Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem
Abstract
:1. Introduction
2. Diversity of Clostridium botulinum Groups I and II
2.1. General Characteristics of Clostridium botulinum Strain Groups I and II
2.2. Diversity of Botulinum Neurotoxin Genes of Clostridium botulinum Groups I and II
3. Diversity of Clostridium botulinum Group III
3.1. General Characteristics of Clostridium botulinum Group III Strains
3.2. Genetic Diversity of C. botulinum Group III Strains
4. Other BoNT-Producing Clostridia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erbguth, F.J. Historical Notes on Botulism, Clostridium Botulinum, Botulinum Toxin, and the Idea of the Therapeutic Use of the Toxin. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19 (Suppl. 8), S2–S6. [Google Scholar] [CrossRef]
- Van der Lugt, J.J.; De Wet, S.C.; Bastianello, S.S.; Kellerman, T.S.; Van Jaarsveld, L.P. Two Outbreaks of Type C and Type D Botulism in Sheep and Goats in South Africa. J. S. Afr. Vet. Assoc. 1995, 66, 77–82. [Google Scholar]
- Smith, T.; Williamson, C.H.D.; Hill, K.; Sahl, J.; Keim, P. Botulinum Neurotoxin-Producing Bacteria. Isn’t It Time That We Called a Species a Species? mBio 2018, 9, e01469-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barash, J.R.; Arnon, S.S. A Novel Strain of Clostridium Botulinum That Produces Type B and Type H Botulinum Toxins. J. Infect. Dis. 2014, 209, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellett, S.; Bradshaw, M.; Tepp, W.H.; Pier, C.L.; Whitemarsh, R.C.M.; Chen, C.; Barbieri, J.T.; Johnson, E.A. The Light Chain Defines the Duration of Action of Botulinum Toxin Serotype A Subtypes. mBio 2018, 9, e00089-18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and Characterization of a Novel Botulinum Neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Moriishi, K.; Koura, M.; Fujii, N.; Fujinaga, Y.; Inoue, K.; Syuto, B.; Oguma, K. Molecular Cloning of the Gene Encoding the Mosaic Neurotoxin, Composed of Parts of Botulinum Neurotoxin Types C1 and D, and PCR Detection of This Gene from Clostridium Botulinum Type C Organisms. Appl. Environ. Microbiol. 1996, 62, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Skarin, H.; Håfström, T.; Westerberg, J.; Segerman, B. Clostridium Botulinum Group III: A Group with Dual Identity Shaped by Plasmids, Phages and Mobile Elements. BMC Genom. 2011, 12, 185. [Google Scholar] [CrossRef] [Green Version]
- Woudstra, C.; Lambert, D.; Anniballi, F.; De Medici, D.; Austin, J.; Fach, P. Genetic Diversity of the Flagellin Genes of Clostridium Botulinum Groups I and II. Appl. Environ. Microbiol. 2013, 79, 3926–3932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wentz, T.G.; Tremblay, B.J.M.; Bradshaw, M.; Doxey, A.C.; Sharma, S.K.; Sauer, J.-D.; Pellett, S. Endogenous CRISPR-Cas Systems in Group I Clostridium Botulinum and Clostridium Sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Front. Microbiol. 2022, 12, 4359. [Google Scholar] [CrossRef]
- Peck, M.W. Clostridium Botulinum and the Safety of Minimally Heated, Chilled Foods: An Emerging Issue? J. Appl. Microbiol. 2006, 101, 556–570. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C.; Carter, A.T. Clostridium Botulinum in the Post-Genomic Era. Food Microbiol. 2011, 28, 183–191. [Google Scholar] [CrossRef]
- Dahlsten, E.; Korkeala, H.; Somervuo, P.; Lindström, M. PCR Assay for Differentiating between Group I (Proteolytic) and Group II (Nonproteolytic) Strains of Clostridium Botulinum. Int. J. Food Microbiol. 2008, 124, 108–111. [Google Scholar] [CrossRef]
- Lee, W.H.; Riemann, H. The Genetic Relatedness of Proteolytic Clostridium Botulinum Strains. Microbiology 1970, 64, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Schill, K.M.; Wang, Y.; Butler, R.R.; Pombert, J.-F.; Reddy, N.R.; Skinner, G.E.; Larkin, J.W. Genetic Diversity of Clostridium Sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing. Appl. Environ. Microbiol. 2016, 82, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.R.; Schill, K.M.; Wang, Y.; Pombert, J.-F. Genetic Characterization of the Exceptionally High Heat Resistance of the Non-Toxic Surrogate Clostridium Sporogenes PA 3679. Front. Microbiol. 2017, 8, 545. [Google Scholar] [CrossRef] [Green Version]
- Weigand, M.R.; Pena-Gonzalez, A.; Shirey, T.B.; Broeker, R.G.; Ishaq, M.K.; Konstantinidis, K.T.; Raphael, B.H. Implications of Genome-Based Discrimination between Clostridium Botulinum Group I and Clostridium Sporogenes Strains for Bacterial Taxonomy. Appl. Environ. Microbiol. 2015, 81, 5420–5429. [Google Scholar] [CrossRef] [Green Version]
- Dobritsa, A.P.; Kutumbaka, K.K.; Werner, K.; Wiedmann, M.; Asmus, A.; Samadpour, M. Clostridium Tepidum Sp. Nov., a Close Relative of Clostridium Sporogenes and Clostridium Botulinum Group I. Int. J. Syst. Evol. Microbiol. 2017, 67, 2317–2322. [Google Scholar] [CrossRef]
- Brunt, J.; van Vliet, A.H.M.; van den Bos, F.; Carter, A.T.; Peck, M.W. Diversity of the Germination Apparatus in Clostridium Botulinum Groups I, II, III, and IV. Front. Microbiol. 2016, 7, 1702. [Google Scholar] [CrossRef] [Green Version]
- Hill, K.K.; Smith, T.J. Genetic Diversity within Clostridium Botulinum Serotypes, Botulinum Neurotoxin Gene Clusters and Toxin Subtypes. Curr. Top. Microbiol. Immunol. 2013, 364, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.T.; Peck, M.W. Genomes, Neurotoxins and Biology of Clostridium Botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Kumar, R.; Singh, B.R. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021, 9, 2206. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.T.; Stringer, S.C.; Webb, M.D.; Peck, M.W. The Type F6 Neurotoxin Gene Cluster Locus of Group II Clostridium Botulinum Has Evolved by Successive Disruption of Two Different Ancestral Precursors. Genome Biol. Evol. 2013, 5, 1032–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, M.; Korkeala, H. Laboratory Diagnostics of Botulism. Clin. Microbiol. Rev. 2006, 19, 298–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derman, Y.; Lindström, M.; Selby, K.; Korkeala, H. Growth of Group II Clostridium Botulinum Strains at Extreme Temperatures. J. Food Prot. 2011, 74, 1797–1804. [Google Scholar] [CrossRef]
- Brunt, J.; van Vliet, A.H.M.; Stringer, S.C.; Carter, A.T.; Lindström, M.; Peck, M.W. Pan-Genomic Analysis of Clostridium Botulinum Group II (Non-Proteolytic C. Botulinum) Associated with Foodborne Botulism and Isolated from the Environment. Toxins 2020, 12, 306. [Google Scholar] [CrossRef]
- Iyer, A.V.; Blinkova, A.L.; Yang, S.-Y.; Harrison, M.; Tepp, W.H.; Jacobson, M.J.; Johnson, E.A.; Bennett, G.N.; Walker, J.R. Clostridium Taeniosporum Is a Close Relative of the Clostridium Botulinum Group II. Anaerobe 2008, 14, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Bowe, B.K.; Wentz, T.G.; Gregg, B.M.; Tepp, W.H.; Schill, K.M.; Sharma, S.; Pellett, S. Genomic Diversity, Competition, and Toxin Production by Group I and II Clostridium Botulinum Strains Used in Food Challenge Studies. Microorganisms 2022, 10, 1895. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C. The Safety of Pasteurised In-Pack Chilled Meat Products with Respect to the Foodborne Botulism Hazard. Meat Sci. 2005, 70, 461–475. [Google Scholar] [CrossRef]
- Jacobson, M.J.; Lin, G.; Raphael, B.; Andreadis, J.; Johnson, E.A. Analysis of Neurotoxin Cluster Genes in Clostridium Botulinum Strains Producing Botulinum Neurotoxin Serotype A Subtypes. Appl. Environ. Microbiol. 2008, 74, 2778–2786. [Google Scholar] [CrossRef] [Green Version]
- Botulism in the United States, 1899–1996; Handbook for Epidemiologists, Clinicians, and Laboratory Workers. Available online: https://stacks.cdc.gov/view/cdc/6673/ (accessed on 7 January 2023).
- Franciosa, G.; Floridi, F.; Maugliani, A.; Aureli, P. Differentiation of the Gene Clusters Encoding Botulinum Neurotoxin Type A Complexes in Clostridium Botulinum Type A, Ab, and A(B) Strains. Appl. Environ. Microbiol. 2004, 70, 7192–7199. [Google Scholar] [CrossRef] [Green Version]
- Genetic Diversity among Clostridium Botulinum Strains Harboring Bont/A2 and Bont/A3 Genes | Applied and Environmental Microbiology. Available online: https://journals.asm.org/doi/full/10.1128/AEM.02428-12 (accessed on 7 January 2023).
- Hill, K.K.; Smith, T.J.; Helma, C.H.; Ticknor, L.O.; Foley, B.T.; Svensson, R.T.; Brown, J.L.; Johnson, E.A.; Smith, L.A.; Okinaka, R.T.; et al. Genetic Diversity among Botulinum Neurotoxin-Producing Clostridial Strains. J. Bacteriol. 2007, 189, 818–832. [Google Scholar] [CrossRef] [Green Version]
- Kull, S.; Schulz, K.M.; Weisemann, J.; Kirchner, S.; Schreiber, T.; Bollenbach, A.; Dabrowski, P.W.; Nitsche, A.; Kalb, S.R.; Dorner, M.B.; et al. Isolation and Functional Characterization of the Novel Clostridium Botulinum Neurotoxin A8 Subtype. PLoS ONE 2015, 10, e0116381. [Google Scholar] [CrossRef] [Green Version]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C. Recombination and Insertion Events Involving the Botulinum Neurotoxin Complex Genes in Clostridium Botulinum Types A, B, E and F and Clostridium Butyricum Type E Strains. BMC Biol. 2009, 7, 66. [Google Scholar] [CrossRef]
- Benoit, R.M. Botulinum Neurotoxin Diversity from a Gene-Centered View. Toxins 2018, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Franciosa, G.; Maugliani, A.; Scalfaro, C.; Aureli, P. Evidence That Plasmid-Borne Botulinum Neurotoxin Type B Genes Are Widespread among Clostridium Botulinum Serotype B Strains. PLoS ONE 2009, 4, e4829. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.T.; Austin, J.W.; Weedmark, K.A.; Corbett, C.; Peck, M.W. Three Classes of Plasmid (47-63 Kb) Carry the Type B Neurotoxin Gene Cluster of Group II Clostridium Botulinum. Genome Biol. Evol. 2014, 6, 2076–2087. [Google Scholar] [CrossRef] [Green Version]
- Halpin, J.L.; Foltz, V.; Dykes, J.K.; Chatham-Stephens, K.; Lúquez, C. Clostridium Botulinum Type B Isolated From a Wound Botulism Case Due to Injection Drug Use Resembles Other Local Strains Originating From Hawaii. Front. Microbiol. 2021, 12, 678473. [Google Scholar] [CrossRef]
- Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the Genomes and Neurotoxins of Strains of Clostridium Botulinum Group I and Clostridium Sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins 2020, 12, 586. [Google Scholar] [CrossRef]
- Barash, J.R.; Arnon, S.S. Dual Toxin-Producing Strain of Clostridium Botulinum Type Bf Isolated from a California Patient with Infant Botulism. J. Clin. Microbiol. 2004, 42, 1713–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, R.A.; Ciccarelli, A.S.; Arenas, G.N.; Giménez, D.F. [First outbreak of botulism caused by Clostridium botulinum subtype Af]. Rev. Argent. Microbiol. 1986, 18, 29–31. [Google Scholar]
- Midura, T.F.; Nygaard, G.S.; Wood, R.M.; Bodily, H.L. Clostridium Botulinum Type F: Isolation from Venison Jerky. Appl. Microbiol. 1972, 24, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Raphael, B.H.; Choudoir, M.J.; Lúquez, C.; Fernández, R.; Maslanka, S.E. Sequence Diversity of Genes Encoding Botulinum Neurotoxin Type F. Appl. Environ. Microbiol. 2010, 76, 4805–4812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphael, B.H.; Bradshaw, M.; Kalb, S.R.; Joseph, L.A.; Lúquez, C.; Barr, J.R.; Johnson, E.A.; Maslanka, S.E. Clostridium Botulinum Strains Producing BoNT/F4 or BoNT/F5. Appl. Environ. Microbiol. 2014, 80, 3250–3257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalb, S.R.; Baudys, J.; Webb, R.P.; Wright, P.; Smith, T.J.; Smith, L.A.; Fernández, R.; Raphael, B.H.; Maslanka, S.E.; Pirkle, J.L.; et al. Discovery of a Novel Enzymatic Cleavage Site for Botulinum Neurotoxin F5. FEBS Lett. 2012, 586, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J. Genetic Diversity within the Botulinum Neurotoxin-Producing Bacteria and Their Neurotoxins. Toxicon Off. J. Int. Soc. Toxinol. 2015, 107, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Hill, K.K.; Raphael, B.H. Historical and Current Perspectives on Clostridium Botulinum Diversity. Res. Microbiol. 2015, 166, 290–302. [Google Scholar] [CrossRef]
- Weedmark, K.A.; Lambert, D.L.; Mabon, P.; Hayden, K.L.; Urfano, C.J.; Leclair, D.; Van Domselaar, G.; Austin, J.W.; Corbett, C.R. Two Novel Toxin Variants Revealed by Whole-Genome Sequencing of 175 Clostridium Botulinum Type E Strains. Appl. Environ. Microbiol. 2014, 80, 6334–6345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hintsa, H.; Chen, Y.; Korkeala, H.; Lindström, M. Plasmid-Borne Type E Neurotoxin Gene Clusters in Clostridium Botulinum Strains. Appl. Environ. Microbiol. 2013, 79, 3856–3859. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Korkeala, H.; Aarnikunnas, J.; Lindström, M. Sequencing the Botulinum Neurotoxin Gene and Related Genes in Clostridium Botulinum Type E Strains Reveals Orfx3 and a Novel Type E Neurotoxin Subtype. J. Bacteriol. 2007, 189, 8643–8650. [Google Scholar] [CrossRef] [Green Version]
- Popoff, M.R.; Bouvet, P. Genetic Characteristics of Toxigenic Clostridia and Toxin Gene Evolution. Toxicon 2013, 75, 63–89. [Google Scholar] [CrossRef]
- Anniballi, F.; Fiore, A.; Löfström, C.; Skarin, H.; Auricchio, B.; Woudstra, C.; Bano, L.; Segerman, B.; Koene, M.; Båverud, V.; et al. Management of Animal Botulism Outbreaks: From Clinical Suspicion to Practical Countermeasures to Prevent or Minimize Outbreaks. Biosecur. Bioterror. Biodef. Strategy Pract. Sci. 2013, 11 (Suppl. 1), S191–S199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyboldt, C.; Discher, S.; Jordan, E.; Neubauer, H.; Jensen, K.C.; Campe, A.; Kreienbrock, L.; Scheu, T.; Wichern, A.; Gundling, F.; et al. Occurrence of Clostridium Botulinum Neurotoxin in Chronic Disease of Dairy Cows. Vet. Microbiol. 2015, 177, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Goldsztejn, M.; Grenda, T.; Kozieł, N.; Sapała, M.; Mazur, M.; Sieradzki, Z.; Król, B.; Kwiatek, K. Potential determinants of spp. occurrence in Polish silage. J. Vet. Res. 2020, 64, 549–555. [Google Scholar] [CrossRef]
- Solomon, H.M.; Lilly, T., Jr. BAM Chapter 17: Clostridium Botulinum; FDA: Silver Spring, MD, USA, 2020.
- Lindström, M.; Nevas, M.; Kurki, J.; Sauna-aho, R.; Latvala-Kiesilä, A.; Pölönen, I.; Korkeala, H. Type C Botulism Due to Toxic Feed Affecting 52,000 Farmed Foxes and Minks in Finland. J. Clin. Microbiol. 2004, 42, 4718–4725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarin, H.; Segerman, B. Plasmidome Interchange between Clostridium Botulinum, Clostridium Novyi and Clostridium Haemolyticum Converts Strains of Independent Lineages into Distinctly Different Pathogens. PLoS ONE 2014, 9, e107777. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.H.D.; Sahl, J.W.; Smith, T.J.; Xie, G.; Foley, B.T.; Smith, L.A.; Fernández, R.A.; Lindström, M.; Korkeala, H.; Keim, P.; et al. Comparative Genomic Analyses Reveal Broad Diversity in Botulinum-Toxin-Producing Clostridia. BMC Genom. 2016, 17, 180. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, K.; Kohda, T.; Mukamoto, M.; Takeuchi, K.; Ihara, H.; Saito, M.; Kozaki, S. Binding of Clostridium Botulinum Type C and D Neurotoxins to Ganglioside and Phospholipid. Novel Insights into the Receptor for Clostridial Neurotoxins. J. Biol. Chem. 2005, 280, 35164–35171. [Google Scholar] [CrossRef] [Green Version]
- Chellapandi, P.; Prisilla, A. PCR-Based Molecular Diagnosis of Botulism (Types C and D) Outbreaks in Aquatic Birds. Ann. Microbiol. 2018, 68, 835–849. [Google Scholar] [CrossRef]
- Montecucco, C.; Schiavo, G. Structure and Function of Tetanus and Botulinum Neurotoxins. Q. Rev. Biophys. 1995, 28, 423–472. [Google Scholar] [CrossRef]
- Fillo, S.; Giordani, F.; Tonon, E.; Drigo, I.; Anselmo, A.; Fortunato, A.; Lista, F.; Bano, L. Extensive Genome Exploration of Clostridium Botulinum Group III Field Strains. Microorganisms 2021, 9, 2347. [Google Scholar] [CrossRef]
- Saeed, E.M.A. Studies on Isolation and Identification of Clostridium Botulinum Investigating Field Samples Specially from Equine Grass Sickness Cases. Doctoral Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2005. [Google Scholar]
- Woudstra, C.; Le Maréchal, C.; Souillard, R.; Bayon-Auboyer, M.-H.; Mermoud, I.; Desoutter, D.; Fach, P. New Insights into the Genetic Diversity of Clostridium Botulinum Group III through Extensive Genome Exploration. Front. Microbiol. 2016, 7, 757. [Google Scholar] [CrossRef] [Green Version]
- Woudstra, C.; Le Maréchal, C.; Souillard, R.; Bayon-Auboyer, M.-H.; Anniballi, F.; Auricchio, B.; De Medici, D.; Bano, L.; Koene, M.; Sansonetti, M.-H.; et al. Molecular Gene Profiling of Clostridium Botulinum Group III and Its Detection in Naturally Contaminated Samples Originating from Various European Countries. Appl. Environ. Microbiol. 2015, 81, 2495–2505. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.D.; East, A.K. Phylogeny and Taxonomy of the Food-Borne Pathogen Clostridium Botulinum and Its Neurotoxins. J. Appl. Microbiol. 1998, 84, 5–17. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Kramer, I.; Swiderski, J.; Hippe, H. Phylogenetic Basis for a Taxonomic Dissection of the Genus Clostridium. FEMS Immunol. Med. Microbiol. 1999, 24, 253–258. [Google Scholar] [CrossRef]
- Peck, M.W. Biology and Genomic Analysis of Clostridium Botulinum. Adv. Microb. Physiol. 2009, 55, 183–265, 320. [Google Scholar] [CrossRef]
- Poulain, B.; Popoff, M.R. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.H.D.; Vazquez, A.J.; Hill, K.; Smith, T.J.; Nottingham, R.; Stone, N.E.; Sobek, C.J.; Cocking, J.H.; Fernández, R.A.; Caballero, P.A.; et al. Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay. Appl. Environ. Microbiol. 2017, 83, e00806-17. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Tian, R.; Imanian, B.; Williamson, C.H.D.; Johnson, S.L.; Daligault, H.E.; Schill, K.M. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium Parabotulinum, Clostridium Sporogenes, and Clostridium Argentinense. Toxins 2021, 13, 473. [Google Scholar] [CrossRef]
- Olsen, J.S.; Scholz, H.; Fillo, S.; Ramisse, V.; Lista, F.; Trømborg, A.K.; Aarskaug, T.; Thrane, I.; Blatny, J.M. Analysis of the Genetic Distribution among Members of Clostridium Botulinum Group I Using a Novel Multilocus Sequence Typing (MLST) Assay. J. Microbiol. Methods 2014, 96, 84–91. [Google Scholar] [CrossRef]
- Mazuet, C.; Legeay, C.; Sautereau, J.; Ma, L.; Bouchier, C.; Bouvet, P.; Popoff, M.R. Diversity of Group I and II Clostridium Botulinum Strains from France Including Recently Identified Subtypes. Genome Biol. Evol. 2016, 8, 1643–1660. [Google Scholar] [CrossRef]
- Mansfield, M.J.; Adams, J.B.; Doxey, A.C. Botulinum Neurotoxin Homologs in Non-Clostridium Species. FEBS Lett. 2015, 589, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Strahan, B.L.; Failor, K.C.; Batties, A.M.; Hayes, P.S.; Cicconi, K.M.; Mason, C.T.; Newman, J.D. Chryseobacterium Piperi Sp. Nov., Isolated from a Freshwater Creek. Int. J. Syst. Evol. Microbiol. 2011, 61, 2162–2166. [Google Scholar] [CrossRef] [Green Version]
- Wentz, T.G.; Muruvanda, T.; Lomonaco, S.; Thirunavukkarasu, N.; Hoffmann, M.; Allard, M.W.; Hodge, D.R.; Pillai, S.P.; Hammack, T.S.; Brown, E.W.; et al. Closed Genome Sequence of Chryseobacterium Piperi Strain CTMT/ATCC BAA-1782, a Gram-Negative Bacterium with Clostridial Neurotoxin-Like Coding Sequences. Genome Announc. 2017, 5, e01296-17. [Google Scholar] [CrossRef] [Green Version]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a Novel Botulinum Neurotoxin Gene Cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.J.; Fanning, G.R.; Rake, A.V.; Johnson, K.E. Batch Procedure for Thermal Elution of DNA from Hydroxyapatite. Anal. Biochem. 1969, 28, 447–459. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Ludwig, W.; Fox, G.E. 3 16 S Ribosomal RNA Oligonucleotide Cataloguing. In Methods in Microbiology; Bergan, T., Ed.; Academic Press: Cambridge, MA, USA, 1985; Volume 18, pp. 75–107. [Google Scholar]
- Woese, C.R. Bacterial Evolution. Microbiol. Rev. 1987, 51, 221–271. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Tiedje, J.M. Towards a Genome-Based Taxonomy for Prokaryotes. J. Bacteriol. 2005, 187, 6258–6264. [Google Scholar] [CrossRef] [Green Version]
Properties | Clostridium botulinum Group I | Clostridium botulinum Group II |
---|---|---|
Proteolysis | + | − |
Minimum pH required for growth | 4.6 | 5.0 |
Optimum growth temperature | 37 °C | 25–30 °C |
Heat-resistance of spores | High | Moderate |
Neurotoxins formed | A, B, F | E, B, F |
Botulinum neurotoxin gene localization | Chromosome, plasmid | Chromosome, plasmid |
Closely related species | C. sporogenes, C. tepidum | C. butyricum, C. taeniosporium, C. beijerinckii |
Properties | Clostridium botulinum Group III |
---|---|
Proteolysis | +/− |
Minimum pH required for growth | 4.6 |
Optimum growth temperature | 40 °C |
Neurotoxins formed | C, D, CD, DC |
Botulinum neurotoxin gene localisation | Prophage plasmid |
Closely related species | C. novyi, C. haemolyticum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grenda, T.; Jarosz, A.; Sapała, M.; Stasiak, K.; Grenda, A.; Domaradzki, P.; Kwiatek, K. Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem. Diversity 2023, 15, 392. https://doi.org/10.3390/d15030392
Grenda T, Jarosz A, Sapała M, Stasiak K, Grenda A, Domaradzki P, Kwiatek K. Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem. Diversity. 2023; 15(3):392. https://doi.org/10.3390/d15030392
Chicago/Turabian StyleGrenda, Tomasz, Aleksandra Jarosz, Magdalena Sapała, Karol Stasiak, Anna Grenda, Piotr Domaradzki, and Krzysztof Kwiatek. 2023. "Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem" Diversity 15, no. 3: 392. https://doi.org/10.3390/d15030392
APA StyleGrenda, T., Jarosz, A., Sapała, M., Stasiak, K., Grenda, A., Domaradzki, P., & Kwiatek, K. (2023). Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem. Diversity, 15(3), 392. https://doi.org/10.3390/d15030392