Characterization of Seed Oil from Six In Situ Collected Wild Amaranthus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
Amaranthus Species | Voucher Specimen | Italian Region (Code) | Coordinates | Altitude m (a.s.l.) | Date of Collection | Substrate | Bioclimate | Habitat |
---|---|---|---|---|---|---|---|---|
A. cruentus | 12,002 | Veneto (VEN) | 45°17′49.2″ N 11°53′31.2″ E | 5 | 21 October 2021 | Clastic, soil with fertilizers | Temperate sub-continental | Cereals and vines crops |
A. hybridus | 12,005 | Friuli Venezia Giulia (FVG) | 46°03′14.4″ N 13°04′18.8″ E | 144 | 8 August 2021 | Clastic, soil with fertilizers | Temperate sub-continental | Crop in full sun |
A. hybridus | 12,006 | Piedmont (PIE) | 45°05′29.0″ N 7°22′53.3″ E | 348 | 12 September 2021 | Sandy, silty soil with coarse pebble component deriving from river flooding | Temperate semi-continental | Abandoned garden in the alluvial plain |
A. hybridus | 12,007 | Veneto (VEN) | 46°06′39.2″ N 12°08′20.4″ E | 380 | 17 September 2021 | Calcareous matrix | Temperate semi-continental | Corn crop |
A. hypochondriacus | 12,008 | Veneto (VEN) | 46°07′60.0″ N 12°15′32.5″ E | 440 | 22 September 2021 | Calcareous matrix | Temperate semi-continental | Corn crop |
A. hypochondriacus | 12,009 | Lazio (LAZ) | 41°49′44.4″ N 13°08′24.0″ E | 625 | 15 October 2021 | Soil rich in nitrogen | Temperate oceanic | Roadside |
A. muricatus | 12,004 | Molise (MOL) | 42°00′14.4″ N 14°59′45.6″ E | 14 | 17 July 2021 | Calcareous matrix | Mediterranean oceanic | Stony wall of the Svevo castle |
A. tuberculatus | 12,001 | Marche (MAR) | 43°48′39.0″ N 13°02′21.0″ E | 5 | 23 September 2021 | Terrigenous matrix | Transitional semi-continental | Gravelly riverbed, in full sun |
A. viridis | 12,003 | Campania (CAM) | 40°51′07.2″ N 14°16′22.8″ E | 12 | 21 July 2021 | Soil rich in nitrogen | Mediterranean oceanic | Roadside |
2.2. Oil Extraction and Oil Content Determination
2.3. Determination of Squalene, Free Fatty Acid, Tocopherol, and Sterol Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Seed Features
3.2. Oil Content
3.3. Squalene Content
3.4. Free Fatty Acid, Sterol, and Tocopherol Content
3.5. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iamonico, D. Taxonomic revision of the genus Amaranthus (Amaranthaceae) in Italy. Phytotaxa 2015, 199, 1–84. [Google Scholar] [CrossRef]
- Das, S. Amaranthus: A Promising Crop of the Future; Springer Nature: Singapore, 2016; pp. 13–48. [Google Scholar] [CrossRef]
- Iamonico, D. II Genere Amaranthus L. in Italia: Stato attuale delle conoscenze. Ann. Missouri Bot. Gard 2010, 273, 149–154. [Google Scholar] [CrossRef]
- Bayón, N.D. Revisión Taxonómica de las Especies Monoicas de Amaranthus (Amaranthaceae): Amaranthus subg. Amaranthus Amaranthus subg. Albersia1. Ann. Mo. Bot. Gard. 2015, 101, 261–383. [Google Scholar] [CrossRef]
- Iamonico, D. Nomenclatural survey of the genus Amaranthus (Amaranthaceae). 4. Detailed questions arising around the name Amaranthus gracilis. Bot Serb 2016, 40, 61–68. [Google Scholar] [CrossRef]
- Iamonico, D. Nomenclature survey of the genus Amaranthus (Amaranthaceae). 5. Moquin-Tandon’s names. Phytotaxa 2016, 273, 81–114. [Google Scholar] [CrossRef]
