Lizard Dewlap Color and Malaria Infection: Testing the Hamilton-Zuk Hypothesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Methods
2.2. Analysis Methods
3. Results
4. Discussion
4.1. Test of the Hamilton-Zuk Hypothesis
4.2. Methodological Differences from Previous Studies
4.3. Mechanisms of Color Differences
5. Effects on Fitness
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, W.D.; Zuk, M. Heritable true fitness and bright birds: A role for parasites? Science 1982, 218, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F. Comparative evidence supports the Hamilton and Zuk hypothesis on parasites and sexual selection. Nature 1982, 328, 68–70. [Google Scholar] [CrossRef]
- Ward, P.I. Sexual dichromatism and parasitism in British and Irish freshwater fish. Anim. Behav. 1988, 36, 1210–1215. [Google Scholar] [CrossRef]
- Pomiankowski, A. Choosing parasite-free mates. Nature 1989, 338, 115–116. [Google Scholar] [CrossRef]
- Milinski, M.; Bakker, T.C.M. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 1990, 344, 330–333. [Google Scholar] [CrossRef]
- Llanos-Garrido, A.; Díaz, J.A.; Pérez-Rodríguez, A.; Arriero, E. Variation in male ornaments in two lizard populations with contrasting parasite loads. J. Zool. 2017, 303, 218–225. [Google Scholar] [CrossRef]
- Borgia, G. Satin Bowerbird parasites: A test of the bright male hypothesis. Behav. Ecol. Sociobiol. 1986, 19, 355–358. [Google Scholar] [CrossRef]
- Hausfater, G.; Gerhardt, H.C.; Klump, G.M. Parasites and mate choice in Gray Treefrogs, Hyla versicolor. Am. Zool. 1990, 30, 299–312. [Google Scholar] [CrossRef]
- Schall, J.J.; Staats, C.M. Parasites and the evolution of extravagant male characters: Anolis lizards on Caribbean islands as a test of the Hamilton-Zuk Hypothesis. Oecologia 1997, 111, 543–548. [Google Scholar] [CrossRef]
- Martin, C.H.; Johnsen, S. A field test of the Hamilton–Zuk hypothesis in the Trinidadian guppy (Poecilia reticulata). Behav. Ecol. Sociobiol. 2007, 61, 1897–1909. [Google Scholar] [CrossRef]
- Schall, J.J. Prevalence and virulence of a haemogregarine parasite of the Aruban Whiptail Lizard, Cnemidophorus arubensis. J. Herpetol. 1986, 20, 318–324. [Google Scholar] [CrossRef]
- Lefcort, H.; Blaustein, A.R. Parasite load and brightness in lizards: An interspecific test of the Hamilton and Zuk hypothesis. J. Zool. 1991, 224, 491–499. [Google Scholar] [CrossRef]
- Molnár, O.; Bajer, K.; Mészáros, B.; Török, J.; Herczeg, G. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton–Zuk hypothesis. Naturwissenschaften 2013, 100, 551–558. [Google Scholar] [CrossRef]
- Megía-Palma, R.; Barrientos, R.; Gallardo, M.; Martínez, J.; Merino, S. Brighter is darker: The Hamilton–Zuk hypothesis revisited in lizards. Biol. J. Linn. Soc. 2021, 134, 461–473. [Google Scholar] [CrossRef]
- Losos, J.B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Simon, V. Communication signal rates predict interaction outcome in the Brown Anole lizard, Anolis sagrei. Copeia 2011, 2011, 38–45. [Google Scholar] [CrossRef]
- Berglund, A.; Bisazza, A.; Pilastro, A. Armaments and ornaments: An evolutionary explanation of traits of dual utility. Biol. J. Linn. Soc. 1996, 58, 385–399. [Google Scholar] [CrossRef]
- Driessens, T.; Vanhooydonck, B.; Van Damme, R. Deterring predators, daunting opponents or drawing partners? Signaling rates across diverse contexts in the lizard Anolis sagrei. Behav. Ecol. Sociobiol. 2014, 68, 173–184. [Google Scholar] [CrossRef]
- Sigmund, W.R. Female preference for Anolis carolinensis males as a function of dewlap color and background coloration. J. Herpetol. 1983, 17, 137–143. [Google Scholar] [CrossRef]
- Tokarz, R. An experimental test of the importance of the dewlap in male mating success in the lizard Anolis sagrei. Herpetologica 2002, 58, 87–94. [Google Scholar] [CrossRef]
- Tokarz, R.; Paterson, A.; McMann, S. Importance of dewlap display in male mating success in free-ranging Brown Anoles (Anolis sagrei). J. Herpetol. 2005, 39, 174–177. [Google Scholar] [CrossRef]
- Cook, E.G.; Murphy, T.G.; Johnson, M.A. Colorful displays signal male quality in a tropical anole lizard. Naturwissenschaften 2013, 100, 993–996. [Google Scholar] [CrossRef] [PubMed]
- Baeckens, S.; Driessens, T.; Huyghe, K.; Vanhooydonck, B.; Van Damme, R. Intraspecific variation in the information content of an ornament: Why relative dewlap size signals bite force in some, but not all island populations of Anolis sagrei. Integr. Comp. Biol. 2018, 58, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Steffen, J.E.; Guyer, C.C. Display behaviour and dewlap colour as predictors of contest success in brown anoles. Biol. J. Linn. Soc. 2014, 111, 646–655. [Google Scholar] [CrossRef]
- Steffen, J.E.; McGraw, K.J. Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 146, 42–46. [Google Scholar] [CrossRef]
- Alfonso, Y.U.; Morris, H.J.; Gutiérrez, A.; Rodríguez-Schettino, L.; Denis, D.; Steffen, J.E. Dewlap color variation based on pterin and carotenoid pigments in three subspecies of Anolis jubar of the Cuban Southern Coast. Copeia 2013, 2013, 201–205. [Google Scholar] [CrossRef]
- Stuart-Fox, D.; Rankin, K.J.; Lutz, A.; Elliott, A.; Hugall, A.F.; McLean, C.A.; Medina, I. Environmental gradients predict the ratio of environmentally acquired carotenoids to self-synthesised pteridine pigments. Ecol. Lett. 2021, 24, 2207–2218. [Google Scholar] [CrossRef]
- Megía-Palma, R.; Merino, S.; Barrientos, R. Longitudinal effects of habitat quality, body condition, and parasites on colour patches of a multiornamented lizard. Behav. Ecol. Sociobiol. 2022, 76, 73. [Google Scholar] [CrossRef]
- Steffen, J.E.; McGraw, K.J. How dewlap color reflects its carotenoid and pterin content in male and female brown anoles (Norops sagrei). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2009, 154, 334–340. [Google Scholar] [CrossRef]
- Driessens, T.; Huyghe, K.; Vanhooydonck, B.; Van Damme, R. Messages conveyed by assorted facets of the dewlap, in both sexes of Anolis sagrei. Behav. Ecol. Sociobiol. 2015, 69, 1251–1264. [Google Scholar] [CrossRef]
- Meshaka, W.E.; Butterfield, B.P.; Hauge, J.B. The Exotic Amphibians and Reptiles of Florida; Krieger Pub Co.: Malabar, FL, USA, 2004. [Google Scholar]
- Vanhooydonck, B.; Herrel, A.; Meyers, J.J.; Irschick, D.J. What determines dewlap diversity in Anolis lizards? An among-island comparison. J. Evol. Biol. 2004, 22, 293–305. [Google Scholar] [CrossRef]
- Driessens, T.; Baeckens, S.; Balzarolo, M.; Vanhooydonck, B.; Huyghe, K.; Van Damme, R. Climate-related environmental variation in a visual signalling device: The male and female dewlap in Anolis sagrei lizards. J. Evol. Biol. 2017, 30, 1846–1861. [Google Scholar] [CrossRef] [PubMed]
- Baeckens, S.; Driessens, T.; Van Damme, R. The brown anole dewlap revisited: Do predation pressure, sexual selection, and species recognition shape among-population signal diversity? PeerJ 2018, 6, e4722. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.L.; Rothschild, A.; Waltari, E. Infections of the Malaria Parasite, Plasmodium floridense, in the Invasive Lizard, Anolis sagrei, in Florida. J. Herpetol. 2017, 41, 750–754. [Google Scholar] [CrossRef]
- Perkins, S.L.; Kerwin, A.S.; Rothschild, A.D. Patterns of infection of the lizard malaria parasite, Plasmodium floridense, in invasive brown anoles (Anolis sagrei) in Southwestern Florida. Parasitol. Res. 2009, 104, 1191–1196. [Google Scholar] [CrossRef]
- Doan, T.M.; Devlin, B.G.; Greene, K.C. Malaria infection is lower in invasive anoles than native anoles in Central Florida, USA. J. Herpetol. 2019, 53, 22–26. [Google Scholar] [CrossRef]
- Bessa, L.B.; Ely, N.M.; Calle, E.K.; Lafond, B.J.; Counsman, R.P.; Loges, L.N.; Doan, T.M. The effect of Plasmodium floridense on relative leukocyte counts of Anolis sagrei and A, carolinensis in Florida, USA. J. N. Am. Herpetol. 2020, 2020, 42–48. [Google Scholar] [CrossRef]
- Ressel, S.; Schall, J.J. Parasites and showy males: Malarial infection and color variation in fence lizards. Oecologia 1989, 78, 158–164. [Google Scholar] [CrossRef]
- Nicholson, K.E.; Harmon, L.J.; Losos, J.B. Evolution of Anolis lizard dewlap diversity. PLoS ONE 2007, 2, e274. [Google Scholar] [CrossRef]
- Telford, S.R. Hemoparasites of the Reptilia: Color Atlas and Text; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Chan, G. Toward Better Chroma Subsampling: Recipient of the 2007 SMPTE Student Paper Award. SMPTE Motion Imaging J. 2007, 117, 39–45. [Google Scholar] [CrossRef]
- Corney, D.; Haynes, J.-D.; Rees, G.; Lotto, R.B. The brightness of colour. PLoS ONE 2009, 4, e5091. [Google Scholar] [CrossRef]
- Schall, J.J. Malarial parasites of lizards: Diversity and ecology. Adv. Parasitol. 2009, 37, 255–333. [Google Scholar] [CrossRef]
- Megía-Palma, R.; Martínez, J.; Merino, S. Manipulation of parasite load induces significant changes in the structural-based throat color of male iberian green lizards. Curr. Zool. 2018, 64, 293–302. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Read, A.F.; Harvey, P.H. Reassessment of comparative evidence for Hamilton and Zuk theory on the evolution of secondary sexual characters. Nature 2002, 339, 618–620. [Google Scholar] [CrossRef]
- Lozano, G.A. Carotenoids, parasites, and sexual selection. Oikos 1994, 70, 309–311. [Google Scholar] [CrossRef]
- Folstad, I.; Karter, A.J. Parasites, bright males, and the Immunocompetence Handicap. Am. Nat. 1992, 139, 603–622. [Google Scholar] [CrossRef]
- Kurtz, J.; Sauer, K. The immunocompetence handicap hypothesis: Testing the genetic predictions. Proc. Biol. Sci. 1999, 266, 2515–2522. [Google Scholar] [CrossRef]
- Cox, R.M.; Stenquist, D.S.; Calsbeek, R. Testosterone, growth and the evolution of sexual size dimorphism. J. Evol. Biol. 2009, 22, 1586–1598. [Google Scholar] [CrossRef]
- Cox, R.M.; Stenquist, D.S.; Henningsen, J.P.; Calsbeek, R. Manipulating Testosterone to Assess Links between Behavior, Morphology, and Performance in the Brown Anole Anolis sagrei. Physiol. Biochem. Zool. PBZ 2009, 82, 686–698. [Google Scholar] [CrossRef]
- Cox, C.L.; Hanninen, A.F.; Reedy, A.M.; Cox, R.M. Female anoles retain responsiveness to testosterone despite the evolution of androgen-mediated sexual dimorphism. Funct. Ecol. 2015, 29, 758–767. [Google Scholar] [CrossRef]
- Salvador, A.; Veiga, J.P.; Martin, J.; Lopez, P.; Abelenda, M.; Puertac, M. The cost of producing a sexual signal: Testosterone increases the susceptibility of male lizards to ectoparasitic infestation. Behav. Ecol. 1996, 7, 145–150. [Google Scholar] [CrossRef] [Green Version]
- McGraw, K.; Ardia, D. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 2003, 162, 704–712. [Google Scholar] [CrossRef]
- Steffen, J.E.; Hill, G.E.; Guyer, C. Carotenoid access, nutritional stress, and the dewlap color of male Brown Anoles. Copeia 2010, 2010, 239–246. [Google Scholar] [CrossRef]
- Endler, J.A. Natural and sexual selection on color patterns in poeciliid fishes. Environ. Biol. Fishes 1983, 9, 173–190. [Google Scholar] [CrossRef]
- Port, G.R.; Boreham, P.F.L.; Bryan, J.H. The relationship of host size to feeding by mosquitoes of the Anopheles gambiae Giles complex (Diptera: Culicidae). Bull. Entomol. Res. 1980, 70, 133–144. [Google Scholar] [CrossRef]
- Burkett, D.A.; Butler, J.F. Laboratory evaluation of colored light as an attractant for female Aedes aegypti, Aedes albopictus, Anopheles quadrimaculatus, and Culex nigripalpus. Fla. Entomol. 2005, 88, 383–389. [Google Scholar] [CrossRef]
- Wolff, G.H.; Riffell, J.A. Olfaction, experience and neural mechanisms underlying mosquito host preference. J. Exp. Biol. 2018, 221, jeb157131. [Google Scholar] [CrossRef]
- Klein, T.A.; Akin, D.C.; Young, D.G.; Telford, S.R. Sporogony, development and ultrastructure of Plasmodium floridense in Culex erraticus. Int. J. Parasitol. 1988, 18, 711–719. [Google Scholar] [CrossRef]
- Reeves, L.E.; Hoyer, I.; Acevedo, C.; Burkett-Cadena, N.D. Host associations of Culex (Melanoconion) atratus (Diptera: Culicidae) and Culex (Melanoconion) pilosus from Florida, USA. Insects 2019, 10, 239. [Google Scholar] [CrossRef]
- Datta, O.; Dhiman, S.C. Aggregation of mosquitoes on black colour. Int. J. Mosq. Res. 2020, 7, 38–41. [Google Scholar]
- Lewinsohn, E.; Sitrit, Y.; Bar, E.; Azulay, Y.; Ibdah, M.; Meir, A.; Yosef, E.; Zamir, D.; Tadmor, Y. Not just colors—Carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci. Technol. 2005, 16, 407–415. [Google Scholar] [CrossRef]
- Aguilar, P.; Andrade, P.; Pérez, I.; De Lanuza, G. Epistatic interactions between pterin and carotenoid genes modulate intra-morph color variation in a lizard. Integr. Zool. 2022, 17, 44–53. [Google Scholar] [CrossRef]
- Kennedy, C.E.J.; Endler, J.A.; Poynton, S.L.; McMinn, H. Parasite load predicts mate choice in guppies. Behav. Ecol. Sociobiol. 1987, 21, 291–295. [Google Scholar] [CrossRef]
- Megía-Palma, R.; Paranjpe, D.; Cooper, R.D.; Blaimont, P.; Sinervo, B. Natural parasites in conjunction with behavioral and color traits explain male agonistic behaviors in a lizard. Curr. Zool. 2023; in press. [Google Scholar] [CrossRef]
Parameters | df | Log Likelihood | AICc | Delta AICc | AICc Weight | Omnibus Chi Square | Omnibus Chi Square p |
---|---|---|---|---|---|---|---|
Luma: Infection, SVL | 2 | −454.944 | 918.322 | 0 | 0.65187 | 7.915 | 0.019 |
Luma: Infection, SVL, Infection X SVL | 3 | −454.943 | 920.546 | 2.224 | 0.21440 | 7.915 | 0.048 |
Luma: Infection | 1 | −457.616 | 921.49 | 3.168 | 0.13373 | 2.57 | 0.109 |
Red: Infection, SVL | 2 | −467.578 | 943.592 | 0 | 0.44650 | 4.979 | 0.083 |
Red: Infection | 1 | −468.836 | 943.931 | 0.339 | 0.37689 | 2.463 | 0.117 |
Red: Infection, SVL, Infection X SVL | 3 | −467.394 | 945.447 | 1.855 | 0.17661 | 5.349 | 0.148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, T.M.; Mingos, A.D.; Juge, A.E.; Simmons, M.A. Lizard Dewlap Color and Malaria Infection: Testing the Hamilton-Zuk Hypothesis. Diversity 2023, 15, 209. https://doi.org/10.3390/d15020209
Doan TM, Mingos AD, Juge AE, Simmons MA. Lizard Dewlap Color and Malaria Infection: Testing the Hamilton-Zuk Hypothesis. Diversity. 2023; 15(2):209. https://doi.org/10.3390/d15020209
Chicago/Turabian StyleDoan, Tiffany M., Alexis D. Mingos, Aiden E. Juge, and Melissa A. Simmons. 2023. "Lizard Dewlap Color and Malaria Infection: Testing the Hamilton-Zuk Hypothesis" Diversity 15, no. 2: 209. https://doi.org/10.3390/d15020209
APA StyleDoan, T. M., Mingos, A. D., Juge, A. E., & Simmons, M. A. (2023). Lizard Dewlap Color and Malaria Infection: Testing the Hamilton-Zuk Hypothesis. Diversity, 15(2), 209. https://doi.org/10.3390/d15020209