Next Article in Journal
Temporal Trends in Skull Morphology of the European Bison from the 1950s to the Present Day
Previous Article in Journal
The Ornamented Shell of a New Bothremydid Turtle from the Uppermost Cretaceous of Niger
Previous Article in Special Issue
Economics of a Feeding Budget: A Case of Diversity of Host Plants for Lymantria dispar L. (Lepidoptera) Feeding on Leaves and Needles
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

From Abundance to Extinction: Evolutionary History of European Aedemonini (Curculionidae) with a Description of the First Representative from Rovno Amber

by
Andrei A. Legalov
1,2,3,*,
Dmitry V. Vasilenko
4,5 and
Evgeny E. Perkovsky
6,7
1
Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630091, Russia
2
Department of Ecology, Biochemistry and Biotechnology, Altai State University, Barnaul 656049, Russia
3
Department of Forestry and Landscape Construction, Tomsk State University, Tomsk 634050, Russia
4
Laboratory of Arthropod, A. A. Borissiak Paleontological Institute of the Russian Academy of Sciences, Moscow 117647, Russia
5
Paleontological Laboratory, Cherepovets State University, Cherepovets 162600, Russia
6
Department of Entomology and Collection Management, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kiev, Ukraine
7
Natural History Museum of Denmark, 2100 Copenhagen, Denmark
*
Author to whom correspondence should be addressed.
Diversity 2023, 15(3), 376; https://doi.org/10.3390/d15030376
Submission received: 14 January 2023 / Revised: 28 February 2023 / Accepted: 3 March 2023 / Published: 5 March 2023
(This article belongs to the Special Issue Systematics, Evolution and Ecology of Holarctic Insect Species)

Abstract

:
Fossil weevils of the subfamily Molytinae are currently represented by 103 species in 42 genera from 14 tribes. Fossil records of the tribe Aedemonini are known from the Eocene of Europe. This tribe makes up 22% of the London Clay weevil specimens identified to the genus level and 16% of the Curculionidae genera. At present, the distribution of this tribe is mainly paleotropical, but it was very prominent in the paratropical biota of the London Clay in the early Eocene, and it was still represented in the biota of the amber forests of Europe that retained some tropical elements in the Priabonian. A new species, Electrorhinus vlaskini n. sp., from the tribe Aedemonini of the subfamily Molytinae, is described from Rovno amber. It differs from E. friedhelmi in the smaller body size, finely faceted eyes, a coarser rugose pronotum, and sparser scales on the body. A list of the fossil Molytinae is compiled. This is the first record of a weevil of the subfamily Molytinae in Rovno amber, and the second finding of a representative of the genus Electrorhinus in the late Eocene and the third record of a species of Aedemonini preserved as a fossil. A key to European species of Molytinae with a rostral channel from Europe is given.

1. Introduction

Some weevils of the subfamily Molytinae were previously considered the subfamily Cryptorhynchinae [1]. This subfamily included species from the tribe Cryptorhynchini along with representatives of the subtribes Cryptorhynchina, Mecistostylina, and Tylodina, tribes Aedemonini, Camptorhinini, Gasterocercini, Psepholacini, Sophrorhinini, and Torneumatini [1], or it was considered in an even wider sense with the inclusion of the tribes Cleogonini and Ithyporini [2]. Currently, a number of these tribes are included in the subfamily Molytinae [3,4,5].
The first finding of the tribe Aedemonini was in the London Clay (the early Eocene of England) [1,6], and the second from late Eocene Baltic amber [7].
Species of the tribe Cryptorhynchini are known from early Eocene Oise amber [8], the early Eocene Green River [9], the middle Eocene of Germany [10], late Eocene Baltic amber [11,12,13], the terminal Eocene of the USA [14], the latest Oligocene of Germany [15], and by many species from early Miocene Dominican and Mexican amber [16,17]. A single species of the extinct genus Camptorrhinites Britton, 1960, was described from London Clay [6] as well. A species from the recent genus Episcirrus Kuschel, 1958, of the tribe Gasterocercini was discovered in Dominican amber [17]. Weevils from the tribes Psepholacini, Sophrorhinini, and Torneumatini are not known as fossils [11,18].
The family Curculionidae are represented in Rovno amber by 13 species from the subfamilies Erirhininae, Dryophthorinae, Cossoninae, Conoderinae, Curculioninae, and Entiminae [19,20,21,22,23,24,25,26,27,28]. This is the first record of the subfamily Molytinae in Rovno amber, and the second finding of the late Eocene genus Electrorhinus and the fifth of the Aedemonini.

2. Materials and Methods

The studied fossil weevil is preserved in a piece of Rovno amber from the Pugach quarry (Klesov deposit), Sarny District, Rovno Oblast, Ukraine [29]. The type specimen is deposited in the Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine, Kiev (SIZK). Images were taken using a Leica Z16 APO stereomicroscope equipped with a Leica DFC 450 camera and a Canon EOS 6D with an MP-E 65 mm macro lens and Cognisys Stackshot 3×. Photographs were stacked using the ZereneStacker 1.04 (Zerene Systems LLC, Richland, WA, USA). The morphological terminology used in this paper follows Lawrence et al. [30].
Fossil weevils of the subfamily Molytinae have been described from the following localities:
Cerro Guido—Chile: Magallanes, Última Esperanza Province, Cerro Guido, Dorotea Formation, Upper Cretaceous, Campanian—Maastrichtian;
Assiniboine—Canada: Manitoba, Assiniboine River; Upper Cretaceous, Maastrichtian;
Arkhara—Russia: Amurskaya Oblast, Arkharinskii District, quarry at Arkhara Railway Station, Tsagayan Group, lower Paleocene, Danian;
Menat—France: Puy-de-Dome, middle-upper Paleocene, Selandian-Thanetian, 61.0–59.0 Ma;
Mors—Denmark: Fur Formation, lower Eocene, Ypresian, 54.0 Ma;
London Clay—UK: England, Sussex, Bognor Regis, lower Eocene, Ypresian, 54.0–50.0 Ma;
Roan Mountain—USA: Colorado, Garfield County, Green River Formation; lower Eocene, Ypresian, 50.6–48 Ma;
Green River—USA: Colorado, Wyoming, Utah states, 3–4 km west of railway crossing of Green River, Green River Formation, lower Eocene, Ypresian, 50.6–48 Ma;
Oise amber—France: Paris basin, Creil, Oise; lowermost Eocene, Ypresian, 53.0 Ma;
Kutschlin—Czech Republic: northwest Bohemia, near Bilina, upper Eocene, Priabonian;
Baltic amber—Russia: Kaliningrad Oblast, Baltic Sea coast and Yantarnyi quarry near Kaliningrad, Poland: Gdańsk city area, at the Wisla River estuary, Prussian Formation, upper Eocene, Priabonian, 36.8–36.4 Ma;
Rovno amber—Ukraine: Rovno Oblast, Klesov, upper Eocene, Priabonian, 37.7–33.9 Ma;
Florissant—USA: Colorado, Rocky Mountains near Pike’s Peak, Florissant Formation; uppermost Eocene, Priabonian, 34.07 ± 0.10 Ma;
White River Badlands—USA: South Dakota, lower Oligocene, Rupelian, 34.0–31.2 Ma;
Brunnstatt—France: Alsace, Haut-Rhine Department, 5 km southwest of Mulhouse, terminal Eocene, Priabonian, 33.9 Ma;
Corent—France: South France, Puy-de-Dom Department, Gergovia Plateau, south of Clermont-Ferrand, lower Oligocene, Rupelian;
Sieblos—Germany: Hessen, Rhön, lower Oligocene, Rupelian;
Lužice—Czech Republic: northwest Bohemia, upper Oligocene, Chattian;
Rott—Germany: North Rhine-Westfalia, latest Oligocene, Upper Siebengebirge, near Bonn, Rott Formation, Chattian, 24.0–23.0 Ma;
Aix-en-Provence—France: Bouches-du-Rhône, Aix-en-Provence Formation uppermost Oligocene, upper Chattian, until 23 Ma;
Dominican amber—Dominican Republic: mines in the Cordillera Septentrional, lower-middle Miocene, 20–15 Ma;
Mexican amber—Mexico: Yukatan, Chiapas: mines near Simojovel, lower-middle Miocene, 20–15 Ma;
Shanwang—China: Shandong Province, Linqu County, lower Miocene, Burdigalian, 17–18 Ma;
Altamira shale—USA: California, Los Angeles Country, Woodcrest Drive, Sherman Oaks, upper Miocene;
Willershausen—Germany: Niedersachsen, Harz, upper Pliocene.
Nomenclatural acts introduced in the present work are registered in ZooBank (www.zoobank.org) under LSID urn:lsid:zoobank.org:pub:8931A219-B0E7-4F2A-85BD-0C29E9C48538.