- Iamonico, D. A nomenclatural survey of the genus Amaranthus (Amaranthaceae) 7: Names published by Willdenow. Willdenowia 2020, 50, 147–155. [Google Scholar] [CrossRef]
- Iamonico, D.; El Mokni, R. Amaranthus palmeri (Amaranthaceae) in Tunisia, a second record for the continental African flora and nomenclatural notes on A. sonoriensis nom. nov. pro A. palmeri var. glomeratus. Bothalia 2017, 47, 4. [Google Scholar] [CrossRef]
- Iamonico, D.; Palmer, J. Nomenclature survey of the genus Amaranthus (Amaranthaceae). 6. Names linked to the Australian flora. Aust. Syst. Bot. 2020, 33, 169–173. [Google Scholar] [CrossRef]
- Nogoy, K.M.; Yu, J.; Song, Y.G.; LI, S.; Chung, J.W.; Choi, S.H. Evaluation of the nutrient composition, in vitro fermentation characteristics, and in situ degradability of Amaranthus caudatus, Amaranthus cruentus, and Amaranthus hypochondriacus in Cattle Animals. Basel 2021, 11, 18. [Google Scholar] [CrossRef]
- Sayed-Ahmad, B.; Urrutigoïty, M.; Hijazi, A.; Saad, Z.; Cerny, M.; Evon, P.; Talou, T.; Merah, O. Amaranth oilseed composition and cosmetic applications. Separations 2022, 9, 181. [Google Scholar] [CrossRef]
- Sheng, Y.Y.; Xiang, J.; Wang, K.R.; Li, Z.Y.; Li, K.; Lu, J.L.; Ye, J.H.; Liang, Y.R.; Zheng, X.Q. Extraction of squalene from tea leaves (Camellia sinensis) and its variations with leaf maturity and tea cultivar. Front. Nutr. 2022, 9, 37. [Google Scholar] [CrossRef]
- Wejnerowska, G.; Heinrich, P.; Gaca, J. Separation of squalene and oil from Amaranthus seeds by supercritical carbon dioxide. Sep. Purif. Technol. 2013, 110, 39–43. [Google Scholar] [CrossRef]
- He, H.-P.; Corke, H. Oil and squalene in Amaranthus grain and leaf. Agric. Food Chem. 2003, 51, 7913–7920. [Google Scholar] [CrossRef]
- Sun, H.; Wiesenborn, D.; Tostenson, K.; Gillespie, J.; Rayas-Duarte, P. Fractionation of squalene from amaranth seed oil. JAOCS 1997, 74, 413–418. [Google Scholar] [CrossRef]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 656–669. [Google Scholar] [CrossRef]
- Taia, W.K.; Shehata, A.A.; Elshamy, E.M.; Ibrahim, M.M. Biosystematic studies for some Egyptian Amaranthus L. taxa and their significance in their identification. Taeckholmia 2020, 40, 85–99. [Google Scholar] [CrossRef]
- Krulj, J.; Brlek, T.; Pezo, L.; Brkljača, J.; Popović, S.; Zeković, Z.; Bodroža Solarov, M. Extraction methods of Amaranthus sp. grain oil isolation. J. Sci. Food Agric. 2016, 96, 3552–3558. [Google Scholar] [CrossRef]
- Sun, H.; Ge, X.; Lv, Y.; Wang, A. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J. Chromatogr. 2012, 1237, 1–23. [Google Scholar] [CrossRef]
- Thomas, W.E.; Burke, I.C.; Spears, J.F.; Wilcut, J.W. Influence of environmental factors on slender amaranth (Amaranthus viridis) germination. Weed Sci. 2006, 54, 316–320. [Google Scholar] [CrossRef]
- Di Marzio, P.; Fortini, P. (Eds.) Il Museo Erbario dell’Università del Molise; Università degli Studi del Molise: Campobasso, Italy, 2015; p. 38. ISBN 9788896394151. Available online: https://hdl.handle.net/11695/47228 (accessed on 22 November 2022).
- Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Terrestrial Ecoregions of Italy; Map and Explanatory Notes; Global Map s.r.l., S.EL.C.A.: Firenze, Italy, 2018; p. 36. Available online: https://hdl.handle.net/11386/4746968 (accessed on 22 November 2022).
- Szabóová, M.; Záhorský, M.; Gažo, J.; Geuens, J.; Vermoesen, A.; D’Hondt, E.; Hricová, A. Differences in seed weight, amino acid, fatty acid, oil, and squalene content in γ-irradiation-developed and commercial amaranth varieties (Amaranthus spp.). Plants 2020, 9, 1412. [Google Scholar] [CrossRef]
- Addinsoft, A. Addinsoft XLSTAT Statistical and Data Analysis Solution; Long Island: New York, NY, USA, 2023. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Bozorov, S.S.; Berdiev, N.S.; Ishimov, U.J.; Olimjonov, S.S.; Ziyavitdinov, J.F.; Asrorov, A.M.; Salikhov, S.I. Chemical composition and biological activity of seed oil of amaranth varieties. Nova Biotechnol. Chim. 2018, 12, 66–73. [Google Scholar] [CrossRef]
- Hlinková, A.; Bednarova, A.; Havrlentová, M.; Šupová, J.; Čičová, I. Evaluation of fatty acid composition among selected amaranth grains grown in two consecutive years. Biologia 2013, 68, 641–650. [Google Scholar] [CrossRef]
- He, H.P.; Cai, Y.; Sun, M.; Corke, H. Extraction and purification of squalene from Amaranthus grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef]
- Berganza, B.E.; Moran, A.W.; Rodríguez, G.M.; Coto, N.M.; Santamaría, M.; Bressani, R. Effect of variety and location on the total fat, fatty acids and squalene content of amaranth. Plant Foods Hum. Nutr. 2003, 58, 1–6. [Google Scholar] [CrossRef]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Characterization of amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- El Gendy, A.N.G.; Tavarini, S.; Conte, G.; Pistelli, L.; Hendawy, S.F.; Omer, E.A.; Angelini, L.G. Yield and qualitative characterisation of seeds of Amaranthus hypochondriacus L. and Amaranthus cruentus L. grown in central Italy. IJA 2018, 13, 63–73. [Google Scholar] [CrossRef]
- León-Camacho, M.; García-González, D.L.; Aparicio, R. A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Eur. Food Res. Technol. 2001, 213, 349–355. [Google Scholar] [CrossRef]
- Lyon, C.K.; Becker, R. Extraction and refining of oil from amaranth seed. JAOCS 1987, 64, 233–236. [Google Scholar] [CrossRef]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 2007, 6, 44–45. [Google Scholar] [CrossRef] [Green Version]
- Ayorinde, F.O.; Ologunde, M.O.; Nana, E.Y.; Bernard, B.N.; Afolabi, O.A.; Oke, O.L.; Shepard, R.L. Determination of fatty acid composition of Amaranthus species. JAOCS 1989, 66, 1812–1814. [Google Scholar] [CrossRef]
- Prakash, D.; Pal, M. Seed protein, fat and fatty acid profile of Amaranthus species. J. Sci. Food Agric. 1992, 58, 145–147. [Google Scholar] [CrossRef]
- Srivastava, S.; Sreerama, Y.N.; Dharmaraj, U. Effect of processing on squalene content of grain amaranth fractions. J. Cereal Sci. 2021, 100, 103218. [Google Scholar] [CrossRef]
- Nasirpour-Tabrizi, P.; Azadmard-Damirchi, S.; Hesari, J.; Piravi-Vanak, Z. Amaranth seed oil composition. In Nutritional Value of Amaranth; Intech Open: London, UK, 2020. [Google Scholar] [CrossRef]
- Marcone, M.F.; Kakuda, Y.; Yada, R.Y. Amaranth as a rich dietary source of β-sitosterol and other phytosterols. Plant Foods Hum. Nutr. 2003, 58, 207–211. [Google Scholar] [CrossRef]
- Phillips, K.M.; Ruggio, D.M.; Toivo, J.I.; Swank, M.A.; Simpkins, A.H. Free and esterified sterol composition of edible oils and fats. J. Food Compos. Anal. 2002, 15, 123–142. [Google Scholar] [CrossRef]
- Kraujalis, P.; Venskutonis, P.R. Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity. J. Supercrit. Fluids 2013, 80, 78–85. [Google Scholar] [CrossRef]
- Santiago, P.; Tenbergen, K.; Vélez-Jiménez, E.; Cardador-Martínez, M.A. Functional attributes of amaranth. Int. J. Food Sci. Nutr. 2014, 2, 1010. [Google Scholar]
Amaranthus Species | SDO | SL | SW | OYS | CSO | CSS | FAS | SSO | TSO |
---|---|---|---|---|---|---|---|---|---|
A. cruentus (VEN) | Black | 0.476 b ± 0.030 | 0.436 b ± 0.018 | 6.29 ab ± 1.08 | 5.94 b ± 0.87 | 0.37 abc ± 0.03 | 1.73 a ± 0.28 | 208 ab ± 135 | 152 ± 71 |
A. hybridus (FVG) | Black | 0.585 cde ± 0.014 | 0.494 cd ± 0.018 | 7.47 ab ± 1.25 | 4.94 ab ± 0.72 | 0.36 abc ± 0.02 | 0.39 a ± 0.30 | 450 ab ± 309 | 327 ± 238 |
A. hybridus (PIE) | Black | 0.561 cd ± 0.008 | 0.483 c ± 0.016 | 9.53 ab ± 1.59 | 4.75 ab ± 0.40 | 0.45 bc ± 0.03 | 0.66 a ± 0.48 | 147 a ± 14 | 70 ± 27 |
A. hybridus (VEN) | Black | 0.548 c ± 0.004 | 0.480 c ± 0.005 | 6.05 ab ± 0.57 | 5.78 ab ± 1.50 | 0.35 ab ± 0.09 | 0.65 a ± 0.31 | 361 ab ± 299 | 214 ± 133 |
A. hypochondriacus (VEN) | Dark brown | 0.576 cd ± 0.015 | 0.534 d ± 0.022 | 9.77 ab ± 0.89 | 6.09 b ± 0.75 | 0.59 c ± 0.02 | 0.84 a ± 0.67 | 219 ab ± 72 | 140 ± 54 |
A. hypochondriacus (LAZ) | Dark brown | 0.621 de ± 0.040 | 0.579 e ± 0.014 | 6.64 ab ± 3.12 | 4.01 ab ± 0.80 | 0.25 ab ± 0.06 | 0.65 a ± 0.05 | 857 b ± 492 | 149 ± 8 |
A. muricatus (MOL) | Black | 0.642 e ± 0.006 | 0.589 e ± 0.021 | 5.17 a ± 1.45 | 3.43 a ± 0.30 | 0.17 a ± 0.03 | 1.17 a ± 1.04 | 268 ab ± 44 | 536 ± 212 |
A. tuberculatus (MAR) | Dark brown | 0.399 a ± 0.016 | 0.385 a ± 0.012 | 12.20 b ± 4.74 | 4.94 ab ± 0.573 | 0.59 c ± 0.18 | 2.42 a ± 2.02 | 83 a ± 94 | 223 ± 153 |
A. viridis (CAM) | Black | 0.550 c ± 0.035 | 0.517 cd ± 0.024 | 6.24 ab ± 1.62 | 3.51 a ± 0.03 | 0.22 ab ± 0.05 | 8.93 b ± 2.17 | 136 a ± 137 | 333 ± 231 |
p-Value | *** | *** | ** | .*** | n.s. |
Amaranthus Species | CSO | Reference |
---|---|---|
A. cruentus | 5.94 | Current study |
6.96 | Lyon et al., 1987 [33] | |
6.56 | León-Camacho et al., 2001 [32] | |
4.2–5.44 | He et al., 2002 [28] | |
2.26–5.94 | Bergenza et al., 2003 [29] | |
3.32–4.93 | He et al., 2003 [14] | |
4.9 | Gamel et al., 2007 [30] | |
5.29–6.25 | Bozorov et al., 2018 [26] | |
5.74–6.95 | El Gendy et al., 2018 [31] | |
A. hybridus | 4.75–5.78 | Current study |
5.23 | He et al., 2002 [28] | |
2.26–7.3 | He et al., 2003 [14] | |
A. hypochondriacus | 4.01–6.09 | Current study |
3.62–5.01 | He et al., 2002 [28] | |
4.74–6.98 | He et al., 2003 [14] | |
6.05–7.12 | Bozorov et al., 2018 [26] | |
A. muricatus | 3.43 | Current study |
3.20 | He et al., 2003 [14] | |
A. tuberculatus | 4.94 | Current study |
4.75 | He et al., 2003 [14] | |
A. viridis | 3.51 | Current study |
3.28–5.74 | He et al., 2003 [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.N.; Geuens, J.; Vermoesen, A.; Munir, M.; Iamonico, D.; Marzio, P.D.; Fortini, P. Characterization of Seed Oil from Six In Situ Collected Wild Amaranthus Species. Diversity 2023, 15, 237. https://doi.org/10.3390/d15020237
Hussain AN, Geuens J, Vermoesen A, Munir M, Iamonico D, Marzio PD, Fortini P. Characterization of Seed Oil from Six In Situ Collected Wild Amaranthus Species. Diversity. 2023; 15(2):237. https://doi.org/10.3390/d15020237
Chicago/Turabian StyleHussain, Amara Noor, Jeroen Geuens, Ann Vermoesen, Mamoona Munir, Duilio Iamonico, Piera Di Marzio, and Paola Fortini. 2023. "Characterization of Seed Oil from Six In Situ Collected Wild Amaranthus Species" Diversity 15, no. 2: 237. https://doi.org/10.3390/d15020237
APA StyleHussain, A. N., Geuens, J., Vermoesen, A., Munir, M., Iamonico, D., Marzio, P. D., & Fortini, P. (2023). Characterization of Seed Oil from Six In Situ Collected Wild Amaranthus Species. Diversity, 15(2), 237. https://doi.org/10.3390/d15020237