Size Matters: Diversity and Abundance of Small Mammal Community Varies with the Size of Great Cormorant Colony
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
- Control zone, where cormorants do not affect the habitat.
- Zone of active colony influence—the part of the colony where the impact is latest and still developing. Most of the viable nests are in this part of the colony, nest density 220–290 bp/ha. In this zone, some trees are still alive but their viability is reduced and others are dead or dying. The shrub and grass layer is reduced.
- Zone of the former influence—an abandoned part of the colony with only a few nests remaining, containing dead trees, many of which are rotten, fallen and decaying, and covered with young trees and shrubs, with a thick herbaceous layer.
2.2. Small Mammal Trapping
2.3. Data Analyses
3. Results
3.1. Species Proportions in Different Zones of the Colony
3.2. Small Mammal Diversity Differences
3.3. Relative Abundances of Small Mammals in Great Cormorant Colonies
3.4. Body Condition of Two Dominant Small Mammal Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kameda, K.; Koba, K.; Hobara, S.; Osono, T.; Terai, M. Pattern of natural 15N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen. In Limnology and Aquatic Birds. Developments in Hydrobiology; Hanson, A.R., Kerekes, J.J., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 69–86. [Google Scholar]
- Klimaszyk, P.; Rzymsky, P. The complexity of ecological impacts induced by great cormorants. Hydrobiologia 2016, 771, 13–30. [Google Scholar] [CrossRef]
- Harding, L.E.; Mesler, J.I. Cormorant abundance, diet, and foraging habits in Arizona. J. Field Ornithol. 2022, 93, 6. [Google Scholar] [CrossRef]
- Ellis, J.C.; Farina, J.M.; Witman, J.D. Nutrient transfer from sea to land: The case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 2006, 75, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Otero, X.L.; Tejada, O.; Martin-Pastor, M.; Pena, S.; Ferreira, T.O.; Perez-Alberti, A. Phosphorus in seagull colonies and the effect on the habitats. The case of yellow-legged gulls (Larus michahellis) in the Atlantic Islands National Park (Galicia-NW Spain). Sci. Total Environ. 2015, 532, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Russell, I.C.; Cook, A.C.; Ives, M.J.; Davison, P.I. The diet of two sympatric Great Cormorant Phalacrocorax carbo subspecies wintering at freshwater fishery sites in England and Wales. Ardea 2022, 109, 443–456. [Google Scholar] [CrossRef]
- Gremillet, D.; Schmid, D.; Culik, B. Energy requirements of breeding great cormorants Phalacrocorax carbo sinensis. Mar. Ecol. Prog. Ser. 1995, 121, 1–9. [Google Scholar] [CrossRef]
- Ovegård, M.K.; Jepsen, N.; Bergenius Nord, M.; Petersson, E. Cormorant predation effects on fish populations: A global meta-analysis. Fish Fish. 2021, 22, 605–622. [Google Scholar] [CrossRef]
- Garcia, L.V.; Ramo, C.; Aponte, C.; Moreno, A.; Dominguez, M.T.; Gomez-Aparicio, L.; Redondo, R.; Maranon, T. Protected wading bird species threaten relict centenarian cork oaks in a Mediterranean biosphere reserve: A conservation management conflict. Biol. Conserv. 2011, 144, 764–771. [Google Scholar] [CrossRef]
- Oszust, M.; Klimaszyk, P. Soil conditions under cormorant colonies favor for mites excepting Oribatida. Acarologia 2022, 62, 974–988. [Google Scholar] [CrossRef]
- Riddick, S.N.; Dragosits, U.; Blackall, T.D.; Daunt, F.; Wanless, S.; Sutton, M.A. The global distribution of ammonia emissions from seabird colonies. Atmos. Environ. 2012, 55, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Taraškevičius, R.; Motiejūnaitė, J.; Zinkutė, R. Pedogeochemical anomalies in surroundings of great cormorant colony (case study in Lithuania). E3S Web Conf. 2013, 1, 04006. [Google Scholar] [CrossRef]
- La Peña-Lastra, D.; Pérez-Alberti, A.; Ferreira, T.O.; Huerta-Díaz, M.Á.; Otero, X.L. Global deposition of potentially toxic metals via faecal material in seabird colonies. Sci. Rep. 2022, 12, 22392. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, D.J.R.; Hanson-Dorr, K.C.; Prisock, A.M.; Dorr, B.S. Biotic and abiotic impacts of Double-crested cormorant breeding colonies on forested islands in the southeastern United States. For. Ecol. Manag. 2016, 69, 10–19. [Google Scholar] [CrossRef]
- Veum, L.M.; Dorr, B.S.; Hanson-Dorr, K.C.; Moore, J.R.; Rush, S.A. Double-crested cormorant colony effects on soil chemistry, vegetation structure and avian diversity. For. Ecol. Manag. 2019, 453, 117588. [Google Scholar] [CrossRef]
- Maesako, Y. Impacts of streaked shearwater (Calonectris leucomelas) on tree seedling regeneration in a warm-temperate evergreen forest on Kanmurijima Island, Japan. Plant Ecol. 1999, 145, 183–190. [Google Scholar] [CrossRef]
- Ishizuka, K. Ecology of the ornithocoprophilous plant communities on breeding places of the black-tailed gull, Larus crassirostris, along the coast of Japan. Ecol. Rev. 1966, 16, 229–244. [Google Scholar]
- Matulevičiūtė, D.; Motiejūnaitė, J.; Uogintas, D.; Taraškevičius, R.; Dagys, M.; Rašomavičius, V. Decline of a protected coastal pine forest under impact of a colony of great cormorants and the rate of vegetation change under ornithogenic influence. Silva Fenn. 2018, 52, 7699. [Google Scholar] [CrossRef]
- Adamonytė, G.; Iršėnaitė, R.; Motiejūnaitė, J.; Taraškevičius, R.; Matulevičiūtė, D. Myxomycetes in a forest affected by great cormorant colony: A case study in Western Lithuania. Fungal Divers. 2012, 13, 131–146. [Google Scholar] [CrossRef]
- Motiejūnaitė, J.; Iršėnaitė, R.; Adamonytė, G.; Dagys, M.; Taraškevičius, R.; Matulevičiūtė, D.; Koreivienė, J. Pine forest lichens under eutrophication generated by a great cormorant colony. Lichenologist 2014, 46, 213–228. [Google Scholar] [CrossRef]
- Kolb, G.S.; Palmborg, C.; Taylor, A.R.; Baath, E.; Hamback, A.P. Effects of nesting cormorants (Phalacrocorax carbo) on soil chemistry, microbial communities and soil fauna. Ecosystems 2015, 18, 643–657. [Google Scholar] [CrossRef]
- Craig, E.C.; Elbin, S.B.; Danoff-Burg, J.A.; Palmer, M.I. Impacts of Double-Crested Cormorants (Phalacrocorax auritus) and Other Colonial Waterbirds on Plant and Arthropod Communities on Islands in an Urban Estuary. Waterbirds 2012, 35, 4–12. [Google Scholar] [CrossRef]
- Al Shehhi, H.; Muzaffar, S.B. Impact of nesting Socotra Cormorants on terrestrial invertebrate communities. Insects 2021, 12, 615. [Google Scholar] [CrossRef] [PubMed]
- Machač, O.; Ivinskis, P.; Rimšaitė, J.; Horňák, O.; Tuf, I.H. In the Shadow of Cormorants: Succession of Avian Colony Affects Selected Groups of Ground Dwelling Predatory Arthropods. Forests 2022, 13, 330. [Google Scholar] [CrossRef]
- Onmuş, O.; Soydan, E.; Tavares, J.P. Population dynamics and wintering strategies of great cormorant (Phalacrocorax carbo): What are the factors for selecting wintering sites? Hydrobiologia 2023, 850, 151–166. [Google Scholar] [CrossRef]
- Parz-Gollner, R.; Zuna-Kratky, T.; Niederer, W.; Nemeth, E. Status of the breeding population of Great Cormorants in Austria in 2012. In Breeding Numbers of Great Cormorants Phalacrocorax carbo in the Western Palearctic, 2012–2013; Bregnballe, T., Lynch, J., Parz-Gollner, R., Marion, L., Volponi, S., Paquet, J.-Y., Carss, D.N., van Eerden, M.R., Eds.; Danish Centre for Environment and Energy: Aarhus, The Netherlands, 2014; No. 99; pp. 61–64. [Google Scholar]
- Goc, M.; Iliszko, L.; Stempniewicz, L. The largest European colony of great cormorant on the Vistula spit (N Poland) an impact of the forest ecosystem. Ecol. Quest. 2005, 6, 93–103. [Google Scholar]
- Bregnballe, T.; Lynch, J.; Parz-Gollner, R.; Volponi, S.; Marion, L.; Paquet, J.-Y.; van Eerden, M.R.; Carss, D.N. Status of the breeding population of Great Cormorants Phalacrocorax carbo in the Western Palearctic in 2012. In Breeding Numbers of Great Cormorants Phalacrocorax Carbo in the Western Palearctic, 2012–2013; Bregnballe, T., Lynch, J., Parz-Gollner, R., Marion, L., Volponi, S., Paquet, J.-Y., Carss, D.N., van Eerden, M.R., Eds.; Danish Centre for Environment and Energy: Aarhus, The Netherlands, 2014; No. 99; pp. 13–58. [Google Scholar]
- Knyva, V.; Rumbutis, S. Didžiųjų Kormoranų Populiacijos Gausos Reguliavimo Programos Priemonių Įgyvendinimas 2015–2016 Metais. [Implementation of the Measures of the Programme for the Control of the Abundance of the Great Cormorant Population in 2015–2016.] Report. Available online: https://nerija.lrv.lt/uploads/nerija/documents/files/Kormoranu_2017_ataskaita__red.pdf (accessed on 10 October 2022).
- Lietuvos Respublikos Aplinkos Ministerija. Šiemet Suskaičiuota Daugiau Kaip 9 Tūkst. Didžiųjų Kormoranų Porų. [More than 9000 Pairs of Great Cormorants Were Counted This Year]. Available online: https://am.lrv.lt/lt/naujienos/siemet-suskaiciuota-daugiau-kaip-9-tukst-didziuju-kormoranu-poru (accessed on 2 January 2023).
- Fox, B.J. Long-Term Studies of Small Mammal Communities from Disturbed Habitats in Eastern Australia; Academic Press: Orlando, FL, USA, 1995; pp. 467–501. [Google Scholar]
- Bryja, J.; Heroldova, M.; Zejda, J. Effects of deforestation on structure and diversity of small mammal communities in the Moravskoslezské Beskydy Mts (Czech Republic). Acta Theriol. 2002, 47, 295–306. [Google Scholar] [CrossRef]
- Briani, D.C.; Palma, A.R.T.; Vieira, E.M.; Henriques, R.P.B. Post-fire succession of small mammals in the Cerrado of central Brazil. Biodivers. Conserv. 2004, 13, 1023–1037. [Google Scholar] [CrossRef]
- Čepukienė, A.; Jasiulionis, M. Small mammal community changes during forest succession (Pakruojis district, north Lithuania). Zool. Ecol. 2012, 22, 144–149. [Google Scholar] [CrossRef]
- Balčiauskienė, L.; Jasiulionis, M.; Balčiauskas, L. Loss of diversity in a small mammal community in a habitat influenced by a colony of great cormorants. Acta Zool. Bulgar. 2014, 66, 229–234. [Google Scholar]
- Balčiauskas, L.; Balčiauskienė, L.; Jasiulionis, M. Mammals under a colony of great cormorants: Population structure and body condition of yellow-necked mice. Turk. J. Zool. 2015, 39, 941–948. [Google Scholar] [CrossRef]
- Balčiauskienė, L.; Balčiauskas, L.; Jasiulionis, M. Skull variability of mice and voles inhabiting the territory of a great cormorant colony. Biologia 2015, 70, 1406–1414. [Google Scholar] [CrossRef]
- Prūsaitė, J. (Comp.). Fauna of Lithuania. Mammals; Mokslas: Vilnius, Lithuania, 1988; p. 295. [Google Scholar]
- Moors, P.J. Norway rats (Rattus norvegicus) on the Noises and Motukawao islands, Hauraki Gulf, New Zealand. N. Z. J. Ecol. 1985, 8, 37–54. [Google Scholar]
- Biodiversity Calculator. Available online: https://www.alyoung.com/labs/biodiversity_calculator.html (accessed on 12 November 2022).
- Sample Size Calculators. Available online: https://sample-size.net/confidence-interval-proportion/ (accessed on 12 November 2022).
- G-Test Calculator. Available online: https://elem.com/~btilly/effective-ab-testing/g-test-calculator.html (accessed on 12 November 2022).
- Presley, S.J.; Cisneros, L.M.; Klingbeil, B.T.; Willig, M.R. Landscape ecology of mammals. J. Mammal. 2019, 100, 1044–1068. [Google Scholar] [CrossRef]
- Palmeirim, A.F.; Santos-Filho, M.; Peres, C.A. Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS ONE 2020, 15, e0230209. [Google Scholar] [CrossRef] [PubMed]
- Benedek, A.M.; Sirbu, I.; Lazar, A. Responses of small mammals to habitat characteristics in Southern Carpathian forests. Sci. Rep. 2021, 11, 12031. [Google Scholar] [CrossRef]
- Paniccia, C.; Carranza, M.L.; Frate, L.; Di Febbraro, M.; Rocchini, D.; Loy, A. Distribution and functional traits of small mammals across the Mediterranean area: Landscape composition and structure definitively matter. Ecol. Indic. 2022, 135, 108550. [Google Scholar] [CrossRef]
- Torre, I.; Jaime-González, C.; Díaz, M. Habitat Suitability for Small Mammals in Mediterranean Landscapes: How and Why Shrubs Matter. Sustainability 2022, 14, 1562. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Balčiauskienė, L. Small Mammal Diversity Changes in a Baltic Country, 1975–2021: A Review. Life 2022, 12, 1887. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Balčiauskienė, L.; Janonytė, A. Reproduction of the root vole (Microtus oeconomus) at the edge of its distribution range. Turk. J. Zool. 2012, 36, 668–675. [Google Scholar] [CrossRef]
- Stirkė, V.; Balčiauskas, L.; Balčiauskienė, L. Common Vole as a Focal Small Mammal Species in Orchards of the Northern Zone. Diversity 2021, 13, 134. [Google Scholar] [CrossRef]
- Pakeltytė, G.; Andriuškevičius, A. Smulkiųjų žinduolių bendrijos rūšių įvairovė ir gausumas Nevėžio kraštovaizdžio draustinio monitoringo vietose [Species diversity and abundance in small mammal community at monitoring sites of Nevezis landscape reserve]. Theriol. Litu. 2004, 4, 43–53. [Google Scholar]
- Alejūnas, P.; Stirkė, V. Small mammals in northern Lithuania: Species diversity and abundance. Ekologija 2010, 56, 110–115. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Alejūnas, P. Small mammal species diversity and abundance in Žagarė Regional Park. Acta Zool.Litu. 2011, 21, 163–172. [Google Scholar] [CrossRef]
- Mažeikytė, R. Small mammals of the Kanio Raistas Botanical-Zoological Reserve. Theriol. Litu. 2002, 2, 58–69. [Google Scholar]
- Balčiauskienė, L.; Balčiauskas, L.; Čepukienė, A. Demographic and morphometric parameters of the yellow-necked mouse (Apodemus flavicollis) in late autumn-early spring in Lithuania. Acta Biol. Univ. Daugavp. 2009, 9, 25–34. [Google Scholar]
- Jasiulionis, M.; Čepukienė, A.; Balčiauskas, L. Small mammal community changes during succession of the planted forest. Acta Zool. Litu. 2011, 22, 293–300. [Google Scholar] [CrossRef]
- Hlôška, L.; Saniga, M.; Chovancová, G.; Chovancová, B.; Homolová, Z. Temporal and spatial changes in small mammal communities in a disturbed mountain forest. Folia Oecologica 2022, 49, 9–22. [Google Scholar] [CrossRef]
- Heske, E.J.; Rodgers, T.W. Species composition and abundance of small mammals on forest edge in southern Illinois in summer. Therya 2022, 13, 57–66. [Google Scholar] [CrossRef]
- Carey, A.B.; Harrington, C.A. Small mammals in young forests: Implications for management for sustainability. For. Ecol. Manag. 2001, 154, 289–309. [Google Scholar] [CrossRef]
- Fox, B.J. How habitat selection, succession, and assembly rules can influence landscape ecology in natural and disturbed areas. Therya 2022, 13, 5–15. [Google Scholar] [CrossRef]
- Zolkos, K.; Kukwa, M.; Afranowicz-Cieślak, R. Changes in the epiphytic lichen biota in the Scots pine (Pinus sylvestris) stands affected by a colony of grey heron (Ardea cinerea): A case study from northern Poland. Lichenologist 2013, 45, 815–823. [Google Scholar] [CrossRef]
- Velickovic, M. Measures of the developmental stability, body size and body condition in the black-striped mouse (Apodemus agrarius) as indicators of a disturbed environment in northern Serbia. Belg. J. Zool. 2007, 137, 147–156. [Google Scholar]
- Tête, N.; Fritsch, C.; Afonso, E.; Coeurdassier, M.; Lambert, J.C.; Giraudoux, P.; Scheifler, R. Can body condition and somatic indices be used to evaluate metal-induced stress in wild small mammals? PLoS ONE 2013, 8, e66399. [Google Scholar] [CrossRef] [PubMed]
- Bush, E.R.; Buesching, C.D.; Slade, E.M.; Macdonald, D.W. Woodland recovery after suppression of deer: Cascade effects for small mammals, wood mice (Apodemus sylvaticus) and bank voles (Myodes glareolus). PLoS ONE 2012, 7, e31404. [Google Scholar] [CrossRef] [PubMed]
- Kolb, G.S.; Jerling, L.; Hambäck, P.A. The impact of cormorants on plant–arthropod food webs on their nesting islands. Ecosystems 2010, 13, 353–366. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Skipitytė, R.; Jasiulionis, M.; Balčiauskienė, L.; Remeikis, V. Immediate increase in isotopic enrichment in small mammals following the expansion of a great cormorant colony. Biogeosciences 2018, 15, 3883–3891. [Google Scholar] [CrossRef] [Green Version]
Species | Control Zone | Active Zone | Abandoned Zone |
---|---|---|---|
A. flavicollis | 149 | 148 | 551 |
C. glareolus | 58 | 21 | 268 |
M. agrestis | 0 | 1 | 13 |
M. arvalis | 0 | 0 | 2 |
M. oeconomus | 1 | 1 | 8 |
M. minutus | 3 | 0 | 11 |
S. araneus | 2 | 1 | 24 |
S. minutus | 2 | 0 | 5 |
Total | 215 | 172 | 882 |
Species number | 6 | 5 | 8 |
Shannon’s H | 1.124 | 0.687 | 1.38 |
Simpson’s c | 0.551 | 0.754 | 0.483 |
Pielou e | 0.435 | 0.296 | 0.460 |
RA ± SE | 10.33 ± 1.41 | 4.12 ± 0.77 | 20.27 ± 1.44 |
Species | Control Zone | Active Zone |
---|---|---|
A. agrarius | 10 | 68 |
A. flavicollis | 78 | 48 |
C. glareolus | 114 | 305 |
M. agrestis | 2 | 5 |
M. arvalis | 0 | 1 |
M. minutus | 1 | 1 |
M. musculus | 0 | 1 |
N. fodiens | 1 | 1 |
S. araneus | 12 | 22 |
S. minutus | 2 | 4 |
Total | 220 | 456 |
Species number | 8 | 10 |
Shannon’s H | 1.647 | 1.559 |
Simpson’s c | 0.399 | 0.483 |
Pielou e | 0.549 | 0.492 |
RA ± se | 12.58 ± 1.54 | 27.00 ± 2.32 |
Species | Control Zone | Active Zone |
---|---|---|
A. agrarius | 3 | 41 |
A. flavicollis | 96 | 203 |
C. glareolus | 37 | 140 |
M. musculus | 0 | 2 |
R. norvegicus | 0 | 1 |
S. araneus | 0 | 2 |
S. minutus | 0 | 1 |
Total | 136 | 390 |
Species number | 3 | 7 |
Shannon’s H | 0.987 | 1.485 |
Simpson’s c | 0.573 | 0.411 |
Pielou e | 0.623 | 0.529 |
RA ± se | 8.29 ± 1.05 | 25.29 ± 2.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiulionis, M.; Balčiauskas, L.; Balčiauskienė, L. Size Matters: Diversity and Abundance of Small Mammal Community Varies with the Size of Great Cormorant Colony. Diversity 2023, 15, 220. https://doi.org/10.3390/d15020220
Jasiulionis M, Balčiauskas L, Balčiauskienė L. Size Matters: Diversity and Abundance of Small Mammal Community Varies with the Size of Great Cormorant Colony. Diversity. 2023; 15(2):220. https://doi.org/10.3390/d15020220
Chicago/Turabian StyleJasiulionis, Marius, Linas Balčiauskas, and Laima Balčiauskienė. 2023. "Size Matters: Diversity and Abundance of Small Mammal Community Varies with the Size of Great Cormorant Colony" Diversity 15, no. 2: 220. https://doi.org/10.3390/d15020220
APA StyleJasiulionis, M., Balčiauskas, L., & Balčiauskienė, L. (2023). Size Matters: Diversity and Abundance of Small Mammal Community Varies with the Size of Great Cormorant Colony. Diversity, 15(2), 220. https://doi.org/10.3390/d15020220