3. Results

Systematic
Family Curculionidae Latreille, 1802
Subfamily Molytinae Schoenherr, 1823
Tribe Aedemonini Faust, 1898
Genus Electrorhinus Legalov, 2020
Type species: Electrorhinus friedhelmi Legalov, 2020, by original designation.
Electrorhinus vlaskini Legalov, Vasilenko and Perkovsky, sp. n. (Figure 1, Figure 2, Figure 3 and Figure 4)
LSIDurn:lsid:zoobank.org:act:76FEF9E3-38ED-47E8-9EFC-86BDBA382C57
Description. Size. Body length (without rostrum) 4.6 mm; rostrum length 0.8 mm. Body is black, with decumbent quite narrow scales. Rostrum moderately long and stout, slightly shorter than the pronotum, weakly curved, densely punctate dorsally; antennal scrobe lateral, directed under the rostrum; forehead quite narrow, slightly narrower than rostrum base, flattened dorsally, densely punctate; compound eyes large, spherical, weakly protruding from margin of head, quite finely faceted; temples short; vertex weakly convex, densely and finely punctate; antennae geniculate, inserted near middle of rostrum, geniculate; scape elongate, not reaching eye. Pronotum bell-shaped; disc weakly convex, coarsely rugose-punctate; sides weakly rounded, with large puncture; pronotal base biconcave. Elytra weakly convex, quite elongate, 3.1 times as long as pronotum; greatest width in middle; humeri weakly flattened; striae regular and distinct; elytral interstriae wide, punctate, 2.5–3.0 times as long as width of the striae. Prosternum densely punctate, with weak postocular lobes and a rostral channel bounded by carinae; procoxal cavities round, separated; postcoxal portion of prosternum bounded by carinae; metaventrite weakly convex, and coarsely punctate. Abdomen weakly convex. Legs elongate; femora weakly clavate, weakly sulcate beneath, with teeth beyond middle; metafemora reaching ventrite 3; tibiae weakly curved, flattened, with distinct uncus; tarsi elongate, with pulvilli on underside.
Material examined. Holotype: SIZK K-31315, Klesov, Rovno amber, late Eocene.
Derivation of name. The species is named in honor of paleoentomologist A.P. Vlaskin (Rovno).
Diagnosis. The new species differs from Electrorhinus friedhelmi in the smaller body sizes, finely faceted eyes, coarser rugose pronotum, and sparser scales on the body.
Remarks. The geniculate antennae and uncinate tibiae support the placement of this species in the family Curculionidae. Placement in the subfamily Molytinae is based on the quite large tibial uncus. The prosternum with rostral channel bounded by carinae in the precoxal and postcoxal portions of the prosternum (Figure 4 and Figure 5) suggest placement in the tribe Aedemonini. The new species belongs to the genus Electrorhinus based on the femora weakly sulcate beneath and the metafemora reaching ventrite 3.
Key to European species of Molytinae with a rostral channel
1. Pronotal outgrowth extending beyond the head. .........................................................2
- Pronotal outgrowth not extending beyond the head......................................................3
2. Apex of rostral channel bounded by carina. 4.9 mm. London Clay................................................................................................Korystina gracilis Britton, 1960.
- Apex of rostral channel not bounded by carina. 4.2 mm. Oise amber.....................................................Sciabregma squamosa Legalov, Kirejtshuk, and Nel, 2019.
3. Rostral channel not reaching mesoventrite. ~5 mm. London Clay......................................................................................Camptorrhinites orarius Britton, 1960
- Rostral channel reaching mesoventrite............................................................................4
4. Postcoxal portion of prosternum bounded by carinae.................................................5
- Postcoxal portion of prosternum not bounded by carinae............................................8
5. Pronotum is densely punctate. Body is smaller (4.4 mm). London Clay.............................................................................................Taylorius litoralis Britton, 1960.
- Pronotum rugose-punctate. Body is larger (4.6–6.2 mm)............................................6
7. Body is larger (5.7–6.2 mm). Eyes are quite coarsely faceted. Pronotum is weakly rugose. Body with denser scales. Baltic amber...........Electrorhinus friedhelmi Legalov, 2020.
- Body is smaller (4.6 mm). Eyes are finely faceted. Pronotum is coarser and rugose. Body with sparser scales. Rovno amber.........................................................Electrorhinus vlaskini Legalov, Vasilenko, and Perkovsky, sp. n.
8. Metaventrite is longer than the third ventrite. Abdominal process is narrower than coxa. Elytra with rectangular humeri..........................................................................................9
- Metaventrite is short, and shorter than the third ventrite. Abdominal process as broad as coxa. Elytra with reduced humeri..............................................................................10
9. Vertex is densely punctured and covered with wide scales. Elytra wider than base of pronotum. Odd-numbered elytral interstices are non-raised. Elytra is 1.8 times as long as the width at the middle. 4.5–4.7 mm. Baltic amber.....................S. silvestris Legalov, in litt.
- Vertex glabrous, covered with narrow scales. Elytra subequal to base of pronotum. Odd-numbered elytral interstices are weakly raised. Elytra are 2.6 times as long as the width at the middle. 4.0 mm. Baltic amber....................Succinacalles uniqus Zherikhin, 1971
10. Femora denticulate. 5.2 mm. Baltic amber....................................................Baltacalles triumurbium Bukejs, Alekseev et Legalov, 2020.
- Femora without teeth........................................................................................................11
11. Postocular lobes are weak. Elytral interstices are rather narrow. Elytral striae are wide. 3.0 mm. Baltic amber...................................................Parvacalles kotthoffi Legalov, in litt.
- Postocular lobes are stark. Elytral interstices are wide. Elytral striae are narrow. 3.3 mm. Oise amber.............................Oisecalles latosquamosus Legalov, Kirejtshuk et Nel, 2019.
List of the fossil Molytinae
Subfamily Molytinae Schoenherr, 1823
Tribe Molytini Schoenherr, 1823
Genus Archaralites Legalov, 2010
A. zherichini Legalov, 2010—Arkhara [31]
Genus Archaeoheilus Legalov, 2018
A. gallicus Legalov, Kirejtshuk and Nel, 2019—Menat [32]
A. ovalis Legalov, 2018—Green River [33]
A. packardii (Scudder, 1893)—Green River [14]
A. provectus (Scudder, 1876)—Green River [9]
A. scudderi Legalov, 2018—Green River [33]
A. deleticius (Scudder, 1893)—White River [14]
A. lacoei (Scudder, 1893)—Florissant [14]
Genus Furhylobius Legalov, 2015
F. troesteri Legalov, 2015—Mors [11]
Genus Hylobius Germar, 1817
H.” antiquus Heyden and Heyden, 1866—Rott [15]
H.” medianus Zhang, 1989—Shanwang [34]
H.” plenus Zhang, 1989—Shanwang [34]
H.” turfaceus Zhang, 1989—Shanwang [34]
H. abietis (Linnaeus, 1758)—Willershausen [35]
Genus Anisorhynchus Schoenherr, 1842
A.” deletus Deichmueller, 1881—Kutschlin [36]
A.” offosus Oustalet, 1870—Corent [37]
Genus Sinocurculia Hong, 1984
S. granulata Hong, 1984—Shanwang [38]
S. shanwangensis Hong, 1985—Shanwang [39]
Tribe Sciabregmini Legalov, Kirejtshuk, and Nel, 2019
Genus Sciabregma Scudder, 1893
S. rugosa Scudder, 1893—Roan Mountain [14]
S. squamosa Legalov, Kirejtshuk, and Nel, 2019—Oise amber [8]
S. tenuicornis Cockerell, 1921—Green River [40]
Tribe Conotrachelini Jakel, 1865
Genus Conotrachelus Schoenherr, 1845
C. florissantensis Wickham, 1912—Florissant [41]
Tribe Acicnemidini Lacordaire, 1866
Genus Electrotribus Hustache, 1942
E. rarus Legalov, 2020—Baltic amber [7]
E. theryi Hustache, 1942—Baltic amber [42,43]
=Pissodes henningseni Voss, 1972
E. weigangae (Ulke, 1947)—Baltic amber [44]
=Anchorthorrhinus incertus Voss, 1953 [45]
=Isalcidodes macellus Voss, 1953
E. wolfschwenningerae (Rheinheimer, 2007)—Baltic amber [46]
Tribe Plinthini Lacordaire, 1863
Subtribe Leiosomatina Reitter, 1913
Genus Leiosoma Stephens, 1829
Subgenus Palaeoleiosoma Legalov, 2016
L. (L.) klebsi Legalov, 2016—Baltic amber [47]
L. (L.) michalskii Legalov, in litt.—Baltic amber
L. (L.) shevnini Legalov, in litt.—Baltic amber
Subtribe Typoderina Voss, 1965
Genus Baltanchonidium Legalov, in litt.
B. eocenicum Legalov, in litt.—Baltic amber
Tribe Magdalini Pascoe, 1870
Genus Magdalis Germar, 1817
M.” sedimentorum Scudder, 1893—Florissant [14]
M. moesta Schlechtendal, 1894—Rott [48]
M.” deucalionis (Heyden and Heyden, 1866)—Rott [15]
M.” protogenius (Heyden and Heyden, 1866)—Rott [15]
Tribe Cleogonini Gistel, 1856
Genus Rhysosternum Scudder, 1893
Rh. aeternabile Scudder, 1893—Florissant [14]
Rh. longirostre Scudder, 1893—Florissant [14]
Genus Rhyssomatus Schoenherr, 1837
Rh. miocenae Pierce, 1965—Altamira shale [49]
Tribe Anchonini Imhoff, 1856
Genus Anchonus Schoenherr, 1825
A. acrolepidotus Poinar and Legalov, 2019—Dominican amber [50]
A. bothynus Poinar and Legalov, 2019—Dominican amber [50]
Genus Velatis Poinar and Voisin, 2003
V. dominicana Poinar and Voisin, 2003—Dominican amber [51]
Tribe Pissodini Gistel, 1856
Genus Lithopissodes Beier, 1952
L. luschitzensis Beier, 1952—Lužice [52]
Tribe Lymantini Lacordaire, 1865
Subtribe Lymantina Lacordaire, 1865
Genus Bronchotibia Poinar and Legalov, 2022
B. adunatus Poinar and Legalov, 2022—Dominican amber [53]
Tribe incertae sedis
Genus Hylobiites Scudder, 1895
H. cretaceus Scudder, 1895—Assiniboine [54]
Genus Dorotheus Kuschel, 1959
D. guidensis Kuschel, 1959—Cerro Guido [55]
Genus Lutago Britton, 1960
L. fetosus Britton, 1960—London Clay [6]
L. nanus Britton, 1960—London Clay [6]
Genus Pissodites Britton, 1960
P. argillosus Britton, 1960—London Clay [6]
Genus Erirhinites Britton, 1960
E. bognorensis Britton, 1960—London Clay [6]
Genus incertae sedis
Chalcodermuskirschi Deichmueller, 1881—Kutschlin [36]
Acallesexhumatus Wickham, 1913—Florissant [56]
Hylobiuscarbo Oustalet, 1874—Aix-en-Provence [37]
Plinthusheerii Oustalet, 1874—Aix-en-Provence [37]
Molyteshassencampi Heyden, 1858—Sieblos [57]
Pissodeseffossus Heyden, 1858—Sieblos [57]
Pissodesplanatus Foerster, 1891—Brunnstatt [58]
Hylobiusdeletus Oustalet, 1870—Corent [59]
Plinthusredivivus Oustalet, 1870—Corent [59]
Hylobiusmorosus Oustalet, 1874—Corent [37]
“Cryptorhynchinae Schoenherr, 1825”
Tribe Camptorhinini Lacordaire, 1866
Genus Camptorrhinites Britton, 1960
C. orarius Britton, 1960—London Clay [6]
Genus Korystina Britton, 1960
Remarks. The genus Korystina was described in the tribe Sophrorhinini [6]. Alonso-Zarazaga and Lyal [1] placed it in the tribe Cryptorhynchini. Legalov [11] transferred this genus in the tribe Camptorhinini. A re-examination of the description and illustrations show that Korystina has the rostral channel of the postcoxal portion of the prosternum bounded by carinae, which characterize the tribe Aedemonini [5], but it is not clear whether it is present on the prothorax or is also located on the mesoventrite. To finally establish the systematic position of Korystina, a re-examination of the type is required.
K. gracilis Britton, 1960—London Clay [6]
Tribe Aedemonini Faust, 1898
Genus Taylorius Britton, 1960
T. litoralis Britton, 1960—London Clay [6]
Genus Electrorhinus Legalov, 2020
E. friedhelmi Legalov, 2020—Baltic amber [7]
E. vlaskini Legalov, Vasilenko and Perkovsky, sp. n.—Rovno amber
Tribe Cryptorhynchini Schoenherr, 1826
Subtribe Cryptorhynchina Schoenherr, 1826
Genus Succinacalles Zherikhin, 1971
S. silvestris Legalov, in litt.—Baltic amber
S. uniqus Zherikhin, 1971—Baltic amber [12]
Genus Cryptorhynchus Illiger, 1807
“C.” annosus Scudder, 1876—Green River [9]
“C.” kerri Scudder, 1893—Florissant [14]
“C.” profusus Scudder, 1893—Florissant [14]
Genus Semnorhynchus Faust, 1896
S. brachyrhinus Poinar and Legalov, 2014—Dominican amber [17]
S. campostegus Poinar and Legalov, 2014—Dominican amber [17]
S. contorhinus Poinar and Legalov, 2014—Dominican amber [17]
S. euryaspus Poinar and Legalov, 2014—Dominican amber [17]
S. eurystegus Poinar and Legalov, 2014—Dominican amber [17]
S. leptostegus Poinar and Legalov, 2014—Dominican amber [17]
S. megasomus Poinar and Legalov, 2014—Dominican amber [17]
S. stenostegus Poinar and Legalov, 2014—Dominican amber [17]
S. tanyrhinus Poinar and Legalov, 2014—Dominican amber [17]
Genus Neoulosomus O’Brien and Wibmer, 1982
Subgenus Neoulosomus s. str.
N. (N.) hurdi (Zimmermann, 1971)—Mexican amber [16]
N. (N.) leptosomus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) megaholcus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) megus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) microholcus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) pedinus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) pediosomus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) platystegus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) scambosomus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) scambus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) stenocalypus Poinar and Legalov, 2014—Dominican amber [17]
N. (N.) stylolepus Poinar and Legalov, 2014—Dominican amber [17]
Subgenus Stenosomus Poinar and Legalov, 2014
N. (S.) contorhinus Poinar and Legalov, 2014—Dominican amber [17]
N. (S.) tanyrhinus Poinar and Legalov, 2014—Dominican amber [17]
Genus Lemmasomus Poinar and Legalov, 2014
L. anodontotus Poinar and Legalov, 2014—Dominican amber [17]
Genus Apharosoma Poinar and Legalov, 2014
A. euryrhina Poinar and Legalov, 2014—Dominican amber [17]
Genus Anlemmus Poinar and Legalov, 2014
A. leptorhinus Poinar and Legalov, 2014—Dominican amber [17]
Genus Odontamera Poinar and Legalov, 2014
O. dolichosoma Poinar and Legalov, 2014—Dominican amber [17]
Subtribe Tylodina Lacordaire, 1866
Genus Oisecalles Legalov, Kirejtshuk et Nel, 2019
O. latosquamosus Legalov, Kirejtshuk et Nel, 2019—Oise amber [8]
Genus Baltacalles Bukejs, Alekseev et Legalov, 2020
B. triumurbium Bukejs, Alekseev et Legalov, 2020—Baltic amber [13]
Genus Parvacalles Legalov, in litt.
P. kotthoffi Legalov, in litt.—Baltic amber
Genus Acalles Schoenherr, 1826
A.” icarus Heyden and Heyden, 1866—Rott [15]
Genus Pseudomoides Poinar and Legalov, 2014
P. clisaulis Poinar and Legalov, 2014—Dominican amber [17]
Genus Paraulosomus Hustache, 1930
P. adenolepus Poinar and Legalov, 2014—Dominican amber [17]
Genus Paracamptopsis Poinar and Legalov, 2014
P. stenis Poinar and Legalov, 2014—Dominican amber [17]
Tribe Gasterocercini Zherichin, 1991
Genus Episcirrus Kuschel, 1958
E. isolepus Poinar and Legalov, 2014—Dominican amber [17]

4. Discussion

Fossil weevils of the subfamily Molytinae are currently represented by 103 species in 42 genera from 14 tribes. The oldest forms were described from the Maastrichtian of Canada and Chile [54,55]. The most diverse Molytinae fauna is known from Miocene Dominican amber [17,50,51,53].
The tribe Aedemonini includes 33–35 extant genera [1,3] distributed in sub-Saharan Africa (excluding the desert regions of South Africa), Madagascar, Oriental Region (north to southern Sakhalin, Japan, and South Korea), Australia (except for desert areas), Micronesia, Melanesia, and Polynesia (Figure 6). Representatives of this group are absent in the New World, Western and Central Palaearctic. Fossil findings are known from the Eocene of Europe [6,7,18]. It is noted that extant species of the tribe avoid dry and cold areas. Almost all species do not cross the line of +15 °C of the mean annual temperature. Several species have adapted to colder conditions in South Korea, Japan, and southern Sakhalin. Perhaps this is due to the monsoon climate. The fossil records are all from the Eocene when the climate of Europe was warm and humid. Aedemonini make up 22% of the London Clay weevil specimens identified to the genus level, and 16% (or even a third if Korystina belongs to the tribe) of the Curculionidae genera. The representation of the tribe was not so significant in any other extant or extinct fauna. Even in the Afrotropical region, where at least 40% of the species and 56% of the genera of Aedemonini are distributed, they make up less than 7% of the species and less than 2.5% of the genera of Curculionidae [60]. It is highly meaningful that hyperdiverse Cryptorhynchini appear to be largely absent from the Afrotropics, where they seem to be replaced by Aedemonini [61], our data. It is interesting to combine the abundance of Aedemonini and Molytinae in general in London Clay with the extreme rarity of bark beetles (represented by a single specimen of ? Blastophagus Eichhoff, 1864 (=Tomicus Latreille, 1802)), while xylophagous insects dominate in this locality [6]. Their mineralization, at least in part, could occur in a specific microtaphotope inside pyritized wood [62].
Moreover, Tailorius is the second most abundant genus of the family Curculionidae (together with Lutago, they account for 62.5% of all weevils determined to be in the genus), and the third most abundant genus in all biotas, and accounts for 16% of all beetles identified to the genus from London Clay. Of course, an extraordinary abundance of Aedemonini in the early Eocene of Europe was not ubiquitous. For example, the species of the tribe are unknown from Oise amber, in which numerous bark beetles were found, as well as a representative of Cryptorhynchini (Oisecalles latosquamosus Legalov, Kirejtshuk et Nel, 2019) [8].
The abundance of Aedemonini in the London Clay may have been due to the rich and diverse tropical vegetation [63,64]. The age of the London Clay Formation is early and middle Ypresian [65]. Bognor remains the principal international source of pyritized insects [66] (p. 93). Rundle and Cooper [67] asserted that insects from the London Clay drifted out to sea with wood from the more westerly, near-shore location of the Hampshire Basin [68]. This is further supported by the presence of numerous flightless larvae [66], together with beetles with their elytra in the resting position [68]. The London Clay Formation contains one of the most important fruit and seed assemblages from the Paleogene [69]. Given its unparalleled diversity [68], more than 350 described species, and superb preservation as well as uncompressed, three-dimensionally preserved morphology [63,70], the flora offers a unique insight into the vegetation present in Europe during the hyperthermals of the early Eocene [71,72]. Numerous clades that are now largely confined to tropical latitudes, e.g., Annonaceae, Arecaceae, Burseraceae, Icacinaceae, and Menispermaceae, are well documented in the flora [63,70]. As was indicated by Collinson and Cleal [68] “in early Eocene times, a zone of lush vegetation had developed in Britain, strongly reminiscent of today’s tropical rain forests, dominated by evergreen trees of the sumac, custard apple, dillenia, dogbane, frankincense, flacourtia, icacina, laurel, palm, sabia, soap berry and tea families, and mastic trees of the dogwood family”, with abundant lianas of the icacina, grape vine, and moonseed families and numerous mangrove palms and rare, true mangroves in coastal areas [73,74,75,76]. The vegetation, with some reservations, has been compared with the modern paratropical rain forests of lowland Asia [68], and references therein.
Since the late Eocene, there are no fossil records of these Aedemonini beetles [18]. They may have disappeared from Europe during the Oligocene, when the European climate became colder, seasonal, and drier. The new record shows the connection of the European Priabonian fauna with the extant Paleotropical fauna. The weaver ant genus Oecophylla Smith, 1860, is characterized by a similar geological and geographical distribution [77,78], except for a single early Eocene finding in Okanagan [79].
The climate of the Rovno amber forest was warmer than the Baltic one [80,81], so the thermophilic beetles are much better represented there [27,82,83,84,85,86,87,88,89], resulting in only 15% of known Rovno beetles having anything in common with Baltic amber [87,90]. The genus Electrorhinus could be a new addition to the list of Rovno thermophilic taxa that are much rarer in Baltic amber.

Author Contributions

A.A.L. and E.E.P. designed the study, prepared new species descriptions and plates. A.A.L. prepared the systematic placement of the new species. A.A.L., D.V.V. and E.E.P. authors drafted the manuscript and contributed to the writing and discussion. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

The specimens are deposited in the I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine (Kiev).

Acknowledgments

The authors thank A.P. Vlaskin (SIZK) for finding, cutting, and polishing the sample and S.A. Simutnik (SIZK) and J.M.J. Shaw (Natural History Museum of Denmark, Copenhagen, Denmark) for help with the photos and editing, and anonymous reviewers for improving the overall quality of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Alonso-Zarazaga, M.A.; Lyal, C.H.C. A World Catalogue of Families and Genera Curculionoidea (Insecta: Coleoptera) (Excepting Scolytidae and Platypodidae); Entomopraxis: Barcelona, Spain, 1999; p. 315. [Google Scholar]
  2. Morimoto, K. On the genera of Oriental Cryptorhynchinae (Coleoptera: Curculionidae). Esakia 1978, 11, 121–143. [Google Scholar] [CrossRef] [PubMed]
  3. Lyal, C.H.C. 3.7.7. Molytinae Schoenherr, 1823. In Arthropoda: Insecta. Handbook of Zoology. Tb. 40: Coleoptera (Beetles). Vol. 3: Morphology and Systematics (Phytophaga); Leschen, R.A.B., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2014; pp. 529–569. [Google Scholar]
  4. Alonso-Zarazaga, M.A.; Barrios, H.; Borovec, R.; Bouchard, P.; Caldara, R.; Colonnelli, E.; Gültekin, L.; Hlavá, P.; Korotyaev, B.; Lyal, C.H.C.; et al. Cooperative catalogue of Palaearctic Coleoptera Curculionoidea. Monogr. Electrónicas 2017, 8, 1–729. [Google Scholar]
  5. Legalov, A.A. Annotated key to weevils of the world. Part 2. Subfamily Molytinae (Coleoptera, Curculionidae). Ukr. J. Ecol. 2018, 8, 340–350. [Google Scholar]
  6. Britton, E.B. Beetles from the London clay (Eocene) of Bognor Regis, Sussex. Bull. Brit. Mus. Nat. Hist. Geol. 1960, 4, 27–50, +pl. 2–7. [Google Scholar] [CrossRef]
  7. Legalov, A.A. A review of the Curculionoidea (Coleoptera) from European Eocene ambers. Geosciences 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
  8. Legalov, A.A.; Kirejtshuk, A.G.; Nel, A. New weevils (Coleoptera, Curculionoidea) from the earlymost Eocene Oise amber. Paleontol. J. 2019, 53, 729–751. [Google Scholar] [CrossRef]
  9. Scudder, S.H. Fossil Coleoptera from the Rocky mountain territories. Bull. US Geol. Geogr. Surv. Terr. 1876, 2, 77–87. [Google Scholar]
  10. Wappler, T. Die Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel. Mainzer Naturwiss. Arch. 2003, 27, 1–234. [Google Scholar]
  11. Legalov, A.A. Fossil Mesozoic and Cenozoic weevils (Coleoptera, Obrienioidea, Curculionoidea). Paleontol. J. 2015, 49, 1442–1513. [Google Scholar] [CrossRef]
  12. Zherikhin, V.V. On weevils (Insecta, Coleoptera) from the Baltic amber. Tr. Paleontol. Inst. Akad. Nauk. SSSR 1971, 130, 197–209. [Google Scholar]
  13. Bukejs, A.; Alekseev, V.I.; Legalov, A.A. A new Eocene genus of the subtribe Tylodina (Coleoptera: Curculionidae) and notes concerning local differences of Baltic amber in the Kaliningrad Region. Foss. Rec. 2020, 23, 75–81. [Google Scholar] [CrossRef]
  14. Scudder, S.H. Rhynchophorus Coleoptera of the United States. Monogr. US Geol. Surv. Tert. 1893, 21, 1–206. [Google Scholar]
  15. Heyden, C.; Heyden, L. Käfer und Polypen aus der Braunkohle des Siebengebirges. Palaeontographica 1866, 15, 131–156, pl. XXII–XXIV. [Google Scholar]
  16. Zimmermann, E.C. Mexican Miocene amber weevils (Insecta: Coleoptera: Curculionidae). Univ. Calif. Publ. Entomol. 1971, 63, 103–106. [Google Scholar]
  17. Poinar, G., Jr.; Legalov, A.A. New Cryptorhynchinae (Coleoptera: Curculionidae) in Dominican amber. Hist. Biol. 2014, 26, 502–534. [Google Scholar] [CrossRef]
  18. Legalov, A.A. Fossil history of Curculionoidea (Coleoptera) from the Paleogene. Geosciences 2020, 10, 358. [Google Scholar] [CrossRef]
  19. Legalov, A.A.; Nazarenko, V.Y.; Perkovsky, E.E. A new species of the genus Glaesotropis Gratshev and Zherikhin, 1995 (Coleoptera, Anthribidae) from Rovno amber. Fossil Record 2021, 24, 1–7. [Google Scholar] [CrossRef]
  20. Nazarenko, V.Y.; Perkovsky, E.E. A new genus and species of dryophthorid weevils (Coleoptera, Dryophthoridae: Stromboscerinae) from the Rovno amber. Paleontol. J. 2009, 43, 1097–1100. [Google Scholar] [CrossRef]
  21. Nazarenko, V.Y.; Perkovsky, E.E. A new species of derelomine weevils (Coleoptera, Curculionidae, Curculioninae: Acalyptini) from the Rovno amber. Paleontol. J. 2016, 50, 991–996. [Google Scholar] [CrossRef]
  22. Nazarenko, V.Y.; Legalov, A.A.; Perkovsky, E.E. A new species of the genus Caulophilus Woll. (Coleoptera: Curculionidae: Cossoninae) from the Rovno amber. Paleontol. J. 2011, 45, 287–290. [Google Scholar] [CrossRef]
  23. Legalov, A.A.; Nazarenko, V.Y.; Perkovsky, E.E. New weevils (Coleoptera: Curculionidae) from Rovno amber. Paleontol. J. 2019, 53, 1045–1059. [Google Scholar] [CrossRef]
  24. Legalov, A.A.; Nazarenko, V.Y.; Perkovsky, E.E. A new species of the genus Dorytomus Germar, 1817 (Coleoptera, Curculionidae) from Rovno amber. Zootaxa 2021, 5006, 95–100. [Google Scholar] [CrossRef]
  25. Legalov, A.A.; Nazarenko, V.Y.; Vasilenko, D.V.; Perkovsky, E.E. Ceutorhynchus Germar (Coleoptera, Curculionidae) as proxy for Eocene Brassicaceae: First record of the genus from Rovno amber. J. Paleontol. 2022, 96, 379–386. [Google Scholar] [CrossRef]
  26. Legalov, A.A.; Vasilenko, D.V.; Perkovsky, E.E. The American tribes Anypotactini and Eudiagogini (Coleoptera, Curculionidae) in Eocene of Europe as indicators of Eocene climate with description a new species. Diversity 2022, 14, 767. [Google Scholar] [CrossRef]
  27. Legalov, A.A.; Vasilenko, D.V.; Perkovsky, E.E. New proxy for Moraceae in Priabonian of Europe: First record of the genus Demimaea Pascoe, 1870 (Coleoptera: Curculionidae) from Eocene Rovno amber. Hist. Biol. 2022. [Google Scholar] [CrossRef]
  28. Bukejs, A.; Legalov, A.A. First record of the tribe Naupactini (Coleoptera: Curculionidae) in Rovno amber. Foss. Rec. 2019, 22, 25–30. [Google Scholar] [CrossRef] [Green Version]
  29. Makarkin, V.N.; Perkovsky, E.E.; Anisyutkin, L.N.; Dubovikoff, D.A. First larvae of Raphidioptera from Eocene Sakhalinian and Rovno ambers. Zootaxa 2022, 5219, 456–466. [Google Scholar] [CrossRef]
  30. Lawrence, J.F.; Beutel, R.G.; Leschen, R.A.B.; Slipinsky, S.A. Chapter 2. Glossary of morphological terms. In Handbook of Zoology. Arthropoda: Insecta. Coleoptera, Beetles. Volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim); Kristensen, N.P., Beutel, R.G., Eds.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 2010; pp. 9–20. [Google Scholar]
  31. Legalov, A.A. Checklist of Mesozoic Curculionoidea (Coleoptera) with description of new taxa. Balt. J. Coleopterol. 2010, 10, 71–101. [Google Scholar]
  32. Legalov, A.A.; Kirejtshuk, A.G.; Nel, A. A new species of the genus Archaeoheilus Legalov, 2018 (Coleoptera: Curculionidae) from the Paleocene of Menat (France). Comptes Rendus Palevol 2022, 21, 245–251. [Google Scholar] [CrossRef]
  33. Legalov, A.A. New weevils (Coleoptera, Curculionoidea) from the Eocene of the Green River, United States: Part 1. Paleontol. J. 2018, 52, 294–302. [Google Scholar] [CrossRef]
  34. Zhang, J. Fossil Insects from Shanwang, Shandong, China; Shandong Science and Technology Publication: Jinan, China, 1989; p. 459. [Google Scholar]
  35. Gersdorf, E. Weitere Käfer (Coleoptera) aus dem Jungtertiär Norddeutschlands. Geol. Jahrb. 1971, 88, 629–670. [Google Scholar]
  36. Deichmueller, J.V. Fossile Insecten aus dem Diatomeenschiefir von Kutschlin bei Bilin, Böhmen. Nova Acta Leopold. Verh. Kais. Leopold.Carol. Dtsch. Akad. Nat. 1881, 42, 293–331. [Google Scholar]
  37. Oustalet, M.E. Recherches sur les insectes fossiles des terraines tertiaires de la France. 2me partie. Insectes fossiles d’Aix en Provence. Ann. Sci. Géol. Paris 1874, 5, 1–347. [Google Scholar]
  38. Hong, Y. Fossil insects in the diatoms of Shanwang. Bull. Tianjin Inst. Geol. Mineral. Res. 1984, 8, 1–11. [Google Scholar]
  39. Hong, Y. Fossil Insects, Scorpions and Aranaeids in the Diatoms of Shandong; Geological Publishing House: Peking, China, 1985; p. 80. [Google Scholar]
  40. Cockerell, T.D.A. Some Eocene insects from Colorado and Wyoming. Proc. Unit. Stat. Nat. Mus. 1921, 59, 29–39. [Google Scholar]
  41. Wickham, H.F. On some fossil Rhynchophorus Coleoptera from Florissant Colorado. Bull. Am. Mus. Nat. Hist. 1912, 31, 41–55, I–IV. [Google Scholar]
  42. Hustache, A. Un curculionide de l’ambre de la Baltique. Bull. Mens. Soc. Lin. Lyon. 1942, 11, 108–109. [Google Scholar] [CrossRef]
  43. Voss, E. Einige Rüsselkäfer der Tertiärzeit aus baltischen Bernstein (Coleoptera, Curculionidea). Steenstupia 1972, 2, 167–181. [Google Scholar]
  44. Ulke, T. A new genus and species of Curculionidae (Coleoptera) in Baltic amber. Not. Nat. 1947, 19, 1–5. [Google Scholar]
  45. Voss, E. Einige Rhynchophoren der Bernsteinfauna (Col.). Mitt. Geol. Staatsinst. Hambg. 1953, 22, 119–140. [Google Scholar]
  46. Rheinheimer, J. Neue fossile Rüsselkäfer (Coleoptera: Curculionidae) aus dem Eozän des Baltischen Bernsteins und der Grube Messel bei Darmstadt. Staatliches. Mus. Nat. 2007, 365, 1–24. [Google Scholar]
  47. Legalov, A.A. New weevils (Curculionidae) in Baltic amber. Paleontol. J. 2016, 50, 970–985. [Google Scholar] [CrossRef]
  48. Schlechtendal, D.H.R. Beiträge zur Kenntnis Fossiler Insekten aus dem Braunkohlengebirge von Rott am Sie bengebirge. Abh. Nat. Gesellsch. Halle 1894, 20, 197–228, XII–XIV. [Google Scholar]
  49. Pierce, W.D. Fossil arthropods of California. 26. Three new fossil insects sites in California. Bull. South. Calif. Acad. Sci. 1965, 64, 151–152. [Google Scholar]
  50. Poinar, G., Jr.; Legalov, A.A. Two new species of the genus Anchonus Schoenherr, 1825 (Coleoptera: Curculionidae: Molytinae) in Dominican amber. Palaeontol. Electron. 2019, 22, 1–10. [Google Scholar] [CrossRef]
  51. Poinar, G.O., Jr.; Voisin, J.F. A Dominican amber weevil, Velatis dominicana gen. n., sp. n. and key to the genera of the Anchonini (Molyitinae, Curculionidae). Nouv. Rev. Entomol. 2003, 19, 373–381. [Google Scholar]
  52. Beier, M. Miozäne und oligozäne Insekten aus Österreich und den unmitulbar angrenzenden Gebieten. In Sitzungsberichte Österreichische Akademie der Wissenschaften, Mathe matischenNaturwissensschaftliche Klasse, Abteilung 1: Biologie, Mineralogie, Erdkunde und Vewandte Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1952; Volume 161, pp. 129–134. [Google Scholar]
  53. Poinar, G.; Legalov, A.A. First record of the tribe Lymantini (Coleoptera: Curculionidae) from Dominican amber. Hist. Biol. 2022, 34, 67–71. [Google Scholar] [CrossRef]
  54. Scudder, S.H. Canadian fossil insects: 2. The Coleoptera hitherto found fossil in Canada. Contrib. Canad. Palaeontol. Geol. Surv. Can. 1895, 2, 1–57. [Google Scholar]
  55. Kuschel, G. Un Curculiónido del Cretácico Superior, primer insecto fósil de Chile. Invest. Zool. Chil. 1959, 5, 49–54. [Google Scholar]
  56. Wickham, H.F. Fossil Coleoptera from the Wilson Ranch near Florissant, Colorado. Bull. Lab. Nat. Hist. State. Univ. Iowa 1913, 6, 3–29, I–VII. [Google Scholar]
  57. Heyden, C.H.G. Fossile Insekten aus der Braunkohle der Sieblos. Palaeontology 1858, 5, 115–120. [Google Scholar]
  58. Foerster, B. Die Insekten des ‘Plattigen Steinmergels’ von Brunstatt. Abh. Geol. Spec. Elsass Lotheringen 1891, 3, 333–594, XI–XVI. [Google Scholar]
  59. Oustalet, F.E. Recherches sur les insectes fossiles des terraines tertiaires de la France. Ann. Sci. Géol. Paris 1870, 2, 1–178. [Google Scholar]
  60. O’Brien, C.W.; Wibmer, G.J. Numbers of genera and species of Curculionidae (Coleoptera). Entomol. News 1978, 89, 89–92. [Google Scholar]
  61. Letsch, H.; Balke, M.; Toussaint, E.F.A.; Riedel, A. Historical biogeography of the hyperdiverse hidden snout weevils (Coleoptera, Curculionidae, Cryptorhynchinae). Syst. Entomol. 2019, 45, 312–326. [Google Scholar] [CrossRef]
  62. Zherikhin, V.V.; Ponomarenko, A.G.; Rasnitsyn, A.P. Introduction into Palaeoentomology; KMK Press: Moscow, Russia, 2008; p. 371. [Google Scholar]
  63. Chandler, M.E.J. Paleocene Flora: The Lower Tertiary Floras of Southern England. I. Palaeocene Floras, London Clay Flora (Supplement). Text and Atlas (2 Vol.); Britsh-Museum (Natural History): London, UK, 1961; p. 354, xi +. [Google Scholar]
  64. Collinson, M.E. Fossil Plants of the London Clay. Field Guides to Fossils Series, 1; The Palaeontological Association: London, UK, 1983; p. 121. [Google Scholar]
  65. Aldiss, D.T. The Stratigraphical Framework for the Palaeogene Successions of the London Basin, UK; British Geological Survey: Nottingham, UK, 2014; p. 87.
  66. Jarzembowski, E.A. Fossil insects from the London Clay (Early Eocene) of southern England. Tert. Res. 1992, 13, 87–94. [Google Scholar]
  67. Rundle, A.J.; Cooper, J. Occurrence of a fossil insect larva from the London Clay of Herne Bay, Kent. Proc. Geol. Ass. 1971, 82, 293–295. [Google Scholar] [CrossRef]
  68. Collinson, M.E.; Cleal, C.J. Early and early-middle Eocene (Ypresian-Lutetian) palaeobotany of Great Britain. Mesozoic and tertiary palaeobotany of Great Britain. Ed. C.J. Cleal, B.A. Thomas, D.J. Batten, M.E. Collinson. Geol. Conserv. Rev. Ser. Peterb. 2001, 22, 185–226. [Google Scholar]
  69. Stull, G.V.; Adams, N.F.; Manchester, S.R.; Sykes, D.; Collinson, M.E. Revision of Icacinaceae from the Early Eocene London Clay flora based on X-ray micro-CT1. Botany 2016, 94, 713–745. [Google Scholar] [CrossRef] [Green Version]
  70. Reid, E.M.; Chandler, M.E.J. The London Clay Flora; British Museum (Natural History): London, UK, 1933; p. 561. [Google Scholar]
  71. Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef]
  72. Zachos, J.C.; Dickens, G.R.; Zeebe, R.E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics an early Cenozoic perspective on Greenhouse warming and carbon cycle dynamics. Nature 2008, 451, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Collinson, M.E. Taphonomy and fruiting biology of recent and fossil Nypa. Spec. Pap. Palaeontol. 1993, 49, 165–180. [Google Scholar]
  74. Collinson, M.E. Plant macrofossils from the Bracklesham Group (early and middle Eocene), Bracklesham Bay, West Sussex, England: Review and significance in the context of coeval British Tertiary floras. Tert. Res. 1996, 16, 175–202. [Google Scholar]
  75. Collinson, M.E. Fruit and seed floras from the Palaeocene/Eocene transition and subsequent Eocene in southern England: Comparison and palaeoenvironmental implications. Trans. Geol. Soc. 2000, 122, 36–37. [Google Scholar] [CrossRef]
  76. Collinson, M.E. Cenozoic evolution of modern plant communities and vegetation. In Biotic Response to Global Change: The Last 145 Million Years; Culver, S., Rawson, P., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 223–243. [Google Scholar]
  77. Dlussky, G.M.; Wappler, T.; Wedmann, S. New middle Eocene formicid species from Germany and the evolution of weaver ants. Acta Palaeontol. Pol. 2008, 53, 615–626. [Google Scholar] [CrossRef] [Green Version]
  78. Radchenko, A.G.; Perkovsky, E.E. Wheeler’s dilemma revisited: First Oecophylla-Lasius syninclusion and other ant syninclusions in the Bitterfeld amber (late Eocene). Invertebrate Zool. 2021, 18, 47–65. [Google Scholar] [CrossRef]
  79. Perfilieva, K.S. Distribution and differentiation of fossil Oecophylla (Hymenoptera: Formicidae) species by wings imprints. Paleontol. J. 2021, 55, 76–89. [Google Scholar] [CrossRef]
  80. Mänd, K.; Muehlenbachs, K.; McKellar, R.C.; Wolfe, A.P.; Konhauser, K. Distinct origins for Rovno and Balticambers: Evidence from carbon and hydrogen stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 505, 265–273. [Google Scholar] [CrossRef]
  81. Perkovsky, E.E.; Olmi, M.; Vasilenko, D.V.; Capradossi, L.; Guglielmino, A. First Bocchus Ashmead (Hymenoptera: Dryinidae) from Upper Eocene Rovno amber: B. schmalhauseni sp. nov. Zootaxa 2020, 4819, 544–556. [Google Scholar] [CrossRef]
  82. Perkovsky, E.E.; Nel, A. A new Rovno amber termite genus (Isoptera, Rhinotermitidae) from Styr River basin. Palaeont. Electron. 2021, 24, a05. [Google Scholar] [CrossRef]
  83. Anisyutkin, L.N.; Perkovsky, E.E. Two new cockroaches (Dictyoptera: Ectobiidae) from Rovno amber. Biologia 2023. in print. [Google Scholar]
  84. Legalov, A.A.; Nazarenko, V.Y.; Perkovsky, E.E. A new genus of fungus weevils (Coleoptera: Anthribidae) in Rovno amber. Foss. Rec. 2018, 21, 207–212. [Google Scholar] [CrossRef] [Green Version]
  85. Matalin, A.V.; Perkovsky, E.E.; Vasilenko, D.V. First record of tiger beetles (Coleoptera, Cicindelidae) from Rovno amber with the description of a new genus and species. Zootaxa 2021, 5016, 243–256. [Google Scholar] [CrossRef] [PubMed]
  86. Telnov, D.; Perkovsky, E.E.; Vasilenko, D.V.; Yamamoto, S. The first fossil Coleoptera record from the Volyn Region, Ukraine, with description of a new Glesoconomorphus (Coleoptera, Mycteridae) in syninclusion with Winterschmidtiidae (Acari) and a key to species. ZooKeys 2021, 1068, 189–201. [Google Scholar] [CrossRef]
  87. Telnov, D.; Perkovsky, E.E.; Kundrata, R.; Kairišs, K.; Vasilenko, D.V.; Bukejs, A. Revealing Palaeogene distribution of the Ptilodactylidae (Insecta: Coleoptera): The first Ptilodactyla Illiger, 1807 records from Rovno amber of Ukraine. Hist. Biol. 2022, 1–10. [Google Scholar] [CrossRef]
  88. Yamamoto, S.; Nazarenko, V.Y.; Vasilenko, D.V.; Perkovsky, E.E. First fossil species of ship-timber beetles (Coleoptera: Lymexylidae) from Eocene Rovno amber (Ukraine). Foss. Rec. 2022, 25, 65–74. [Google Scholar] [CrossRef]
  89. Nabozhenko, M.V.; Perkovsky, E.E. Oracula campbelli sp. n.—The first fossil darkling beetle (Coleoptera: Tenebrionidae: Alleculinae) from the late Eocene Rovno amber (Ukraine). Zootaxa 2023, 5230, 245–250. [Google Scholar] [CrossRef]
  90. Perkovsky, E.E.; Odnosum, V.K.; Nazarenko, V.Y.; Vasilenko, D.V. First record of the genus Cyrtanaspis Emery (Insecta: Coleoptera: Scraptiidae) from Baltic Amber. Paleontol. J. 2022, 56, 208–212. [Google Scholar] [CrossRef]
Figure 1. Electrorhinus vlaskini n. sp., holotype, habitus: (A) dorso-lateral view, left; (B) ventro-lateral view, right.
Figure 1. Electrorhinus vlaskini n. sp., holotype, habitus: (A) dorso-lateral view, left; (B) ventro-lateral view, right.
Diversity 15 00376 g001
Figure 2. Electrorhinus vlaskini n. sp., holotype, habitus: (A) lateral view, left; (B) lateral view, right.
Figure 2. Electrorhinus vlaskini n. sp., holotype, habitus: (A) lateral view, left; (B) lateral view, right.
Diversity 15 00376 g002
Figure 3. Electrorhinus vlaskini n. sp., holotype, habitus, frontal view.
Figure 3. Electrorhinus vlaskini n. sp., holotype, habitus, frontal view.
Diversity 15 00376 g003
Figure 4. Electrorhinus vlaskini n. sp., holotype: (A) dorso-lateral view; (B) carinae in postcoxal portions of the prosternum; arrow shows carinae.
Figure 4. Electrorhinus vlaskini n. sp., holotype: (A) dorso-lateral view; (B) carinae in postcoxal portions of the prosternum; arrow shows carinae.
Diversity 15 00376 g004
Figure 5. Electrorhinus friedhelmi, holotype, carinae in postcoxal portions of the prosternum; arrow shows carinae.
Figure 5. Electrorhinus friedhelmi, holotype, carinae in postcoxal portions of the prosternum; arrow shows carinae.
Diversity 15 00376 g005
Figure 6. Distribution of the species of the tribe Aedemonini: Recent members—green shaded area; red circle—fossil record from Rovno amber; blue circle—fossil record from Baltic amber; pink circle—fossil record from London Clay.
Figure 6. Distribution of the species of the tribe Aedemonini: Recent members—green shaded area; red circle—fossil record from Rovno amber; blue circle—fossil record from Baltic amber; pink circle—fossil record from London Clay.
Diversity 15 00376 g006
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Legalov, A.A.; Vasilenko, D.V.; Perkovsky, E.E. From Abundance to Extinction: Evolutionary History of European Aedemonini (Curculionidae) with a Description of the First Representative from Rovno Amber. Diversity 2023, 15, 376. https://doi.org/10.3390/d15030376

AMA Style

Legalov AA, Vasilenko DV, Perkovsky EE. From Abundance to Extinction: Evolutionary History of European Aedemonini (Curculionidae) with a Description of the First Representative from Rovno Amber. Diversity. 2023; 15(3):376. https://doi.org/10.3390/d15030376

Chicago/Turabian Style

Legalov, Andrei A., Dmitry V. Vasilenko, and Evgeny E. Perkovsky. 2023. "From Abundance to Extinction: Evolutionary History of European Aedemonini (Curculionidae) with a Description of the First Representative from Rovno Amber" Diversity 15, no. 3: 376. https://doi.org/10.3390/d15030376

APA Style

Legalov, A. A., Vasilenko, D. V., & Perkovsky, E. E. (2023). From Abundance to Extinction: Evolutionary History of European Aedemonini (Curculionidae) with a Description of the First Representative from Rovno Amber. Diversity, 15(3), 376. https://doi.org/10.3390/d15030376

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop