species.

2. Materials and Methods

2.1. Samples Collection, Fungal Isolation, and Examination

Plant litter samples (dead leaves and stems) were collected from Chiang Mai province in Thailand. Five samples were subjected to one-day incubation at room temperature (25 °C) in plastic boxes lined with wet tissue paper. Specimens were inspected following the methods described by Tennakoon et al. [9]. Squash mount preparations were prepared to determine micro-morphology (Dictyocheirospora acaciae, Di. garethjonesii, Di. taiwanense, and Dictyosporium digitatum) and sections were obtained to check the conidiomata shapes and conidial wall (Pseudocoleophoma zingiberacearum). A razor blade was used to manually cut thin sections of conidiomata (P. zingiberacearum). Fungal fruiting bodies were examined using a stereomicroscope (AXIOSKOP 2 PLUS Series, Göttingen, Germany). Morphological characteristics (e.g., conidia and conidiogenous cells) were examined and photographed using the Axioskop 2 Plus (Göttingen, Germany) compound microscope equipped with a Canon Axiocam 506 color digital camera (Hanover, Germany). The Tarosoft (R) Image Frame Work application was used to obtain all the measurements. Fungal material was mounted in lactoglycerol to prepare permanent slides, and the cover slip edges were sealed with nail polish. Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems, San Jose, CA, USA) was used to construct the photo plates.
Using the method outlined by Senanayake et al. [23], single spore isolation was conducted to produce pure cultures. Type specimens and living cultures were deposited in the Herbarium of the Department of Biology (CMUB) and Sustainable Development of Biological Resources Laboratory (SDBR), Faculty of Science, Chiang Mai University. The Faces of Fungi (FOF) and Index Fungorum (IF) numbers were obtained following Jayasiri et al. [24] and the Index Fungorum [25], respectively.

2.2. DNA Extraction, PCR Amplification, and Sequencing

Axenic mycelium (50–100 mg) grown on Potato Dextrose Agar (PDA) for four weeks at room temperature (25 °C) was used to extract the total genomic DNA. The Biospin Fungus Genomic DNA Extraction Kit (BioFlux®) (Hangzhou, China) was used to extract fungal DNA following the manufacturer’s instructions. For DNA amplification, the DNA product was stored at 4 °C and for long-term storage it was kept at −20 °C. Polymerase chain reaction (PCR) was used to amplify the DNA using three genes: the large subunit (28S, LSU), internal transcribed spacers (ITS1, 5.8S, ITS2), and translation extension factor 1-α gene region (tef1-α). The LSU gene was amplified using LR0R and LR5 primers [26] and nuclear ITS was amplified using ITS4 and ITS5 primers [27]. The tef1-α gene was amplified using EF1-983F and EF1-2218R primers [28]. The final volume of PCR was prepared as described in Tennakoon et al. [29], including 1μL of DNA template, 1 μL of each forward and reverse primers, 12.5 μL of 2× SanTaq PCR Master Mix (with Blue Dye), and 9.5 μL of double-distilled water. The PCR thermal cycle program for LSU, ITS, and tef1-α gene amplifications was provided as mentioned in Tennakoon et al. [9]. Agarose gel electrophoresis (1%) was used to check the quality of PCR products. The PCR products were purified and subjected for sequencing at Sangon Biotech (Shanghai) Co., Ltd., China. All generated new sequences were deposited in the GenBank and accession numbers were listed (Table 1).

2.3. Phylogenetic Analyses

The data of LSU, ITS, and tef1-α sequences were used for a BLAST search in the GenBank to identify the strains which have high similarities. Based on BLAST similarities and associated recent articles [9,12,21], closely relevant sequences were downloaded from the GenBank. The phylogenetic analyses included a total of 110 isolates. Isolates of Periconia igniaria (CBS 379.86 and CBS 845.96) were selected as the out-group taxa. SeqMan v. 7.0.0 was used to combine consensus sequences (DNASTAR, Madison, WI, USA). The multi-gene datasets were automatically performed by online MAFFT version 7 (https://mafft.cbrc.jp/alignment/server/index.html/ accessed on 12 December 2022) [30]. In addition, BioEdit v.7.2.5 [31] was used for manual improvements of the alignment. Trimal v1.2 [32] was used to remove ambiguously aligned regions.
The online source CIPRES Science Gateway v. 3.3 [33] was used to conduct the maximum likelihood (ML) analysis, with the RAxML-HPC v.8 on XSEDE (8.2.12) tool [34,35]. The following default settings were selected: the GAMMA nucleotide substitution model and 1000 rapid bootstrap replicates. PAUP (Phylogenetic Analysis Using Parsimony) version 4.0b10 was used to perform the maximum parsimony analysis (MP) [36]. The statistics for the MP descriptive trees were calculated such as the Tree Length (TL), Consistency Index (CI), Retention Index (RI), Relative Consistency Index (RC), and Homoplasy Index (HI).
Bayesian inference phylogenies were inferred using MrBayes 3.2.1 [37]. Analysis was run with four chains of 3,000,000 generations, and trees were sampled every 100th generation. The initial 20% of the sampled data were discarded as burn-in. Using MrModeltest v. 3.7 [38] and the Akaike Information Criterion (AIC), evolutionary models for phylogenetic studies were determined individually for each locus. Each locus in MrModeltest provided the GTR+I+G model as the best-fit model for Bayesian analysis. The FigTree v1.4.0 tool [39] was used to show phylograms and was modified using Microsoft PowerPoint (2010) and Adobe Illustrator® CS5 (Version 15.0.0, Adobe®, San Jose, CA, USA). All the newly obtained sequences were deposited in the GenBank and the alignments in TreeBASE, submission ID:29917 (http://www.treebase.org/ (accessed on 15 December 2022)).

3. Results

3.1. Phylogenetic Analyses

The combined data set of LSU, ITS, and tef1-α sequences comprised 2582 characters including gaps. All the characters have equal weight and there were 1596 constant characters, 773 parsimony-informative characters, and 213 parsimony-uninformative characters. The descriptive tree statistics were TL = 3420, CI = 0.416, RI = 0.770, RC = 0.321, and HI = 0.584. All the gaps are treated as missing data. The RAxML analysis of the combined dataset yielded a best-scoring tree (Figure 1). The final ML optimization likelihood value was -20228.278033. There were 35.83% undetermined characters or gaps and 1201 distinct alignment patterns. The estimated base frequencies were A = 0.235995, C = 0.255959, G = 0.268880, and T = 0.239166; the substitution rates were AC = 1.442221, AG = 3.055486, AT = 2.089879, CG = 0.773046, CT = 7.317661, and GT = 1.000; the proportion of invariable sites I = 0.419763; and the gamma distribution shape parameter was α = 0.587026. The Bayesian analysis resulted in 30,000 trees after 3,000,000 generations.
Multigene phylogeny showed strong statistically supportive values within the clades (Figure 1). Bootstrap support values for ML, MP higher than 70%, and BYPP greater than 0.90 are given above each branch, respectively (Figure 1). All the analyses (ML, MP, and BYPP) generated similar findings and concurred with previous studies based on multi-gene analyses [9,12,21,40]. Our isolates, namely SDBR-CMU454, SDBR-CMU455, and SDBR-CMU456, cluster within Dictyocheirospora and provide an independent lineage sister to Di. metroxyli with solid support (88% ML, 90% MP, and 1.00 BYPP). As well as grouping together in 100% ML, 100% MP, and 1.00 BYPP statistical support (Figure 1), the isolates SDBR-CMU458 and SDBR-CMU457 also group within the Dictyocheirospora and provide close phylogeny relationships with the type strains of Di. taiwanense (MFLUCC 17-2564) and Di. garethjonesii (MFLUCC 16-0909), respectively. In addition, isolate SDBR-CMU459 groups with Dictyosporium species and shows a close phylogeny relationship with Dic. digitatum (yone 280) with 99% ML, 99% MP, and 1.00 BYPP support. The isolate SDBR-CMU460 clusters within Pseudocoleophoma zingiberacearum isolates (NCYUCC 19-0052, NCYUCC 19-0053, and NCYUCC 19-0054) in a statistically well-supported clade (100% ML, 100% MP, and 1.00 BYPP).

3.2. Taxonomy

3.2.1. Dictyocheirospora M.J. D’souza, Boonmee, and K.D. Hyde, Fungal Divers. 80: 465 (2016)

Dictyocheirospora is a speciose genus introduced by Boonmee et al. [11] with Di. rotunda as the type. This has unique morphological characteristics, such as dark sporodochial colonies and aero-aquatic cheiroid dictyospores [11]. The species are distributed worldwide as saprobes on decaying stems, leaves, and branches [11,12,40,41]. To date, there are 26 species listed in the Index Fungorum [25]. Here, we present Di. acaciae as a novel species and Di. garethjonesii and Di. taiwanense as two new host records on Bismarkia nobilis and Ficus benjamina.
Dictyocheirospora acaciae Tennakoon and S. Lumyong, sp. nov.
Index Fungorum number: IF900168; Facesoffungi number: FoF13616; Figure 2
Etymology: Named after the host genus where this fungus was collected.
Holotype: CMUB 39980
Saprobic on the decaying stem of Acacia dealbata Link (Fabaceae). Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies 170–300 μm in diameter ( x ¯ = 250 μm, n = 20), on natural substrate forming sporodochial conidiomata, punctiform, velvety, superficial, scattered, and dark brown to black. Conidiophores micronematous, pale brown, smooth, and thin-walled. Conidiogenous cells 4–8 × 3–6 μm holoblastic, hyaline or pale brown, cylindrical, and smooth-walled. Conidia 42–60 × 15–18 μm ( x ¯ = 52 × 17 μm, n = 30), solitary, cheiroid, light brown to dark brown, consisting of 5–6 vertical rows of cells, with a basal connecting cell, separated when mounted in water, with each row composed of 9–11 cells, constricted at septa, with a large guttule in each cell, without appendages.
Culture characteristics: Colonies on PDA reaching 8–10 mm in diameter after 4 weeks at 25 °C. Colonies viewed from above were medium dense, circular, flat, surface smooth, entire margin, yellowish at the outer margin, light brown and whitish at the middle, and dark brown to black at the center. Colonies observed in the reverse view were yellowish at the margin, light brown at the middle, and dark brown to black at the center. Mycelium white to cream.
Materials examined: Thailand, Chiang Mai (18°47′12″ N 98°57′26″ E), on decaying stem of Acacia dealbata (Fabaceae), 24 January 2017, D.S. Tennakoon, DXP072A, (CMUB 39980, holotype), ex-type living culture (SDBR-CMU454), ibid., 27 March 2017, DXP072B (SDBR-CMU455), DXP072C (SDBR-CMU456).
Notes: The morphology of our collection (CMUB 39980) tally well with those species described under Dictyocheirospora by having punctiform, velvety, superficial, dark brown to black sporodochial conidiomata and cheiroid, and light brown to dark brown conidia [11,12,41,42]. The multi-gene phylogeny generated herein indicates that Dictyocheirospora is sister to Digitodesmium (Figure 1). In particular, our collection constitutes an independent lineage sister to Di. metroxyli with statistical solid support (88% ML, 90% MP, 1.00 BYPP). Our collection can be distinguished from Di. metroxyli by having larger sporodochial conidiomata (170–300 vs. 100–200 μm in diameter) and cheiroid, light brown to dark brown smaller conidia (52 × 17 μm vs. 61 × 20 μm) [42]. In addition, we compared the ITS (+5.8S) and tef1-α base pair differences between D. metroxyli (MFLUCC 15-0282b) and our collection (CMUB 39980). A comparison of the 565 nucleotides of ITS (+5.8S) and 786 nucleotides of tef1-α gene regions shows 12 (2.1%) and 25 (3.1%) differences between them, respectively. Hence, we introduce Di. acaciae from Acacia dealbata in Thailand. A synopsis of the morphological distinctiveness of species of Dictyocheirospora is provided (Table 2).
Dictyocheirospora garethjonesii Z.L. Luo, Hong Y. Su, and K.D. Hyde, Mycosphere 7: 1361 (2017)
Index Fungorum number: IF552684; Facesoffungi number: FoF 02734; Figure 3.
Saprobic on the decaying stem of Bismarkia nobilis Hildebr. and H.Wendl. (Arecaceae). Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies 130–270 μm in diameter ( x ¯ = 210 μm, n = 20), on natural substrate forming sporodochial conidiomata, punctiform, velvety, superficial, scattered, and dark brown to black. Conidiophores micronematous, undifferentiated from vegetative hyphae, pale brown, smooth, and thin-walled. Conidiogenous cells 4–6 × 3–5 μm holoblastic, hyaline or pale brown, cylindrical, and smooth-walled. Conidia 35–70 × 10–20 μm ( x ¯ = 48 × 18 μm, n = 30), solitary, cheiroid, light brown to dark brown, consisting of 5–7 vertical rows of cells, with a basal connecting cell, slightly inwardly curved at the apex, separated when mounted in water, each row composed of 7–10 cells, constricted at septa, with a large guttule in each cell, without appendages.
Culture characteristics: Colonies on PDA reaching 9–10 mm in diameter after 4 weeks at 25 °C. Colonies viewed from above were medium dense, circular, flat, surface smooth, entire margin, yellowish at the margin, and light brown at the center. Colonies observed in the reverse view were yellowish at the margin and light brown at the center. Mycelium white to cream.
Known hosts: Bismarkia nobilis (Arecaceae) and Macaranga tanarius (Euphorbiaceae) [9,41,53].
Known distribution: China and Thailand [9,41,53].
Material examined: Thailand, Chiang Mai (18°47′34″ N 98°57′41″ E), on decaying stem of Bismarkia nobilis (Arecaceae), 24 January 2017, D.S. Tennakoon, DXP01 (CMUB 39982), living culture (SDBR-CMU457).
Notes: Wang et al. [41] introduced Dictyocheirospora garethjonesii from China. The morphological characteristics of our collection (CMUB 39982) are similar to the type specimen (MFLUCC 16-0909) by having dark brown to black, superficial, sporodochial conidiomata, holoblastic, and cylindrical conidiogenous cells, and light brown to dark brown, ellipsoid to cylindrical, and cheiroid conidia with 5–7 rows of cells, each composed of 7–10 cells [9,41]. Phylogeny also shows that our collection (CMUB 39982) group with Di. garethjonesii isolates (DUCC 0848 and MFLUCC 16-0909) in a solidly supported clade (88% ML, 80% MP, and 0.98 BYPP). Thus, our collection is identified as a new host record of Di. garethjonesii from Bismarkia nobilis (Arecaceae) in Thailand.
Dictyocheirospora taiwanense Tennakoon, C.H. Kuo, and K.D. Hyde, Fungal Divers. 96: 27 (2019)
Index Fungorum number: IF556309; Facesoffungi number: FoF 05964; Figure 4
Saprobic on the decaying stem of Ficus benjamina L. (Moraceae). Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies 100–150 μm in diameter ( x ¯ = 130 μm, n = 20), on natural substrate forming sporodochial conidiomata, punctiform, velvety, superficial, scattered, and dark brown to black. Conidiophores micronematous, pale brown, smooth, and thin-walled. Conidiogenous cells 4–7 × 3–5 μm holoblastic, hyaline or pale brown, cylindrical, and smooth-walled. Conidia 70–80 × 15–20 μm ( x ¯ = 76 × 18 μm, n = 30), solitary, cheiroid, light brown to dark brown, consisting of 5–6 vertical rows of cells, with a basal connecting cell, separated when mounted in water, each row composed of 10–13 cells, constricted at septa, with a large guttule in each cell, without appendages.
Culture characteristics: Colonies on PDA reaching 8–9 mm in diameter after 4 weeks at 25 °C. Colonies viewed from above were medium dense, circular, flat, with a surface smooth, entire margin, yellowish at the margin, and light brown at the center. Colonies observed in the reverse view were yellowish at the margin, and light brown to dark brown at the center. Mycelium white to cream.
Known hosts: Ficus benjamina (Moraceae) and Macaranga tanarius (Euphorbiaceae) [9,53].
Known distribution: Taiwan and Thailand [9,53].
Material examined: Thailand, Chiang Mai (18°47′26″ N 98°57′56″ E), on the decaying stem of Ficus benjamina (Moraceae), 24 January 2017, D.S. Tennakoon, DXP02, (CMUB 39981), living culture (SDBR-CMU458).
Notes: The morphological characteristics of our collection (CMUB 39981) are similar to the type of Dictyocheirospora taiwanense (MFLUCC 17-2654) by having overlapping size ranges of conidiomata (110–230 μm vs. 100–150 μm in diameter) and conidia (74–84 × 16–20 μm vs. 70–80 × 15–20 μm). The conidial characteristics (e.g., cheiroid, light brown to dark brown, 5–6 rows of cells, and each composed of 10–13 cells) are also similar in both species [50]. According to multi-gene phylogeny, our collection (CMUB 39981) clusters with the type of Di. taiwanense by statistical solid support (100% ML, 99% MP, 1.00 BYPP).

3.2.2. Dictyosporium Corda, Weitenwe’er’s Beitr. Nat. 1: 87 (1837)

Dictyosporium is considered the type genus of Dictyosporiaceae and Dic. elegans Corda is the type species [54]. Dictyosporium species are distributed worldwide as saprobes in terrestrial and aquatic habitats. The Index Fungorum [25] currently lists 63 species under Dictyosporium. This genus is quite attractive in terms of morphological traits (e.g., sporodochial colonies and cheiroid, digitate complanate conidia with several parallel rows of cells). Their sexual morph has dark brown, superficial ascomata, cylindrical asci, and fusiform, hyaline, and uniseptate ascospores with or without a mucilaginous sheath [12].
Dictyosporium digitatum J.L. Chen, C.H. Hwang, and Tzean, Mycol. Res. 95: 1145 (1991)
Index Fungorum number: IF355284; Facesoffungi number: FoF 04487; Figure 5.
Saprobic on the dead leaf of Cyperus aggregatus (Willd.) Endl. (Cyperaceae). Sexual morph: Undetermined. Asexual morph: Hyphomycetous. Colonies 150–200 μm in diameter ( x ¯ = 170 μm, n = 20), on natural substrate forming sporodochial conidiomata, punctiform, velvety, superficial, scattered, and dark brown to black. Conidiophores micronematous, simple or branched, hyaline or pale brown, smooth, and thin-walled. Conidiogenous cells 4–6 × 3–5 μm holoblastic, hyaline or pale brown, cylindrical, and smooth-walled. Conidia 45–70 × 26–35 μm ( x ¯ = 63 × 32 μm, n = 30), solitary, cheiroid, oval to ellipsoid, and greyish orange to reddish brown, consisting of 5–7 vertical rows of cells, with a basal connecting cell, separated when mounted in water, each row is composed of 7–13 cells, cells 3–6 μm wide, with the terminal cell distinctly thin-walled, constricted at the septa, subhyaline at the tip of peripheral rows, with a large guttule in each cell, without appendages.
Culture characteristics: Colonies on PDA reached 5–7 mm in diameter after 7 days at 25 °C. Colonies viewed from above were medium dense, circular, raised, velvety, surface smooth, entire margin, white to cream at the margin and yellowish green at the center. Colonies observed in the reverse view were white to yellowish at the margin and yellowish at the center. Mycelium white to cream.
Known hosts: Anisoptera oblonga (Dipterocarpaceae), Archontophoenix alexandrae (Arecaceae), Castanopsis sieboldii (Fagaceae), Cyperus aggregatus (Cyperaceae), Licuala longicalycata (Arecaceae), Machilus velutina (Lauraceae), Pandanus spp. (Pandanaceae), Phoenix hanceana (Arecaceae), and Pinus massoniana (Pinaceae) [45,48,49,53,55,56,57].
Known distribution: Australia, Brunei, Japan, Mauritius, Philippines, Seychelles, Taiwan, and Thailand [45,48,49,53,55,56,57].
Material examined: Thailand, Chiang Mai (18°47′22″ N 98°57′36″ E), on the dead leaf of Cyperus aggregatus (Cyperaceae), 26 February 2017, D.S. Tennakoon, DROD012, (CMUB 39983), living culture (SDBR-CMU459).
Notes: Multi-gene phylogenetic analyses indicated that the new collection (MFLU 19-2809) groups with Dictyosporium digitatum (yone 280) with a solid support (99% ML, 99% MP, 1.00 BYPP). Morphology is also similar to the type (PPH 12) and the isolate (yone 280) by having punctiform, velvety, superficial, dark brown to black, sporodochial conidiomata, hyaline or pale brown, cylindrical, holoblastic conidiogenous cells (4–6 × 3–5 μm vs. 4.2–10 × 3.3–7.5 μm) and cheiroid, oval to ellipsoid, greyish orange to reddish brown conidia (45–70 × 26–35 μm vs. 46.7–74.2 × 22.5–36.7 μm) with 5–7 vertical rows of cells which are each composed of 7–13 cells [49,55]. Dictyosporium digitatum has previously been recorded from Castanopsis sieboldii, Machilus velutina, Pandanus spp., Phoenix hanceana, Pinus massoniana, and numerous unidentified herbaceous host species [48,49,53,55]. Interestingly, this is the first Dic. digitatum was recorded on Cyperaceae.

3.2.3. Pseudocoleophoma Kaz. Tanaka and K. Hiray., Stud. Mycol. 82: 89 (2015)

Pseudocoleophoma was established by Tanaka et al. [49] to include two species, namely P. calamagrostidis Kaz. Tanaka, and K. Hiray. (type) from Calamagrostis matsumurae and P. polygonicola from a polygonaceous plant. The sexual morph of this genus has immersed to semi-immersed or erumpent, ostiolate ascomata, cylindrical to clavate asci and hyaline, fusiform, and uniseptate ascospores with a conspicuous sheath [49]. The asexual morph is characterized by having pycnidial, semi-immersed to superficial conidiomata and hyaline or pale brown, aseptate, oval, or oblong to cylindrical conidia with obtuse ends [17,29,49]. Currently, there are nine Pseudocoleophoma species listed in the Index Fungorum [25].
Pseudocoleophoma zingiberacearum Tennakoon, D.J. Bhat, C.H. Kuo, and K.D. Hyde, Kavaka, Phytotaxa 53: 3 (2019)
Index Fungorum number: IF556893. Facesoffungi number: FoF 06719. Figure 6.
Saprobic on the decaying leaves of Hedychium spicatum Sm. In A. Rees (Zingiberaceae). Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata 80–150 μm high, 150–220 μm in diameter ( x ¯ = 125 × 180 μm, n = 10), pycnidial, solitary, scattered, superficial or semi-immersed, visible as black dots, globose to sub-globose, multi-loculate, and non-ostiolate. Conidiomata wall 15–22 μm wide, thin walled, composed of 3–5 layers of brown pseudoparenchymatous cells, arranged in textura angularis, darker at the outside, fusing, and indistinguishable from the host tissues. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 1–3 × 1–2 μm ( x ¯ = 2 × 1.5 μm, n = 10), phialidic, doliiform to lageniform, hyaline, aseptate, and smooth-walled. Conidia 11–15 × 2–3 μm ( x ¯ = 13 × 2.5 μm, n = 30), solitary, hyaline, aseptate, oblong to cylindrical, obtuse ends, guttulate, and smooth-walled.
Culture characteristics: Colonies on PDA reached 6–7 mm in diameter after 4 weeks at 25 °C. Colonies viewed from above were medium dense, circular, raised, with a surface smooth, entire margin, and white to cream at the margin and center whereas in the reverse view the colonies were white to light brown at the margin and light brown at the center. Mycelium white to cream.
Known hosts: Hedychium coronarium and H. spicatum (Zingiberaceae) [29,53].
Known distribution: Taiwan and Thailand [29,53].
Material examined: Thailand, Chiang Mai (18°47′23″ N 98°57′46″ E), on decaying leaves of Hedychium spicatum (Zingiberaceae), 28 January 2017, D.S. Tennakoon, DXP05, (CMUB 39984), living culture (SDBR-CMU460).
Notes: Multi-gene phylogeny indicates that our collection (CMUB 39984) clusters with Pseudocoleophoma zingiberacearum isolates (NCYUCC 19-0052, NCYUCC 19-0053, and NCYUCC 19-0054) in a strongly supportive clade (100% ML, 100% MP, and 1.00 BYPP, Figure 1). The morphology of the new collection also shares similarities with the type by having superficial or semi-immersed, pycnidial conidiomata, doliiform to lageniform, hyaline, aseptate conidiogenous cells (1–3 × 1–2 μm vs. 1.5–2.5 × 1–1.5 μm), and hyaline, aseptate, oblong to cylindrical conidia (11–15 × 2–3 μm vs. 12–14 × 2–3 μm) [29]. Pseudocoleophoma zingiberacearum was previously recorded from Hedychium coronarium and this time it was from H. spicatum. Undeniably, this opens the possibility that these fungi are generalists or specialists to the Hedychium species. Thus, to determine their host-specific status, additional ecological studies are essential.

3.2.4. Geographical Distribution and Host Associations of Dictyosporiaceae Species

In this study, we listed 154 Dictyosporiaceae species, belonging to 20 genera with their host associations and geographical distribution (Table 3). The information was gathered from published books, publications in reputable journals, Index Fungorum [25], the U.S. National Fungus Collections Fungus-Host Database [53], graduate student theses, and online sources. Each data source was identified in the list, along with appropriate references. Species Fungorum [58] was used to illustrate the nomenclature validity of the taxa.
Geographical findings indicate that Dictyosporiaceae species have a worldwide distribution including subtropical, tropical, and temperate regions (e.g., Australia, Brazil, China, Cuba, Egypt, India, Italy, Japan, Taiwan, Thailand, Sri Lanka, South Africa, and the United States) (Figure 7). The highest number of Dictyosporiaceae species were reported from the Asian region, in particular from Thailand (43 species) and China (39 species) (indicated by dark blue areas, Figure 7). This is primarily because extensive taxon samplings and critical studies were carried out in these two countries in the last one and a half decades, particularly following both morphological and phylogenetic analyses [11,12,40,41,44,51,59]. In contrast, few reports are available in some continents, such as Africa and Europe. This might be due to scanty taxonomic studies on Dictyosporiaceae species in those countries (indicated in light blue areas). Therefore, it would be worthwhile to collect more extensively, conduct additional taxonomic investigations, and identify the Dictyosporiaceae species in those less-known geographical regions and countries.
Table 3. Host association and geographical distribution of reported Dictyosporiaceae species.
Table 3. Host association and geographical distribution of reported Dictyosporiaceae species.
Fungal SpeciesHostLocalityReference
Aquadictyospora clematidis Phukhams., D.J. Bhat, and K.D. HydeClematis sikkimensisThailand[44]
Aquadictyospora lignicola Z.L. Luo, W.L. Li, K.D. Hyde, and H.Y. SuUnidentified submerged woodChina[60]
Aquaticheirospora lignicola Kodsueb and W.H. HoUnidentified submerged woodThailand[61]
Cheirosporium triseriale L. Cai and K.D. HydeUnidentified submerged woodChina[62]
Cheirosporium vesiculare Abdel-AzizUnidentified decaying woodEgypt[14]
Dendryphiella aspera R.W. Barreto and J.C. DavidLantana camaraBrazil[63]
Dendryphiella broussonetiae Y.L. Guo and Z.Y. ZhangBroussonetia papyriferaChina[64]
Dendryphiella dregeae A.N. Rai and KamalDregea volubilisIndia[65]
Dendryphiella eucalypti Matsush.Eucalyptus sp.Chile and Taiwan[53,66]
Dendryphiella eucalyptorum Crous and E. RubioEucalyptus globulusChina, Spain, and
South Africa
[53,67,68,69]
Dendryphiella fasciculata N.G. Liu, Z.Y. Liu, and K.D. HydeUnidentified decaying woodThailand[70]
Dendryphiella indica V. Rao and NaraniaAloe sp.India[71]
Dendryphiella infuscans (Thüm.) M.B. EllisCassia tora, Cucumis sativus,
Curcuma aromatica, Desmodium strictum, Eichhornia crassipes, Lablab purpureus, Leucadendron sp., Merremia umbellata, and
Vitis coignetiae
China, India, Japan, Taiwan, United States, and West Indies[53]
Dendryphiella lycopersicifolia Bat. and PeresLycopersicon esculentumBrazil[72]
Dendryphiella paravinosa Crous and GuarnacciaCitrus limon and Citrus sinensisItaly[53,73]
Dendryphiella phitsanulokensis N.G. Liu and K.D. HydeUnidentified decaying woodThailand[59,74]
Dendryphiella stromaticola Cantillo, Gusmão, and MadridUnidentified woodBrazil[75]
Dendryphiella trisepta (J.J. Muchovej) B.W. Ferreira and R.W. BarretoGlycine maxBrazil[76]
Dendryphiella uniseptate Matsush.Ficus sp. and Pistacia lentiscusItaly and Papua New Guinea[77,78]
Dendryphiella variabilis Iturrieta-González, Dania García, and GenéLauraceae sp.Cuba[15]
Dictyocheirospora acaciae Tennakoon and S. LumyongAcacia dealbataThailandThis study
Dictyocheirospora aquadulcis Sorvongxay, S. Boonmee, and K.D HydeUnidentified submerged woodThailand[40,50]
Dictyocheirospora aquatica Z.L. Luo, Bhat, and K.D. HydeUnidentified submerged woodChina[41]
Dictyocheirospora bannica Kaz. Tanaka, K. Hiray., Boonmee, and K.D. HydeUnidentified submerged woodThailand[11,12]
Dictyocheirospora cheirospora S.K. Huang and f K.D. HydeUnidentified decaying woodChina[43]
Dictyocheirospora chiangmaiensis H.W. Shen, Boonmee, and Z.L. LuoUnidentified submerged woodThailand[40]
Dictyocheirospora clematidis Phukhams., D.J. Bhat, and K.D. HydeClematis sikkimensisThailand[44]
Dictyocheirospora garethjonesii Z.L. Luo, Hong Y. Su, and K.D. HydeUnidentified submerged wood,
Bismarkia nobilis, and
Macaranga tanarius
China, and Thailand[9,41]
Dictyocheirospora gigantica (Goh and K.D. Hyde) M.J. D’souza, Boonmee, and K.D. HydeAnisoptera oblongaSouth Africa and Thailand[45]
Dictyocheirospora heptaspora (Garov.) M.J. D’souza, Boonmee, and K.D. HydeUnidentified submerged woodChina and Thailand[40]
Dictyocheirospora hydei (Prasher and R.K. Verma) J. Yang and K.D. HydeTecoma stansIndia[46]
Dictyocheirospora indica (Prasher and R.K. Verma) J. Yang and K.D. HydePhoenix rupicolaIndia and Thailand[12,46]
Dictyocheirospora lithocarpi Jayasiri, E.B.G. Jones, and K.D. HydeLithocarpus sp.Thailand[47]
Dictyocheirospora metroxyli Konta. and K.D. HydeMetroxylon saguThailand[42]
Dictyocheirospora multiappendiculata H.W. Shen and Z.L. LuoUnidentified submerged woodChina[40]
Dictyocheirospora musae (Photita) J. Yang, K.D. Hyde, and Z.Y. LiuMusae acuminataThailand[79]
Dictyocheirospora nabanheensis Tibpromma and K.D. HydePandanus sp.China and Thailand[40,48]
Dictyocheirospora pandanicola Tibpromma and K.D. HydePandanus sp.Thailand[11,48]
Dictyocheirospora pseudomusae (Kaz. Tanaka, G. Sato, and K. Hiray.) Kaz. Tanaka, K. Hiray., Boonmee, and K.D. HydeUnidentified decaying twigsJapan[49]
Dictyocheirospora rotunda M.J. D’souza, Bhat, and K.D. HydeUnidentified decaying woodChina and Thailand[11,12,41,50,51]
Dictyocheirospora suae H.W. Shen and Z.L. LuoUnidentified submerged woodChina[40]
Dictyocheirospora subramanianii (B. Sutton) M.J. D’souza, Boonmee, and K.D. HydeEucalyptus globulusIndia[52]
Dictyocheirospora taiwanense Tennakoon, C.H. Kuo, and K.D. HydeFicus benjamina and
Macaranga tanarius
Taiwan and Thailand[50], this study
Dictyocheirospora tetraploides (L. Cai and K.D. Hyde) J. Yang and K.D. HydeUnidentified submerged woodChina[12,80]
Dictyocheirospora thailandica X.D. Yu, W. Dong and H. ZhangUnidentified submerged woodThailand[51]
Dictyocheirospora vinaya M.J. D’souza, Bhat, and K.D. HydeUnidentified submerged woodChina and Thailand[11,81]
Dictyocheirospora xishuangbannaensis Tibpromma and K.D. HydeClematis sikkimensis and Pandanus sp.Thailand[44,48]
Dictyopalmispora palmae Pinruan and K.D. HydeLicuala longicalycataThailand[11]
Dictyosporium acroinflatum Whitton, K.D. Hyde, and McKenzieFreycinetia banksiiNew Zealand[56]
Dictyosporium alatum EmdenMachilus velutina,
Pinus massoniana, and soil
China and Indonesia[53,82,83,84]
Dictyosporium amoenum C.R. Silva, Gusmão, and R.F. CastañedaCalophyllum brasilienseBrazil[85]
Dictyosporium appendiculatum Tibpromma and K.D. HydePandanus sp.Thailand[48]
Dictyosporium aquaticum Abdel-AzizUnidentified submerged woodEgypt[86]
Dictyosporium araucariae S.S. Silva, R.F. Castañeda, and GusmãoAraucaria angustifoliaBrazil[87]
Dictyosporium biseriale D.M. Hu, L. Cai, and K.D. HydeUnidentified submerged woodChina[88]
Dictyosporium boydii A.L. Sm. and Ramsb.Unidentified decaying woodUnited Kingdom[89]
Dictyosporium brahmaswaroopii M.D. MehrotraLeucaena leucocephalaIndia[90]
Dictyosporium bulbosum Tzean and J.L. ChenBucida palustris, Clusia melchiori, Freycinetia banksia, and
Pandanus sp.
Brazil, China, Japan, New Zealand, Spain, Taiwan, and West Indies[45,49,53,91,92,93,94]
Dictyosporium campaniforme Matsush.Trachycarpus fortune and Quercus myrsinaefoliaJapan and Switzerland[53,95,96]
Dictyosporium canisporum L. Cai and K.D. HydeUnidentified submerged woodChina[80]
Dictyosporium cocophylum Bat.Butia yatay, Cocos nucifera, and Elaeis guineensisArgentina, Brazil, and Ghana[53,97,98]
Dictyosporium digitatum J.L. Chen, C.H. Hwang, and TzeanAnisoptera oblonga, Archontophoenix alexandrae, Cyperus aggregatus,
Licuala longicalycata, Machilus
velutina, Pinus massoniana, Pandanus copelandii, P. furcatus, and Phoenix hanceana
Australia, Brunei, China, Japan, Mauritius, Philippines, Seychelles, Taiwan, and Thailand[45,48,49,53,55,56], this study
Dictyosporium elegans CordaArenga engleri, Bamboo sp., Carpinus betulus, Chamaecyparis nootkatensis, Cistus sp., Cocos nucifera, Heritiera littoralis, Hordeum vulgare, Larix decidua, Livistona chinensis, Machilus velutina, Phillyrea angustifolia, Phoenix hanceana, Pinus massoniana, Pinus wallichiana, Pistacia lentiscus, Quercus ilex, Rhopalostylis sp., and Vitis sp.Alaska, Australia, China, Germany, Italy,
New Zealand, Pakistan,
Poland, South Africa, and Taiwan
[53,99]
Dictyosporium foliicola P.M. KirkIlex pernyiScotland and United Kingdom[100]
Dictyosporium gauntii Bhat and B. SuttonUnidentified decaying woodEthiopia[101]
Dictyosporium guttulatum Tibpromma and K.D. HydePandanus sp.Thailand[48]
Dictyosporium hongkongensis Tibpromma and K.D. HydePandanus sp.Hong Kong[48]
Dictyosporium hughesii McKenzieRhopalostylis sapida and Stewartia monadelphaJapan and New Zealand[49,102]
Dictyosporium hymenaearum Bat. and J.L. BezerraHymenaea sp.Brazil[103]
Dictyosporium krabiense Tibpromma and K.D. HydePandanus sp.Thailand[48]
Dictyosporium lakefuxianensis L. Cai, K.D. Hyde, and McKenzieFreycinetia scandensAustralia[104]
Dictyosporium manglietiae Kodsueb and McKenzieUnidentified decaying woodThailand[105]
Dictyosporium marinum Dayar. and E.B.G. JonesUnidentified submerged woodUnited Kingdom[106]
Dictyosporium meiosporum Boonmee and K.D. HydeUnidentified decaying woodThailand[86]
Dictyosporium minus Sacc.Inga sp.Brazil[53]
Dictyosporium muriformis N.G. Liu, K.D. Hyde, and J.K. LiuUnidentified decaying woodChina[74]
Dictyosporium nigroapice Goh, W.H. Ho, and K.D. HydeUnidentified decaying wood and Machilus velutinaChina and Thailand [12,45]
Dictyosporium oblongum (Fuckel) S. HughesPhillyrea angustifolia, Phragmites australis, and Populus tremuloidesCanada, Italy, and
Netherlands
[53]
Dictyosporium olivaceosporum Kaz. Tanaka, K. Hiray., Boonmee, and K.D. HydeUnidentified submerged woodJapan[11]
Dictyosporium palmae Abdel-AzizLicuala longicalycata and Phoenix dactyliferaEgypt and Thailand[14,53]
Dictyosporium pandani Whitton, K.D. Hyde, and McKenziePandanus spp.Australia, Brunei, China, Nepal, and Philippines[56]
Dictyosporium pandanicola Tibpromma and K.D. HydePandanus spp.Thailand[48]
Dictyosporium pelagicum (Linder) G.C. Hughes ex E.B.G. JonesUnidentified decaying woodCanada and United States[53,107]
Dictyosporium prolificum DamonJuncus sp.United States[108]
Dictyosporium rhopalostylidis McKenzieRhopalostylis sapidaNew Zealand[102]
Dictyosporium schizostachyfolium Bat. and M.L. FarrSchizostachyum acutiflorumPhilippines[109]
Dictyosporium sexualis Boonmee and K.D. HydeDecaying woodThailand[11]
Dictyosporium sinense H.M. Liu and T.Y. ZhangSoilChina[53]
Dictyosporium solanii A.D. Sharma, Munjal, and JandaikJuglans regia and
Trachycarpus fortunei
China and India[53]
Dictyosporium splendidum Alves-Barb., Malosso, and R.F. CastañedaUnidentified decaying leavesBrazil[110]
Dictyosporium stellatum G.P. White and SeifertUnidentified decaying woodUnited States[111]
Dictyosporium strelitziae Crous and A.R. WoodStrelitzia nicolaiSouth Africa[112]
Dictyosporium taishanense G.Z. Zhao and T.Y. ZhangUnidentified decaying woodChina[113]
Dictyosporium tetraseriale Goh, Yanna, and K.D. HydeLivistona chinensisHong Kong[45]
Dictyosporium tetrasporum L. Cai and K.D. HydeUnidentified submerged woodChina and Japan[49,114]
Dictyosporium thailandicum M.J. D’souza, Bhat, and K.D. HydeUnidentified submerged woodThailand[86]
Dictyosporium tratense J. Yang and K.D. HydeUnidentified decaying woodThailand[12]
Dictyosporium triramosum Aramb., Cabello, and CazauUnidentified decaying woodArgentina[115]
Dictyosporium triseriale Matsush.Phyllostachys sp.China and Taiwan[53,116]
Dictyosporium tubulatum J. Yang, K.D. Hyde, and Z.Y. LiuUnidentified decaying woodChina and Thailand[12,40]
Dictyosporium wuyiense Y. Zhang ter and G.Z. ZhaoBamboo sp.China[117]
Dictyosporium yerbae Speg.Ilex paraguariensisArgentina[118]
Dictyosporium yunnanense L. Cai, K.D. Hyde, and McKenzieUnidentified submerged woodChina[80]
Dictyosporium zeylanicum PetchUnidentified decaying woodSri Lanka[119]
Dictyosporium zhejiangense Wongs., H.K. Wang, K.D. Hyde, and F.C. LinUnidentified submerged woodChina[120]
Digitodesmium aquaticum H.W. Shen, Boonmee, and Z.L. LuoUnidentified submerged woodThailand[40]
Digitodesmium bambusicola L. Cai, K.Q. Zhang, McKenzie, W.H. Ho, and K.D. HydeBamboo sp.Philippines[121]
Digitodesmium chiangmaiense Q.J. Shang and K.D. HydeUnidentified decaying woodThailand[50]
Digitodesmium elegans P.M. KirkFagus sp. and Quercus sp.United Kingdom[122,123]
Digitodesmium heptasporum L. Cai and K.D. HydeUnidentified submerged woodChina[80]
Digitodesmium intermedium J. Mena, Silvera, Gené, and GuarroPlant debrisSpain[124]
Digitodesmium macrosporum Silvera, Mercado, Gené, and GuarroSoilSpain[124]
Digitodesmium polybrachiatum T.F. Nóbrega, B.W. Ferreira, and R.W. BarretoCoffea canephoraBrazil[125]
Digitodesmium recurvum W.H. Ho, K.D. Hyde, and HodgkissMachilus velutinaHong Kong[53,126]
Digitodesmium tectonae (Rajeshk., Rajn. K. Verma, Boonmee, K.D. Hyde, Chandrasiri, and Wijayaw.) W.H. Tian and Maharachch.Tectona grandisIndia[16,21]
Gregarithecium curvisporum Kaz. Tanaka and K. Hiray.Sasa sp.Japan[49]
Immotthia atrograna (Cooke and Ellis) M.E. BarrAceri-Fraxinetum, Carya olivaeformis, Carya sp., Salix alba,
Acer pseudoplatanus, and
Fraxinus excelsior
United States[127,128]
Immotthia atroseptata (Piroz.) M.E. BarrRhododendron maximumUnited States[128,129]
Immotthia bambusae H.B. Jiang and PhookamsakBamboo sp.Thailand[128]
Jalapriya apicalivaginata D.F. Bao, X. Fu, H.Y. Su, and Z.L. LuoUnidentified submerged woodChina[81]
Jalapriya aquatica D.F. Bao, X. Fu, H.Y. Su, and Z.L. LuoUnidentified submerged woodChina[81]
Jalapriya inflata (Matsush.) M.J. D’souza, Hong Y. Su, Z.L. Luo, and K.D. HydeUnidentified decaying woodCanada[11,66]
Jalapriya pulchra M.J. D’souza, Hong Y. Su, Z.L. Luo, and K.D. HydeUnidentified submerged woodChina[11]
Jalapriya toruloides (Corda) M.J. D’souza, Hong Y. Su, Z.L. Luo, and K.D. HydeLaurus nobilis and Populus nigraPakistan and Spain[53,130,131]
Neodendryphiella mali Iturrieta-González, Gené, and Dania GarcíaMalus domesticaItaly[15]
Neodendryphiella michoacanensis Iturrieta-González, Dania García, and GenéSoilMexico[15]
Neodendryphiella tarraconensis Iturrieta-González, Gené, and Dania GarcíaUnidentified decaying wood and SoilChina and Spain[15,69]
Neodigitodesmium cheirosporum W.H. Tian and Maharachch.Unidentified submerged woodChina[21]
Pseudocoleophoma bauhiniae Jayasiri, E.B.G. Jones, and K.D. HydeBauhinia sp.Thailand[47]
Pseudocoleophoma calamagrostidis Kaz. Tanaka and K. Hiray.Calamagrostis matsumuraeJapan[49]
Pseudocoleophoma flavescens (Gruyter, Noordel. & Boerema) W.J. Li and K.D. HydeSoilNetherlands[132,133]
Pseudocoleophoma polygonicola Kaz. Tanaka and K. Hiray.Polygonaceae sp.Japan[49]
Pseudocoleophoma puerensis L. Lu & TibprommaCoffea arabicaChina[134]
Pseudocoleophoma rhapidis Kular. and K.D. HydeRhapis excelsaChina[17]
Pseudocoleophoma rusci W.J. Li, Camporesi, and K.D. HydeRuscus aculeatusItaly[133]
Pseudocoleophoma typhicola Kamolhan, Banmai, Boonmee, E.B.G. Jones, and K.D. HydeTypha latifoliaUnited Kingdom[135]
Pseudocoleophoma yunnanensis L. Lu and TibprommaCoffea sp.China[134]
Pseudocoleophoma zingiberacearum Tennakoon, D.J. Bhat, C.H. Kuo, and K.D. HydeHedychium coronarium and
H. spicatum
Taiwan and Thailand[29], this study
Pseudoconiothyrium broussonetiae Crous and R.K. Schumach.Broussonetia papyriferaItaly[18]
Pseudocyclothyriella clematidis (Phukhams. and K.D. Hyde) Phukhams. and PhookamsakClematis vitalbaItaly[44,128]
Pseudodictyosporium elegans (Tzean and J.L. Chen) R. KirschnerUnidentified decaying woodTaiwan[136,137]
Pseudodictyosporium indicum (V.G. Rao and Subhedar) Boonmee and K.D. HydeSchleichera trijugaIndia[11,138]
Pseudodictyosporium thailandicum C.G. Lin, Yong Wang bis, and K.D. HydeBamboo sp.Thailand[135]
Pseudodictyosporium wauense Matsush.Bambusa vulgaris, Caesalpinia
echinata, Phillyrea angustifolia,
Pistacia lentiscus, and Quercus ilex
Brazil, China, Cuba, Italy,
Papua New Guinea, and
Venezuela
[53,60]
Sajamaea mycophile Flakus, Piątek, and Rodr. FlakusLeptosphaeria polylepidis and
Polylepis tarapacana
Bolivia[19]
Verrucoccum coppinsii V. Atienza, D. Hawksw., and Pérez-Ort.Lobaria pulmonariaUnited Kingdom[20]
Verrucoccum hymeniicola (Berk. & Broome) D. Hawksw., V. Atienza, and Pérez-Ort.Sticta sp.United States[20]
Verrucoccum spribillei V. Atienza, D. Hawksw., and Pérez-Ort.Lobaria linitaAlaska[20]
Vikalpa australiensis (B. Sutton) M.J. D’souza, Boonmee, and K.D. HydeEucalyptus sp.Australia[11,52]
Vikalpa freycinetiae (McKenzie) M.J. D’souza, Boonmee, and K.D. HydeFreycinetia banksiiNew Zealand[11,139]
Vikalpa grandispora H.W. Shen, Boonmee, and Z.L. LuoUnidentified submerged woodChina[40]
Vikalpa lignicola M.J. D’souza, Bhat, Hong Y. Su, and K.D. HydeUnidentified submerged woodChina[11]
Vikalpa micronesiaca (Matsush.) M.J. D’souza, Bhat, and K.D. HydeCalophyllum inophyllum, Cocos
nucifera, Drymophloeus
pachycladus, and Theobroma cacao
Brazil, Cuba, United States, and Venezuela[53]
Vikalpa sphaerica H.W. Shen and Z.L. LuoUnidentified submerged woodChina[40]
Considering the host association of the Dictyosporiaceae species reported so far, numerous species have been discovered in decaying wood or submerged woody substrates (e.g., Dictyocheirospora tetraploides (L. Cai and K.D. Hyde) J. Yang and K.D. Hyde; Di. thailandica X.D. Yu, W. Dong, and H. Zhang; Dictyosporium zeylanicum Petch; Dic. zhejiangense Wongs., H.K. Wang, K.D. Hyde, and F.C. Lin; Digitodesmium aquaticum H.W. Shen, Boonmee, and Z.L. Luo; Jalapriya apicalivaginata D.F. Bao, X. Fu, H.Y. Su, and Z.L. Luo; J. aquatica D.F. Bao, X. Fu, H.Y. Su, and Z.L. Luo; and Neodigitodesmium cheirosporum W.H. Tian and Maharachch). Some have been recorded from decaying leaves (e.g., Di. nabanheensis Tibpromma and K.D. Hyde; Di. pandanicola Tibpromma and K.D. Hyde; Di. xishuangbannaensis Tibpromma and K.D. Hyde; Dic. splendidum Alves-Barb., Malosso, and R.F. Castañeda) and soil (e.g., Dic. alatum Emden; Dic. sinense H.M. Liu, and T.Y. Zhang; Digitodesmium macrosporum Silvera, Mercado, Gené, and Guarro; Neodendryphiella michoacanensis Iturrieta-González, Dania García, and Gené; N. tarraconensis Iturrieta-González, Gené, and Dania García; Pseudocoleophoma flavescens (Gruyter, Noordel, and Boerema) W.J. Li and K.D. Hyde). However, the emerging concern is that the majority of these described species have been introduced from unidentified host species (Table 3). For instance, out of the 154 species listed, 55 were identified from unidentified host species. Thus, there is scant evidence of rigid host specialization in these species. Future taxonomical studies on Dictyosporiaceae are essentially needed to concentrate on determining the host specificity and check whether they are generalists or specialists to respective host species.

4. Discussion

Thailand is located between Indochinese and Sundaic regions and has a rich biodiversity [140,141]. This is an astonishing home to numerous tropical forests, mountains, rivers, and suitable climatic conditions, which has led to tremendous biodiversity [141,142,143,144]. In particular, tropical forests represent 33% of the total area, with over 18% being protected forests. Thus, this country showcases luxuriant vegetation (15,000 plant species, 600 ferns, of which over 1000 endemic species), 1000 bird species, over 300 mammal species, 490 species of amphibians and reptiles, 2800 fish species, and a vast range of microorganisms [144,145]. With enormous biodiversity, Thailand is a magnet for all kinds of taxonomists, and new species are continuously being discovered. For instance, fungal taxonomists in Thailand have collected, observed, and introduced a great deal of fungal species in the last two decades [43,48,59,74,135,141,146,147]. Prior to this period, most of the Thailand fungal taxonomy studies were merely based on morphological characteristics. However, in recent years this has been improved vastly with the usage of modern molecular phylogeny [148,149,150,151]. In addition, Hyde et al. [152] revealed that 96% of the fungal species described in northern Thailand were novel to science. Therefore, it is worth continuing the investigation and research of fungi in Thailand with broader scientific aspects.
The Dictyosporiaceae species have been well-documented during the last two decades with the advancement of molecular data [11,12,40,48,51]. For instance, out of 154 species, 99 Dictyosporiaceae species were introduced between 2000 and 2022 [25]. Of them, most have been confined to two genera: viz. Dictyosporium (37 species) and Dictyocheirospora (20 species). Geographically, Dictyosporiaceae members are widely distributed in temperate, tropical, and subtropical regions [11,13,53]. Nevertheless, geographical specificity of Dictyosporiaceae species is still understudied. Host specificity of the Dictyosporiaceae also has yet to be investigated, despite having been collected from various plant families [53]. However, although Dictyosporiaceae species have been found all over the world, most of them are lack molecular data. For example, only 24 species of Dictyosporium have molecular data out of the 63 species listed in the Index Fungorum [25]. Some genera are highly diverse (e.g., Dictyocheirospora: 23 species and Dictyosporium: 63 species), while some have fewer species (e.g., Aquadictyospora: 2 species, Cheirosporium: 2 species, Jalapriya: 5 species, Neodendryphiella: 3 species, Pseudodictyosporium: 4 species, and Verrucoccum: 3 species) or monotypic genera (e.g., Aquaticheirospora, Gregarithecium, Pseudoconiothyrium, Sajamaea, and Neodigitodesmium) [13]. Furthermore, to define the phylogenetic position of some genera in Dictyosporiaceae, there is currently a lack of molecular data (e.g., Sajamaea). Most of the previous studies have used LSU, ITS, and tef1-α genes for phylogenetic classification [7,11,12,44,74,153]. However, additional genes are needed to determine the phylogenetic status of some taxa (e.g., Dictyocheirospora clematidis vs. Di. thailandica, Di. pandanicola vs. Di. inaya, and Dictyosporium bulbosum vs. Dic. elegans), whose morphological characteristics are nearly identical and there are minor size differences.

5. Conclusions

In this study, we provided taxonomic details for five species, which included a new species (Dictyocheirospora acaciae) and four new host records (Di. garethjonesii, Di. taiwanense, Dictyosporium digitatum, and Pseudocoleophoma zingiberacearum) from Thailand. All of them are members of the Dictyosporiaceae and were described based on both morphology and phylogeny. Thus, these findings have facilitated our understanding of the fungal diversity in plant litter substrates and the vast geographical distribution of Dictyosporiaceae species. Further collections are essential to understand the circumscription of some Dictyosporiaceae genera which have few or single species (e.g., Aquaticheirospora, Gregarithecium, Pseudoconiothyrium, Sajamaea, and Neodigitodesmium).

Author Contributions

Conceptualization, D.S.T., N.I.d.S. and S.S.N.M.; methodology, D.S.T. and N.I.d.S.; software, D.S.T. and N.I.d.S.; validation, N.I.d.S., S.S.N.M., D.J.B. and N.S.; formal analysis, D.S.T. and N.I.d.S.; investigation, S.S.N.M., D.J.B., N.S. and S.L.; resources, D.S.T.; data curation, D.S.T. and N.I.d.S.; writing—original draft preparation, D.S.T., N.I.d.S., S.S.N.M., D.J.B., J.K. and N.S; writing—review and editing, N.I.d.S., S.S.N.M., D.J.B., J.K., N.S. and S.L.; supervision, N.S. and S.L.; project administration, S.L.; funding acquisition, N.S. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding

This project was funded by the National Research Council of Thailand (NRCT) N42A650198.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All sequences generated in this study were submitted to GenBank (https://www.ncbi.nlm.nih.gov (accessed on 15 December 2022)).

Acknowledgments

D.S.T., N.S. and S.L. thank for the partial support of Chiang Mai University, Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Swift, M.J.; Heal, O.W.; Anderson, M.M. Decomposition in Terrestrial Ecosystems; Blackwell Scientific Publications: Oxford, UK, 1979. [Google Scholar]
  2. Berg, B.; McClaugherty, C. Plant Litter Decomposition, Humus Formation. In Carbon Sequestration, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
  3. Graça, M.A. The role of invertebrates on leaf litter decomposition in streams–a review. Int. Rev. Hydrobiol. 2001, 86, 383–393. [Google Scholar] [CrossRef]
  4. Tennakoon, D.S.; Gentekaki, E.; Jeewon, R.; Kuo, C.H.; Promputtha, I.; Hyde, K.D. Life in leaf litter: Fungal community succession during decomposition. Mycosphere 2021, 12, 406–429. [Google Scholar] [CrossRef]
  5. Dechaine, J.; Ruan, H.; Sanchez de Leon, Y.; Zou, X. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico. Pedobiologia 2005, 49, 601–607. [Google Scholar] [CrossRef]
  6. Krishna, M.P.; Mohan, M. Litter decomposition in forest ecosystems: A review. Energy Ecol. Environ. 2017, 2, 236–249. [Google Scholar] [CrossRef]
  7. Osono, T. Leaf litter decomposition of 12 tree species in a subtropical forest in Japan. Ecol. Res. 2017, 32, 413–422. [Google Scholar] [CrossRef]
  8. Dickinson, C.H.; Pugh, G.J.F. Biology of Plant Litter Decomposition; Academic Press: London, UK, 1974; Volume 2, pp. 245–775. [Google Scholar]
  9. Tennakoon, D.S.; Kuo, C.H.; Maharachchikumbura, S.S.N.; Thambugala, K.M.; Gentekaki, E.; Phillips, A.J.; Bhat, D.J.; Wanasinghe, D.N.; de Silva, N.I.; Promputtha, I.; et al. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Divers. 2021, 108, 1–215. [Google Scholar] [CrossRef]
  10. Holden, S.R.; Gutierrez, A.; Treseder, K.K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 2013, 16, 34–46. [Google Scholar] [CrossRef] [Green Version]
  11. Boonmee, S.; Wanasinghe, D.N.; Calabon, M.S.; Huanraluek, N.; Chandrasiri, S.K.; Jones, G.E.; Rossi, W.; Leonardi, M.; Singh, S.K.; Rana, S.; et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2021, 111, 1–335. [Google Scholar] [CrossRef]
  12. Yang, J.; Liu, J.K.; Hyde, K.D.; Jones, E.G.; Liu, Z.Y. New species in Dictyosporium, new combinations in Dictyocheirospora and an updated backbone tree for Dictyosporiaceae. MycoKeys 2018, 36, 83–105. [Google Scholar] [CrossRef]
  13. Hongsanan, S.; Hyde, K.D.; Phookamsak, R.; Wanasinghe, D.N.; McKenzie, E.H.C.; Sarma, V.V.; Lücking, R.; Boonmee, S.; Bhat, J.D.; Liu, N.-G.; et al. Refined families of Dothideomycetes: Orders and families incertae sedis in Dothideomycetes. Fungal Divers. 2020, 105, 17–318. [Google Scholar] [CrossRef]
  14. Abdel-Aziz, F.A. Two new cheirosporous asexual taxa (Dictyosporiaceae, Pleosporales, Dothideomycetes) from freshwater habitats in Egypt. Mycosphere 2016, 7, 448–457. [Google Scholar] [CrossRef]
  15. Iturrieta-González, I.; Gené, J.; Guarro, J.; Castañeda-Ruiz, R.F.; García, D. Neodendryphiella, a novel genus of the Dictyosporiaceae (Pleosporales). MycoKeys 2018, 37, 19–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Rajeshkumar, K.C.; Verma, R.K.; Boonmee, S.; Chandrasiri, S.; Hyde, K.D.; Ashtekar, N.I.K.H.I.L.; Lad, S.; Wijayawardene, N.N. Paradictyocheirospora tectonae, a novel genus in the family Dictyosporiaceae from India. Phytotaxa 2021, 509, 259–271. [Google Scholar] [CrossRef]
  17. Kularathnage, N.D.; Wanasinghe, D.N.; Senanayake, I.C.; Yang, Y.; Manawasinghe, I.S.; Phillips, A.J.; Hyde, K.D.; Dong, W.; Song, J. Microfungi associated with ornamental palms: Byssosphaeria phoenicis sp. nov. (Melanommataceae) and Pseudocoleophoma rhapidis sp. nov. (Dictyosporiaceae) from south China. Phytotaxa 2022, 568, 149–169. [Google Scholar] [CrossRef]
  18. Crous, P.W.; Schumacher, R.K.; Akulov, A.; Thangavel, R.; Hernández-Restrepo, M.; Carnegie, A.J.; Cheewangkoon, R.; Wingfield, M.J.; Summerell, B.A.; Quaedvlieg, W.; et al. New and Interesting fungi. 2. Fungal Syst. Evol. 2019, 3, 57–134. [Google Scholar] [CrossRef]
  19. Piątek, M.; Rodriguez-Flakus, P.; Domic, A.; Palabral-Aguilera, A.N.; Gómez, M.I.; Flakus, A. Phylogenetic placement of Leptosphaeria polylepidis, a pathogen of Andean endemic Polylepis tarapacana, and its newly discovered mycoparasite Sajamaea mycophila gen. et sp. nov. Mycol. Prog. 2020, 19, 1–14. [Google Scholar] [CrossRef] [Green Version]
  20. Atienza, V.; Hawksworth, D.L.; Pérez-Ortega, S. Verrucoccum (Dothideomycetes, Dictyosporiaceae), a new genus of lichenicolous fungi on Lobaria s. lat. for the Dothidea hymeniicola species complex. Mycologia 2021, 113, 1233–1252. [Google Scholar] [CrossRef]
  21. Tian, W.; Chen, Y.; Maharachchikumbura, S.S.N. Neodigitodesmium, a novel genus of family Dictyosporiaceae from Sichuan Province, China. Phytotaxa 2022, 559, 176–184. [Google Scholar] [CrossRef]
  22. Wijayawardene, N.; Hyde, K.; Dai, D.; Sánchez-García, M.; Goto, B.; Saxena, R.; Erdoğdu, M.; Selçuk, F.; Rajeshkumar, K.; Aptroot, A.; et al. Outline of Fungi and fungus-like taxa—2021. Mycosphere 2022, 13, 53–453. [Google Scholar] [CrossRef]
  23. Senanayake, I.; Rathnayaka, A.; Marasinghe, D.; Calabon, M.; Gentekaki, E.; Lee, H.; Hurdeal, V.; Pem, D.; Dissanayake, L.; Wijesinghe, S.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 2020, 11, 2678–2754. [Google Scholar] [CrossRef]
  24. Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.A.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. Fungal Divers. 2015, 74, 3–18. [Google Scholar] [CrossRef]
  25. Index Fungorum. Available online: http://www.indexfungorum.org (accessed on 1 December 2022).
  26. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
  28. Rehner, S.A. Primers for Elongation Factor 1-Alpha (EF1-Alpha). 2001. Available online: https://www.docin.com/p-1613748809.html (accessed on 15 November 2022).
  29. Tennakoon, D.S.; Bhat, D.J.; Kuo, C.H.; Hyde, K.D. Leaf litter saprobic Dictyosporiaceae (Pleosporales, Dothideomycetes): Pseudocoleophoma zingiberacearum sp. nov. from Hedychium coronarium. Kavaka 2019, 53, 1–7. [Google Scholar] [CrossRef]
  30. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
  31. Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Proceedings of the Nucleic Acids Symposium Series, London, UK, 2–6 September 1999; pp. 95–98. [Google Scholar]
  32. Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; IEEE: New Orleans, LA, USA, 2010; pp. 1–8. [Google Scholar]
  34. Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
  35. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
  36. Swofford, D.L. PAUP* Phylogenetic Analysis Using Parsimony * (and Other Methods), Version 4.0.; Sinauer Associates: Sunderland, UK, 2002. [Google Scholar]
  37. Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
  38. Posada, D.; Crandall, K.A. Modeltest: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [Green Version]
  39. Rambaut, A.; Drummond, A.J. FigTree: Tree Figure Drawing Tool; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, Scotland, 2012. [Google Scholar]
  40. Shen, H.; Bao, D.; Wanasinghe, D.N.; Boonmee, S.; Liu, J.; Luo, Z. Novel Species and Records of Dictyosporiaceae from Freshwater Habitats in China and Thailand. J. Fungi 2022, 8, 1200. [Google Scholar] [CrossRef]
  41. Wang, R.X.; Luo, Z.L.; Hyde, K.D.; Bhat, D.J.; Su, X.J.; Su, H.Y. New species and records of Dictyocheirospora from submerged wood in north-western Yunnan, China. Mycosphere 2016, 7, 1357–1367. [Google Scholar] [CrossRef]
  42. Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019, 95, 1–273. [Google Scholar] [CrossRef] [Green Version]
  43. Hyde, K.D.; Norphanphoun, C.; Abreu, V.P.; Bazzicalupo, A.; Chethana, K.W.T.; Clericuzio, M.; Dayarathne, M.C.; Dissanayake, A.J.; Ekanayaka, A.H.; He, M.Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017, 87, 1–235. [Google Scholar] [CrossRef]
  44. Phukhamsakda, C.; McKenzie, E.H.; Phillips, A.J.; Jones, E.B.G.; Bhat, D.J.; Stadler, M.; Bhunjun, C.S.; Wanasinghe, D.N.; Thongbai, B.; Camporesi, E.; et al. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers. 2020, 102, 1–203. [Google Scholar] [CrossRef]
  45. Goh, T.K.; Hyde, K.D.; Ho, W.H. A revision of the genus Dictyosporium, with descriptions of three new species. Fungal Divers. 1999, 2, 65–100. [Google Scholar]
  46. Prasher, I.B.; Verma, R.K. Two new species of Dictyosporium from India. Phytotaxa 2015, 204, 193–202. [Google Scholar]
  47. Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019, 10, 1–186. [Google Scholar] [CrossRef]
  48. Tibpromma, S.; Hyde, K.D.; Bhat, J.D.; Mortimer, P.E.; Xu, J.; Promputtha, I.; Doilom, M.; Yang, J.B.; Tang, A.M.; Karunarathna, S.C. Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys 2018, 33, 25–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Tanaka, K.; Hirayama, K.; Yonezawa, H.; Sato, G.; Toriyabe, A.; Kudo, H.; Hashimoto, A.; Matsumura, M.; Harada, Y.; Kurihara, Y.; et al. Revision of the Massarineae (Pleosporales, Dothideomycetes). Stud. Mycol. 2015, 82, 75–136. [Google Scholar] [CrossRef] [Green Version]
  50. Hyde, K.D.; Tennakoon, D.S.; Jeewon, R.; Bhat, D.J.; Maharachchikumbura, S.S.N.; Rossi, W.; Leonardi, M.; Lee, H.B.; Mun, H.Y.; Houbraken, J.; et al. Fungal diversity notes 1036–1150: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2019, 96, 1–242. [Google Scholar] [CrossRef]
  51. Dong, W.; Wang, B.; Hyde, K.D.; McKenzie, E.H.; Raja, H.A.; Tanaka, K.; Abdel-Wahab, M.A.; Abdel-Aziz, F.A.; Doilom, M.; Phookamsak, R.; et al. Freshwater Dothideomycetes. Fungal Divers. 2020, 105, 319–575. [Google Scholar] [CrossRef]
  52. Sutton, B.C. Notes on some deuteromycete genera with cheiroid or digitate brown conidia. Proc. Indian Acad. Sci. Sect. 1985, 94, 229–244. [Google Scholar] [CrossRef]
  53. Farr, D.F.; Rossman, A.Y. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Available online: http://nt.ars-grin.gov/fungaldatabases (accessed on 1 December 2022).
  54. Witenweber, W.R. Beiträge zur Gesammten Natur-Und Heilwissenschaften; Kronberger und Weber: Kronberg, Germany, 1836. [Google Scholar]
  55. Chen, J.L.; Hwang, C.H.; Tzean, S.S. Dictyosporium digitatum, a new hyphomycete from Taiwan. Mycol. Res. 1991, 95, 1145–1149. [Google Scholar] [CrossRef]
  56. Whitton, S.R.; McKenzie, E.H.C.; Hyde, K.D. Fungi Associated with Pandanaceae; Springer: Dordecht, The Netherlands, 2012; ISBN 978-94-007-4446-2. [Google Scholar]
  57. Whitton, S.R.; McKenzie, E.H.C.; Hyde, K.D. (Eds.) Fungi Associated with Pandanaceae; Fungal Diversity Research Series, 21; Springer: Dordrecht, The Netherlands, 2012; pp. 125–353. [Google Scholar]
  58. Species Fungorum. Available online: http://www.indexfungorum.org (accessed on 1 December 2022).
  59. Hyde, K.D.; Chaiwan, N.; Norphanphoun, C.; Boonmee, S.; Camporesi, E.; Chethana, K.W.T.; Dayarathne, M.C.; de Silva, N.I.; Dissanayake, A.J.; Ekanayaka, A.H.; et al. Mycosphere notes 169–224. Mycosphere 2018, 9, 271–430. [Google Scholar] [CrossRef]
  60. Li, W.L.; Luo, Z.L.; Liu, J.K.; Bhat, D.J.; Bao, D.F.; Su, H.Y.; Hyde, K.D. Lignicolous freshwater fungi from China I: Aquadictyospora lignicola gen. et sp. nov. and new record of Pseudodictyosporium wauense from northwestern Yunnan Province. Mycosphere 2017, 8, 1587–1597. [Google Scholar] [CrossRef]
  61. Kodsueb, R.; Lumyong, S.; Ho, W.H.; Hyde, K.D.; Mckenzie, E.H.; Jeewon, R. Morphological and molecular characterization of Aquaticheirospora and phylogenetics of Massarinaceae (Pleosporales). Bot. J. Linn. 2007, 155, 283–296. [Google Scholar] [CrossRef] [Green Version]
  62. Cai, L.; Guo, X.Y.; Hyde, K.D. Morphological and molecular characterization of a new anamorphic genus Cheirosporium, from freshwater in China. Persoonia 2008, 20, 53–58. [Google Scholar] [CrossRef] [Green Version]
  63. Barreto, R.W.; Evans, H.C.; Ellison, C.A. The mycobiota of the weed Lantana camera in Brazil, with particular reference to biological control. Mycol. Res. 1995, 99, 769–782. [Google Scholar] [CrossRef]
  64. Guo, Y.L.; Zhang, Z.Y. A new species of Dendryphiella. Mycosystema 1999, 18, 236–237. [Google Scholar]
  65. Rai, A.N.; Kamal, N. Fungi of Gorakhpur—XLII. Kavaka 1986, 14, 31–36. [Google Scholar]
  66. Matsushima, T. Matsushima Mycological Memoirs 3. Matsushima Mycol. Mem. 1983, 3, 1–89. [Google Scholar] [CrossRef]
  67. Crous, P.W.; Shivas, R.G.; Quaedvlieg, W.; van der Bank, M.; Zhang, Y.; Summerell, B.A.; Guarro, J.; Wingfield, M.J.; Wood, A.R.; Alfenas, A.C.; et al. Fungal Planet Description Sheets: 214–280. Persoonia 2014, 32, 184–306. [Google Scholar] [PubMed]
  68. Crous, P.W.; Wingfield, M.J.; Schumacher, R.K.; Akulov, A.; Bulgakov, T.S.; Carnegie, A.J.; Jurjević, Ž.; Decock, C.; Denman, S.; Lombard, L.; et al. New and Interesting Fungi. 3. Fungal Syst. Evol. 2020, 6, 157–231. [Google Scholar] [CrossRef]
  69. Hyde, K.D.; de Silva, N.I.; Jeewon, R.; Bhat, D.J.; Phookamsak, R.; Doilom, M.; Boonmee, S.; Jayawardena, R.S.; Maharachchikumbura, S.S.N.; Senanayake, I.C.; et al. AJOM new records and collections of fungi: 1–100. Asian J. Mycol. 2020, 3, 22–294. [Google Scholar]
  70. Liu, N.G.; Hongsanan, S.; Yang, J.; Lin, C.G.; Bhat, D.J.; Liu, J.K.; Jumpathong, J.; Boonmee, S.; Hyde, K.D.; Liu, Z.Y. Dendryphiella fasciculata sp. nov. and notes on other Dendryphiella species. Mycosphere 2017, 8, 1575–1586. [Google Scholar]
  71. Rao, V.G.; Narania, K. A new species of Dendryphiella. Curr. Sci. 1974, 43, 525–526. [Google Scholar]
  72. Batista, A.C.; Peres, G.E.P. Alguns Melanconiales e Moniliales. In Memórias da Sociedade Broteriana; Publicações do Instituto de Micologia da Universidade do Recife: Recife, Brazil, 1961; Volume 14, pp. 83–94. [Google Scholar]
  73. Crous, P.W.; Wingfield, M.J.; Richardson, D.M.; Le Roux, J.J.; Strasberg, D.; Edwards, J.; Roets, F.; Hubka, V.; Taylor, P.W.J.; Heykoop, M.; et al. Fungal Planet description sheets: 400–468. Persoonia 2016, 36, 316–458. [Google Scholar]
  74. Hyde, K.D.; Dong, Y.; Phookamsak, R.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Liu, N.G.; Abeywickrama, P.D.; Mapook, A.; Wei, D.; et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2020, 100, 5–277. [Google Scholar]
  75. Crous, P.W.; Carnegie, A.J.; Wingfield, M.J.; Sharma, R.; Mughini, G.; Noordeloos, M.E.; Santini, A.; Shouche, Y.S.; Bezerra, J.D.; Dima, B.; et al. Fungal Planet description sheets: 868–950. Persoonia 2019, 42, 291–473. [Google Scholar] [CrossRef]
  76. Ferreira, B.W.; Barreto, R.W. Debunking Acroconidiella. Mycol. Prog. 2019, 18, 1303–1315. [Google Scholar]
  77. Matsushima, T. Microfungi of the Solomon Islands and Papua New Guinea; Matsushima: Kobe, Japan, 1971. [Google Scholar]
  78. Lunghini, D.; Granito, V.M.; Di Lonardo, D.P.; Maggi, O.; Persiani, A.M. Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment. Mycologia 2013, 105, 1499–1515. [Google Scholar] [CrossRef] [PubMed]
  79. Photita, W.; Lumyong, P.; McKenzie, E.H.C.; Hyde, K.D.; Lumyong, S. A new Dictyosporium species from Musa acuminata in Thailand. Mycotaxon 2002, 82, 415–419. [Google Scholar]
  80. Cai, L.; Zhang, K.Q.; McKenzie, E.H.C.; Hyde, K.D. New species of Dictyosporium and Digitodesmium from submerged wood in Yunnan, China. Sydowia 2003, 55, 129–135. [Google Scholar]
  81. Fu, X.; Bao, D.F.; Luo, Z.L.; He, X.; Su, H.Y. Two new species of Jalapriya and a new record, Dictyocheirospora vinaya from freshwater habitats in China. Biodivers. Data J. 2021, 9, e74295. [Google Scholar] [CrossRef]
  82. van Emden, J.H. Three new fungi from Surinam soil. Acta Bot. Neerl. 1975, 24, 193–197. [Google Scholar] [CrossRef]
  83. Lu, B.S.; Hyde, K.D.; Ho, W.H.; Tsui, K.M.; Taylor, J.E.; Wong, K.M.; Yanna, Z.D.; Zhou, D.Q. Checklist of Hong Kong Fungi; Fungal Diversity Press: Hong Kong, China, 2000; p. 207. [Google Scholar]
  84. Zhuang, W.Y. (Ed.) Higher Fungi of Tropical China; Mycotaxon, Ltd.: Ithaca, NY, USA, 2001; 485p. [Google Scholar]
  85. Silva, C.R.; Gusmão, L.F.P.; Castañeda-Ruiz, R.F. Dictyosporium amoenum sp. nov. from Chapada Diamantina, Bahia, Brazil. Mycotaxon 2015, 130, 1125–1133. [Google Scholar] [CrossRef]
  86. Liu, J.K.; Hyde, K.D.; Jones, E.B.G.; Ariyawansa, H.A.; Bhat, D.J.; Boonmee, S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Phookamsak, R.; Phukhamsakda, C.; et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015, 72, 1–197. [Google Scholar] [CrossRef]
  87. Silva, S.S.; Castañeda Ruíz, R.F.; Gusmão, L.F.P. New species and records of Dictyosporium on Araucaria angustifolia (Brazilian pine) from Brazil. Nova Hedwig. 2015, 102, 523–530. [Google Scholar] [CrossRef]
  88. Hu, D.M.; Cai, L.; Chen, H.; Bahkali, A.H.; Hyde, K.D. Four new freshwater fungi associated with submerged wood from Southwest Asia. Sydowia 2010, 62, 191–203. [Google Scholar]
  89. Smith, A.L.; Ramsbottom, J. New or rare microfungi. Trans. Br. Mycol. Soc. 1914, 5, 156–168. [Google Scholar] [CrossRef]
  90. Mehrotra, M.D. Dictyosporium brahmaswaroopii sp. nov., from India. Mycol. Res. 1990, 94, 1149–1151. [Google Scholar] [CrossRef]
  91. Castañeda Ruiz, R.F.; Guarro, J.; Figueras, M.J.; Gene, J.; Cano, J. More conidial fungi from La Gomera, Canary Islands, Spain. Mycotaxon 1997, 65, 121–131. [Google Scholar]
  92. Tzean, S.S.; Chen, J.L. Two new species of Dictyosporium from Taiwan. Mycol. Res. 1989, 92, 497–502. [Google Scholar] [CrossRef]
  93. Minter, D.W.; Rodriguez Hernandez, M.; Mena Portales, J. Fungi of the Caribbean: An Annotated Checklist; PDMS Publishing: Isleworth, UK, 2001; 946p. [Google Scholar]
  94. Barbosa, F.R.; Gusmao, L.F.P.; Ruiz, R.F.C.; Marques, M.F.O.; Maia, L.C. Conidial fungi from the semi-arid Caatinga biome of Brazil. New species Deightoniella rugosa and Diplocladiella cornitumida with new records for the neotropics. Mycotaxon 2007, 102, 39–49. [Google Scholar]
  95. Matsushima, T. Icones Microfungorum a Matsushima Lectorum. Matsushima: Kobe, Japan, 1975; pp. 1–209. [Google Scholar]
  96. Taylor, J.E.; Hyde, K.D. Microfungi of Tropical and Temperate Palms; Fungal Diversity Press: Hong Kong, China, 2003; 459p. [Google Scholar]
  97. Batista, A.C. Notes on “Dictyosporium coccophilum” n. sp. and revision of the genus “Dictyosporium” (Speira). In Boletim da Secretaria de Agricultura Indústria e Comércio do Estado de Pernambuco; Instituto de Micologia da Universidade do Recife: Recife, Brazil, 1951; Volume 18, pp. 1–6. [Google Scholar]
  98. Capdeet, M.; Romero, A.I. Fungi from palms in Argentina. 1. Mycotaxon 2010, 112, 339–355. [Google Scholar] [CrossRef]
  99. Corda, A.K.J. Icones Fungorum Hucusque Cognitorum. Ann. Mag. Nat. Hist. 1837, 7, 61–63. [Google Scholar]
  100. Kirk, P.M.; Spooner, B.M. An account of the fungi of Arran, Gigha and Kintyre. Kew Bull. 1984, 38, 503–597. [Google Scholar] [CrossRef]
  101. Bhat, D.J.; Sutton, B.C. New and interesting hyphomycetes from Ethiopia. Trans. Br. Mycol. Soc. 1985, 85, 107–122. [Google Scholar] [CrossRef]
  102. McKenzie, E.H.C. Two new dictyosporous hyphomycetes on Rhopalostylis sapida (Arecaceae) in New Zealand. Mycotaxon 2010, 111, 155–160. [Google Scholar] [CrossRef]
  103. Batista, A.C.; Bezerra, J.L.; Siqueira, M.W.; Peres, G.E.P. Beneckea n. Gen. e Outros Fungos Imperfeitos; Publicações do Instituto de Micologia da Universidade do Recife: Recife, Brazil, 1960; Volume 299, pp. 1–42. [Google Scholar]
  104. Cai, L.; Zhang, K.Q.; McKenzie, E.H.C.; Lumyong, S.; Hyde, K.D. New species of Canalisporium and Dictyosporium from China and a note on the differences between these genera. Cryptogam. Mycol. 2003, 24, 3–11. [Google Scholar]
  105. Kodsueb, R.; Lumyong, S.; Hyde, K.D.; Lumyong, P.; Mckenzie, E.H. Acrodictys micheliae and Dictyosporium manglietiae, two new anamorphic fungi from woody litter of Magnoliaceae in northern Thailand. Cryptogam. Mycol. 2006, 27, 111–119. [Google Scholar]
  106. Dayarathne, M.C.; Jones, E.B.G.; Maharachchikumbura, S.S.N.; Devadatha, B.; Sarma, V.V.; Khongphinitbunjong, K.; Chomnunti, P.; Hyde, K.D. Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 2020, 11, 1–188. [Google Scholar] [CrossRef]
  107. Jones, E.B.G. Marine fungi. II. Ascomycetes and Deuteromycetes from submerged wood and drift Spartina. Trans. Br. Mycol. Soc. 1963, 46, 135–144. [Google Scholar] [CrossRef]
  108. Damon, S.C. Type studies in Dictyosporium, Speira and Cattanea. Lloydia 1952, 15, 110–124. [Google Scholar]
  109. Batista, A.C.; Farr, M.L. Algumas espécies de Dictyosporium e Podosporium. Saccardoa 1960, 1, 103–109. [Google Scholar]
  110. Alves-Barbosa, M.; Costa, P.M.O.; Malosso, E.; Castañeda Ruíz, R.F. Two new species of Dictyosporium and Helminthosporium from the Brazilian Atlantic Forest. Nova Hedwig. 2017, 105, 65–73. [Google Scholar] [CrossRef]
  111. Crous, P.W.; Groenewald, J.Z.; Shivas, R.G.; Edwards, J.; Seifert, K.A.; Alfenas, A.C.; Alfenas, R.F.; Burgess, T.I.; Carnegie, A.J.; Hardy, G.E.S.J.; et al. Fungal Planet Description Sheets: 69–91. Persoonia 2011, 26, 108–156. [Google Scholar] [CrossRef]
  112. Crous, P.W.; Braun, U.; Wingfield, M.J.; Wood, A.R.; Shin, H.D.; Summerell, B.A.; Alfenas, A.C.; Cumagun, C.J.R.; Groenewald, J.Z. Phylogeny and taxonomy of obscure genera of microfungi. Persoonia 2009, 22, 139–161. [Google Scholar] [CrossRef] [Green Version]
  113. Zhao, G.Z.; Zhang, T.Y. Notes on dictyosporic hyphomycetes from China 1. The genus Dictyosporium. Mycosystema 2003, 22, 19–22. [Google Scholar]
  114. Cai, L.; Hyde, K.D. Anamorphic fungi from freshwater habitats in China: Dictyosporium tetrasporum and Exserticlava yunnanensis spp. nov., and two new records for Pseudofuscophialis lignicola and Pseudobotrytis terrestris. Mycoscience 2007, 48, 290–296. [Google Scholar] [CrossRef]
  115. Arambarri, A.M. Dictyosporium triramosum, a new hyphomycete from Argentina. Mycotaxon 2001, 78, 185–189. [Google Scholar]
  116. Matsushima, T. Saprophytic microfungi from Taiwan, part 1. Hyphomycetes. Matsushima Mycol. Mem. 1980, 1, 8. [Google Scholar]
  117. Zhang, Y.; Cai, C.S.; Zhao, G.Z. Dictyosporium wuyiense sp. nov. from Wuyi Mountain China. Phytotaxa 2017, 314, 251–258. [Google Scholar] [CrossRef]
  118. Spegazzini, C. Hongos de la Yerba Mate; Anales del Museo Nacional de Historia Natural Buenos Aires: Buenos Aires, Argentina, 1908; Volume 17, pp. 111–141. [Google Scholar]
  119. Petch, T. Additions to Ceylon fungi. Ann. R. Bot. Gard. Perad. 1917, 6, 195–256. [Google Scholar]
  120. Wongsawas, M.; Wang, H.K.; Hyde, K.D.; Lin, F.C. Dictyosporium zhejiangense sp. nov., a new freshwater anamorphic fungus from China. Cryptogam. Mycol. 2009, 30, 355–362. [Google Scholar]
  121. Cai, L.; Zhang, K.; Mc Kenzie, E.H.; Hyde, K.D. Acrodictys liputii sp. nov. and Digitodesmium bambusicola sp. nov. from bamboo submerged in the Liput River in the Philippines. Nova Hedwig. 2002, 75, 525–532. [Google Scholar] [CrossRef]
  122. Kirk, P.M. New or interesting microfungi II. Dematiaceous Hyphomycetes from Ester Common, Surrey. Trans. Brit. Mycol. Soc. 1981, 77, 279–297. [Google Scholar] [CrossRef]
  123. Dennis, R.W.G. Fungi of the Hebrides; Royal Botanic Gardens, Kew: Richmond, UK, 1986; pp. 1–383. [Google Scholar]
  124. Silvera-Simon, C.; Mercado-Sierra, A.; Mena-Portales, J.; Gene, J.; Guarro, J. Two new species of Digitodesmium from Euskadi (Spain). Cryptogam. Mycol. 2010, 31, 211–218. [Google Scholar]
  125. Nóbrega, T.F.; Ferreira, B.W.; Barreto, R.W. Digitodesmium polybrachiatum sp. nov., a new species of Dictyosporiaceae from Brazil. Mycol. Prog. 2021, 20, 1135–1144. [Google Scholar] [CrossRef]
  126. Ho, W.H.; Hyde, K.D.; Hodgkiss, I.J. Digitodesmium recurvum, a new species of chirosporous hyphomycete from Hong Kong. Mycologia 1999, 91, 900–904. [Google Scholar] [CrossRef] [Green Version]
  127. Jaklitsch, W.; Scheuer, C.; Voglmayr, H. Notes on the genus Immotthia (Pleosporales, Ascomycetes), including some type studies. Österr. Z. Pilzk. 2002, 11, 93–106. [Google Scholar]
  128. Jiang, H.B.; Jeewon, R.; Karunarathna, S.C.; Phukhamsakda, C.; Doilom, M.; Kakumyan, P.; Suwannarach, N.; Phookamsak, R.; Lumyong, S. Reappraisal of Immotthia in Dictyosporiaceae, Pleosporales: Introducing Immotthia bambusae sp. nov. and Pseudocyclothyriella clematidis comb. et gen. nov. based on Morphology and Phylogeny. Front. Microbiol. 2021, 12, 656235. [Google Scholar] [CrossRef] [PubMed]
  129. Pirozynski, K.A. Three hyperparasites of ascomycetes. Mycologia 1973, 65, 761–767. [Google Scholar] [CrossRef]
  130. Gonzalez Fragoso, R. Algunos Demaciaceos de la Flora espanola. Bol. Real Soc. Esp. Hist. Nat. 1921, 21, 93–99. [Google Scholar]
  131. Ahmad, S.; Iqbal, S.H.; Khalid, A.N. Fungi of Pakistan; Sultan Ahmad Mycological Society of Pakistan: Lahore, Pakistan, 1997; p. 248. [Google Scholar]
  132. Boerema, G.H.; de Gruyter, J.; Noordeloos, M.E. New names in Phoma. Persoonia 1995, 16, 131. [Google Scholar]
  133. Li, W.J.; McKenzie, E.H.; Liu, J.K.J.; Bhat, D.J.; Dai, D.Q.; Camporesi, E.; Tian, Q.; Maharachchikumbura, S.S.N.; Luo, Z.L.; Shang, Q.J.; et al. Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Divers. 2020, 100, 279–801. [Google Scholar] [CrossRef]
  134. Lu, L.; Karunarathna, S.C.; Dai, D.Q.; Xiong, Y.R.; Suwannarach, N.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; Jayawardena, R.S.; Tibpromma, S. Description of Four Novel Species in Pleosporales Associated with Coffee in Yunnan, China. J. Fungi 2022, 8, 1113. [Google Scholar] [CrossRef]
  135. Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.C.; Jones, E.B.G.; Phookamsak, R.; Ariyawansa, H.A.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 80, 1–270. [Google Scholar] [CrossRef]
  136. Tzean, S.S.; Chen, J.L. Cheiromoniliophora elegans gen. et sp. nov. (hyphomycetes). Mycol. Res. 1990, 94, 424–427. [Google Scholar] [CrossRef]
  137. Kirschner, R.; Pang, K.L.; Jones, E.B. Two cheirosporous hyphomycetes reassessed based on morphological and molecular examination. Mycol. Prog. 2013, 12, 29–36. [Google Scholar] [CrossRef]
  138. Rao, V.G.; Subhedar, A.W. Kamatia, a new genus of hyphomycetes. Trans. Br. Mycol. Soc. 1976, 66, 539–541. [Google Scholar] [CrossRef]
  139. McKenzie, E.H.C. Two new dictyosporous hyphomycetes on Pandanaceae. Mycotaxon 2008, 104, 23–28. [Google Scholar]
  140. Marod, D.; Kutintara, U. Biodiversity Observation and Monitoring in Thailand. In The Biodiversity Observation Network in the Asia-Pacific Region; Nakano, S., Ed.; Springer: Tokyo, Japan, 2012; pp. 53–63. [Google Scholar]
  141. Phengsintham, P.; Braun, U.; McKenzie, E.H.C.; Chukeatirote, E.; Cai, L.; Hyde, K.D. Monograph of cercosporoid fungi from Thailand. Plant Pathol. Quar. J. 2013, 3, 67–138. [Google Scholar] [CrossRef]
  142. Bimai, W. Status of Biodiversity in Thailand; Department of Biology, Faculty of Sciences, Mahidol University: Bangkok, Thailand, 1995. [Google Scholar]
  143. Vidthayanon, C. Aquatic Alien Species in Thailand (Part1). In Biodiversity. International Mechanisms for the Control and Responsible use of Alien Species in Aquatic Ecosystems; Report of an Ad Hoc expert Consultation; FAO: Rome, Italy, 2005; pp. 113–117. [Google Scholar]
  144. Pomoim, N.; Hughes, A.C.; Trisurat, Y.; Corlett, R.T. Thailand. Sci. Rep. 2022, 12, 5705. [Google Scholar] [CrossRef]
  145. Singh, M.; Griaud, C.; Collins, C.M. An evaluation of the effectiveness of protected areas in Thailand. Ecol. Indic. 2021, 125, 107536. [Google Scholar] [CrossRef]
  146. Photita, W.; Lumyong, S.; Lumyong, P.; Hyde, K.D. Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol. Res. 2001, 105, 1508–1513. [Google Scholar] [CrossRef]
  147. Pinnoi, A.; Lumyong, S.; Hyde, K.D.; Jones, E.G. Biodiversity of fungi on the palm Eleiodoxa conferta in Sirindhorn peat swamp forest, Narathiwat, Thailand. Fungal Divers. 2006, 22, 205–218. [Google Scholar]
  148. Thongkantha, S.; Jeewon, R.; Vijaykrishna, D.; Lumyong, S.; McKenzie, E.H.C.; Hyde, K.D. Molecular phylogeny of Magnaporthaceae (Sordariomycetes) with a new species Ophioceras chiangdaoense from Dracaena loureiroi in Thailand. Fungal Divers. 2009, 34, 157–173. [Google Scholar]
  149. Ali, I.; Kanhayuwa, L.; Rachdawong, S.; Rakshit, S.K. Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. J. Microbiol. 2013, 63, 887–895. [Google Scholar] [CrossRef]
  150. Nguanhom, J.; Cheewangkoon, R.; Groenewald, J.Z.; Braun, U.; To-Anun, C.; Crous, P.W. Taxonomy and phylogeny of Cercospora spp. from Northern Thailand. Phytotaxa 2015, 233, 27–48. [Google Scholar] [CrossRef] [Green Version]
  151. Kuephadungphan, W.; Petcharad, B.; Tasanathai, K.; Thanakitpipattana, D.; Kobmoo, N.; Khonsanit, A.; Samson, R.A.; Luangsaard, J.J. Multi-locus phylogeny unmasks hidden species within the specialized spider-parasitic fungus, Gibellula (Hypocreales, Cordycipitaceae) in Thailand. Stud. Mycol. 2022, 101, 245–286. [Google Scholar] [CrossRef] [PubMed]
  152. Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
  153. Boonmee, S.; D’souza, M.J.; Luo, Z.; Pinruan, U.; Tanaka, K.; Su, H.; Bhat, D.J.; McKenzie, E.H.; Jones, E.B.; Taylor, J.E.; et al. Dictyosporiaceae fam. nov. Fungal Divers. 2016, 80, 457–482. [Google Scholar] [CrossRef]
Figure 1. The phylogram generated from maximum likelihood analysis is based on combined LSU, ITS, and tef1-α sequence data. The tree is rooted with Periconia igniaria (CBS 379.86 and CBS 845.96). The new isolates are in red, and ex-type strains are bold. All the strain numbers are in blue. Bootstrap support values ≥70% from the maximum likelihood (ML) and maximum parsimony (MP) and Bayesian posterior probabilities (BYPP) values ≥0.90 are given above the nodes, respectively.
Figure 1. The phylogram generated from maximum likelihood analysis is based on combined LSU, ITS, and tef1-α sequence data. The tree is rooted with Periconia igniaria (CBS 379.86 and CBS 845.96). The new isolates are in red, and ex-type strains are bold. All the strain numbers are in blue. Bootstrap support values ≥70% from the maximum likelihood (ML) and maximum parsimony (MP) and Bayesian posterior probabilities (BYPP) values ≥0.90 are given above the nodes, respectively.
Diversity 15 00410 g001aDiversity 15 00410 g001b
Figure 2. Dictyocheirospora acaciae (CMUB 39980, holotype). (a,b) Sporodochia on dead stem of Acacia dealbata. (c) Close-up of sporodochium. (d,e) Conidiogenous cells with developing conidia. (fi) Conidia. (j) A germinating conidium. (k) Colonies from above (on PDA/4 weeks). (l) Colonies from below (on PDA/4 weeks). Scale bars: (dj) = 25 µm.
Figure 2. Dictyocheirospora acaciae (CMUB 39980, holotype). (a,b) Sporodochia on dead stem of Acacia dealbata. (c) Close-up of sporodochium. (d,e) Conidiogenous cells with developing conidia. (fi) Conidia. (j) A germinating conidium. (k) Colonies from above (on PDA/4 weeks). (l) Colonies from below (on PDA/4 weeks). Scale bars: (dj) = 25 µm.
Diversity 15 00410 g002
Figure 3. Dictyocheirospora garethjonesii (CMUB 39982, new host record). (a) Sporodochia on dead stem of Bismarkia nobilis. (b,c) Close-up of Sporodochia. (d,e) Conidiogenous cells with developing conidia. (fj) Conidia. (k) Colonies from above (on PDA/4 weeks). (l) Colonies from below (on PDA/4 weeks). Scale bars: (d,e) = 4 µm and (fj) = 20 µm.
Figure 3. Dictyocheirospora garethjonesii (CMUB 39982, new host record). (a) Sporodochia on dead stem of Bismarkia nobilis. (b,c) Close-up of Sporodochia. (d,e) Conidiogenous cells with developing conidia. (fj) Conidia. (k) Colonies from above (on PDA/4 weeks). (l) Colonies from below (on PDA/4 weeks). Scale bars: (d,e) = 4 µm and (fj) = 20 µm.
Diversity 15 00410 g003
Figure 4. Dictyocheirospora taiwanense (CMUB 39981, new host record). (a,b) Sporodochia on dead stem of Ficus benjamina. (c) Close-up of Sporodochium. (d) Conidiogenous cell with a conidium. (em) Conidia. (n) A germinating conidium. (o) Colonies from above (on PDA/4 weeks). (p) Colonies from below (on PDA/4 weeks). Scale bars: (dn) = 30 µm.
Figure 4. Dictyocheirospora taiwanense (CMUB 39981, new host record). (a,b) Sporodochia on dead stem of Ficus benjamina. (c) Close-up of Sporodochium. (d) Conidiogenous cell with a conidium. (em) Conidia. (n) A germinating conidium. (o) Colonies from above (on PDA/4 weeks). (p) Colonies from below (on PDA/4 weeks). Scale bars: (dn) = 30 µm.
Diversity 15 00410 g004
Figure 5. Dictyosporium digitatum (CMUB 39981, new host record). (a) Sporodochia on a dead leaf of Cyperus aggregatus. (b) Close-up of Sporodochium. (c,d) Sporodochia on the culture. (eg) Conidiogenous cells with conidia. (hn) Conidia. (o) A germinating conidium. (p) Colonies from above (on PDA/7 days). (q) Colonies from below (on PDA/7 days). Scale bars: (eo) = 30 µm.
Figure 5. Dictyosporium digitatum (CMUB 39981, new host record). (a) Sporodochia on a dead leaf of Cyperus aggregatus. (b) Close-up of Sporodochium. (c,d) Sporodochia on the culture. (eg) Conidiogenous cells with conidia. (hn) Conidia. (o) A germinating conidium. (p) Colonies from above (on PDA/7 days). (q) Colonies from below (on PDA/7 days). Scale bars: (eo) = 30 µm.
Diversity 15 00410 g005
Figure 6. Pseudocoleophoma zingiberacearum (CMUB 39984, new host record). (a,b) Conidiomata on dead leaf of Hedychium spicatum. (c) Close-up of conidioma. (d) Vertical section through conidioma (e) Conidioma wall. (f,g) Conidiogenous cells with developing conidia (yellow arrows show the conidiogenous cells). (hn) Conidia. (o) A germinating conidium. (p) Colonies from above (on PDA/4 weeks). (q) Colonies from below (on PDA/4 weeks). Scale bars: (d) = 50 µm, (e) = 12 µm, (f,g) = 3 µm, and (ho) = 10 µm.
Figure 6. Pseudocoleophoma zingiberacearum (CMUB 39984, new host record). (a,b) Conidiomata on dead leaf of Hedychium spicatum. (c) Close-up of conidioma. (d) Vertical section through conidioma (e) Conidioma wall. (f,g) Conidiogenous cells with developing conidia (yellow arrows show the conidiogenous cells). (hn) Conidia. (o) A germinating conidium. (p) Colonies from above (on PDA/4 weeks). (q) Colonies from below (on PDA/4 weeks). Scale bars: (d) = 50 µm, (e) = 12 µm, (f,g) = 3 µm, and (ho) = 10 µm.
Diversity 15 00410 g006
Figure 7. Distribution of so far reported Dictyosporiaceae species worldwide. Color gradient shows the number of recorded species from lowest (light blue) to highest (dark blue).
Figure 7. Distribution of so far reported Dictyosporiaceae species worldwide. Color gradient shows the number of recorded species from lowest (light blue) to highest (dark blue).
Diversity 15 00410 g007
Table 1. GenBank and culture collection accession numbers of species included in the phylogenetic study. The newly generated sequences are shown in bold.
Table 1. GenBank and culture collection accession numbers of species included in the phylogenetic study. The newly generated sequences are shown in bold.
Fungal SpeciesStrain/Voucher No.GenBank Accession Number
ITSLSUtef1-α
Aquadictyospora lignicolaMFLUCC 17-1318 TMF948621MF948629MF953164
Aquaticheirospora lignicolaHKUCC 10304 TAY864770AY736378
Cheirosporium triserialeHMAS 180703 TEU413953EU413954
Dendryphiella eucalyptorumCBS 137987 TKJ869139KJ869196
D. fasciculataMFLUCC 17-1074 TMF399213MF399214
D. paravinosaCBS 141286 TKX228257KX228309
Dictyocheirospora acaciaeSDBR-CMU454 TOP965332OP965372OQ000838
Di. acaciaeSDBR-CMU455OP965333OP965373OQ000839
Di. acaciaeSDBR-CMU456COP965334OP965374OQ000840
Di. aquadulcisMFLUCC 17-2571 TMK634545MK634542
Di. aquadulcisMFLUCC 22-0095OP526634OP526644OP542236
Di. aquaticaKUMCC 15-0305 TKY320508KY320513
Di. bannicaKH 332 TLC014543AB807513AB808489
Di. bannicaMFLUCC 16-0874MH381765MH381774
Di. cheirosporaKUMCC 17-0035 TMF177035
Di. chiangmaiensisMFLUCC 22-0097 TOP526630OP526640OP542232
Di. clematidisMFLUCC 17-2089 TMT310593MT214546MT394728
Di. garethjonesiiMFLUCC 16-0909 TKY320509KY320514
Di. garethjonesiiDLUCC 0848MF948623MF948631MF953166
Di. garethjonesiiMFLUCC 20-0028MW063152MW063213
Di. garethjonesiiSDBR-CMU457OP965335OP965375
Di. giganticumBCC 11346DQ018095
Di. heptasporaCBS 396.59DQ018090
Di. heptasporaDLUCC 1992MT756244MT756243MT776563
Di. heptasporaMFLUCC 22-0096OP526635OP526645OP542237
Di. indicaMFLUCC 15-0056MH381763MH381772MH388817
Di. lithocarpiMFLUCC 17-2537 TMK347781MK347999
Di. metroxylonisMFLUCC 15-0282a TMH742321MH742313
Di. metroxylonisMFLUCC 15-0282bMH742322MH742314MH764303
Di. metroxylonisMFLUCC 15-0282cMH742323MH742315MH764302
Di. metroxylonisMFLUCC 15-0282dMH742324MH742316MH764301
Di. multiappendiculataKUNCC 22-10734 TOP526632OP526642OP542234
Di. multiappendiculataKUNCC 22-10736OP526633OP526643OP542235
Di. nabanheensisKUMCC 16-0152 TMH388340MH376712MH388375
Di. pandanicolaMFLUCC 16-0365 TMH388341MH376713MH388376
Di. pseudomusaeyone 234 TLC014550AB807520AB808496
Di. rotundaMFLUCC 14-0293 TKU179099KU179100
Di. rotundaMFLUCC 17-0222MH381764MH381773MH388818
Di. rotundaMFLUCC 17-1313MF948625MF948633MF953168
Di. suaeKUNCC 22-12424 TOP526631OP526641OP542233
Di. subramanianiiBCC 3503DQ018094
Di. taiwanenseMFLUCC 17-2654 TMK495821MK495820
Di. taiwanenseSDBR-CMU458OP965336OP965376
Di. thailandicaMFLUCC 18-0987 TMT627734MN913743
Di. vinayaMFLUCC 14-0294 TKU179102KU179103
Di. xishuangbannaensisKUMCC 17-0181 TMH388342MH376714MH388377
Dictyosporium sp.MFLUCC 15-0629MH381766MH381775MH388819
Dic. alatumATCC 34953 TNR_077171DQ018101
Dic. aquaticumMF 1318 TKM610236
Dic. bulbosumyone 221LC014544AB807511AB808487
Dic. digitatumKH 401LC014545AB807515AB808491
Dic. digitatumyone 280LC014547AB807512AB808488
Dic. digitatumKUMCC 17-0269 TMH388344MH376716MH388378
Dic. digitatumSDBR-CMU459OP965337OP965377OQ000841
Di. elegansNBRC 32502 TDQ018087DQ018100
Dic. hughesiiKT 1847LC014548AB807517AB808493
Dic. meiosporumMFLUCC 10-0131 TKP710944KP710945
Dic. nigroapiceBCC 3555DQ018085
Dic. nigroapiceMFLUCC 17-2053MH381768MH381777MH388821
Dic. olivaceosporumKH 375 TLC014542AB807514AB808490
Dic. sexualisMFLUCC 10-0127 TKU179105KU179106
Dic. stellatumCCFC 241241 TNR_154608JF951177
Dic. strelitziaeCBS 123359 TNR_156216FJ839653
Dic. tetrasporumKT 2865LC014551AB807519AB808495
Dic. thailandicumMFLUCC 13-0773 TKP716706KP716707
Dic. tratenseMFLUCC 17-2052 TMH381767MH381776MH388820
Dic. tubulatumMFLUCC 15-0631 TMH381769MH381778MH388822
Dic. tubulatumMFLUCC 17-2056MH381770MH381779
Dic. wuyienseCGMCC 3.18703 TKY072977
Dic. zhejiangenseMW-2009a TFJ456893
Digitodesmium aquaticumMFLU 22-0203 TOP749872OP749877
Dig. bambusicolaCBS 110279 TDQ018091DQ018103
Dig. chiangmaienseKUN HKAS 102163 TMK571766
Dig. polybrachiatumCOAD 3174 TMW879318MW879316
Dig. polybrachiatumCOAD 3175MW879319MW879317
Gregarithecium curvisporumKT 922AB809644AB807547
Immotthia bambusaeKUN-HKAS 112012AI TMW489455MW489450MW504646
I. bambusaeKUN-HKAS 112012AIIMW489456MW489451MW504647
I. bambusaeKUN-HKAS 112012BMW489457MW489452
Jalapriya inflataNTOU 3855JQ267362JQ267363
J. pulchraMFLUCC 15-0348 TKU179108KU179109
J. pulchraMFLUCC 17-1683MF948628MF948636MF953171
J. toruloidesCBS 209.65DQ018093DQ018104
Neodendryphiella michoacanensisFMR 16098 TLT906660LT906658
N. tarraconensisGZCC20-0002MN999922MN999927
Neodigitodesmium cheirosporumHKAS 124014 TON595714ON595713
Periconia igniariaCBS 379.86LC014585AB807566AB808542
P. igniariaCBS 845.96LC014586AB807567AB808543
Pseudocoleophoma bauhiniaeMFLUCC 17-2280MK360075
Ps. bauhiniaeMFLUCC 17-2586 TMK360076
Ps. calamagrostidisKT 3284 TLC014592LC014609LC014614
Ps. flavescenCBS 178.93GU238075
Ps. polygonicolaKT 731 TAB809634AB807546AB808522
Ps. typhicolaMFLUCC 16-0123KX576655KX576656
Ps. zingiberacearumNCYUCC 19-0052 TMN615939MN616753MN629281
Ps. zingiberacearumNCYUCC 19-0053MN615940MN616754MN629282
Ps. zingiberacearumNCYUCC 19-0054MN615941MN616755MN629283
Ps. zingiberacearumSDBR-CMU460OP965338OP965378OQ000841
Pseudoconiothyrium broussonetiaeCBS 145036 TMK442618MK442554MK442709
Pseudocyclothyriella clematidisMFLU 16-0280MT310596MT214549
Pse. clematidisMFLUCC 17-2177A TMT310595MT214548MT394730
Pseudodictyosporium elegansCBS 688.93 TDQ018099DQ018106
Pseu. thailandicaMFLUCC 16-0029 TKX259520KX259522KX259526
Pseu. wauenseNBRC 30078 TDQ018098DQ018105
Pseu. wauenseDLUCC 0801MF948622MF948630MF953165
Verrucoccum coppinsiiE 00814291 TMT918785MT918770
V. spribilleiSPO 1154MT918781MT918764
Vikalpa australiensisHKUCC 8797 TDQ018092
Vi. grandisporaKUNCC 22-12425 TOP526638OP526648OP542240
Vi. sphaericaCGMCC3.20682 TOP526639OP526649OP542241
Note: All the type strains are indicated with “T”.
Table 2. A synopsis of all the known species of Dictyocheirospora.
Table 2. A synopsis of all the known species of Dictyocheirospora.
Dictyocheirospora SpeciesConidiomata Size
(μm diam)
ConidiaReference
Size (μm)No. of RowsNo. of Cells/Row
D. acaciae170–30042–60 × 15–185–69–11This study
D. aquatica150–25034–42 × 12.5–19.55–66–8[41]
D. bannica100–26073–86 × 21–26(5–)717–19[11]
D. cheirospora54–63 × 15–265–78–12[43]
D. chiangmaiensis42–46 × 16–184–69–10[40]
D. clematidis200–34042–60 × 15–306–710–12[44]
D. garethjonesii200–30045.5–54.5 × 15.5–24.56–77–10[41]
D. gigantica105–121 × 25–32719–22[45]
D. heptaspora50–80 × 20–307[45]
D. hydei120–24030–33 × 14–1775–6[46]
D. indica130–41536–46 × 13–186–78–10[46]
D. lithocarpi225–24835–40 × 12–18610–16[47]
D. rotunda300–35042–58 × 19–385–78–12[11]
D. suae72–79 × 20–255–712–15[40]
D. metroxyli100–20045–69 × 15–294–69–14[42]
D. multiappendiculata55–62 × 19–22(5–)79–13[40]
D. pandanicola60–75 × 18.5–35.55–713–18[48]
D. pseudomusae170–49061–78 × 19–29(6–)713–15[49]
D. taiwanense110–23074–84 × 16–20510–13[50]
D. thailandica42–65 × 20–456–79–12[51]
D. nabanheensis35–40 × 18–2166–10[48]
D. subramanianii33–42 × 16–2079–13[52]
D. vinaya20058–67 × 15.5–26.56–79–13[11]
D. xishuangbannaensis35–50 × 17–2566–12[48]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tennakoon, D.S.; de Silva, N.I.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Kumla, J.; Suwannarach, N.; Lumyong, S. Exploring More on Dictyosporiaceae: The Species Geographical Distribution and Intriguing Novel Additions from Plant Litter. Diversity 2023, 15, 410. https://doi.org/10.3390/d15030410

AMA Style

Tennakoon DS, de Silva NI, Maharachchikumbura SSN, Bhat DJ, Kumla J, Suwannarach N, Lumyong S. Exploring More on Dictyosporiaceae: The Species Geographical Distribution and Intriguing Novel Additions from Plant Litter. Diversity. 2023; 15(3):410. https://doi.org/10.3390/d15030410

Chicago/Turabian Style

Tennakoon, Danushka S., Nimali I. de Silva, Sajeewa S. N. Maharachchikumbura, Darbhe J. Bhat, Jaturong Kumla, Nakarin Suwannarach, and Saisamorn Lumyong. 2023. "Exploring More on Dictyosporiaceae: The Species Geographical Distribution and Intriguing Novel Additions from Plant Litter" Diversity 15, no. 3: 410. https://doi.org/10.3390/d15030410

APA Style

Tennakoon, D. S., de Silva, N. I., Maharachchikumbura, S. S. N., Bhat, D. J., Kumla, J., Suwannarach, N., & Lumyong, S. (2023). Exploring More on Dictyosporiaceae: The Species Geographical Distribution and Intriguing Novel Additions from Plant Litter. Diversity, 15(3), 410. https://doi.org/10.3390/d15030410

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop