Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding
Abstract
:1. Introduction
2. Effects of Heavy Metals on Plants and Microorganisms
3. The Influence of Heavy Metals on Plant–Microorganism Interactions
4. Interaction between Plants—Hyperaccumulators of Metals and Microorganisms
5. The Use of Plant–Microbe Interactions in Phytoremediation
6. The Effect of Flooding on Plants
7. Effects of Flooding on Microorganisms
8. The Effect of Flooding on the Interaction of Plants and Microorganisms
9. Effects of Heavy Metals and Flooding on Plants and Microorganisms
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikeda, T.; Yoshitani, J.; Terakawa, A. Flood management under climatic variability and its future perspective in Japan. Water Sci. Technol. 2005, 51, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Yadollahie, M. The Flood in Iran: A Consequence of the Global Warming? Int. J. Occup. Environ. Med. 2019, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, Y.; Alifu, H.; Yamazaki, D.; Imada, Y.; Shiogama, H.; Kimura, Y. Anthropogenic climate change has changed frequency of past flood during 2010-2013. Prog. Earth Planet. Sci. 2021, 8, 36. [Google Scholar] [CrossRef]
- Kravchuk, M.A.; Krasnov, Y.I.; Malinin, V.N. Global’nyj ekologicheskij krizis: Strategiya vyzhivaniya. In Sreda Obitaniya; pp. 194–205. Available online: https://www.terrahumana.ru/arhiv/09_01/09_01_17.pdf (accessed on 5 December 2022).
- Cebula, E.; Ciba, J. Effects of flooding in southern Poland on heavy metal concentrations in soils. Soil Use Manag. 2005, 21, 348–351. [Google Scholar] [CrossRef]
- Hafeez, F.; Zafar, N.; Nazir, R.; Javeed, H.M.R.; Rizwan, M.; Faridullah;Asad, S.A.; Iqbal, A. Assessment of flood-induced changes in soil heavy metal and nutrient status in Rajanpur, Pakistan. Environ. Monit. Assess. 2019, 191, 234. [Google Scholar] [CrossRef] [PubMed]
- Gladkov, E.A.; Tashlieva, I.I.; Gladkova, O.V. Ornamental plants adapted to urban ecosystem pollution: Lawn grasses and painted daisy tolerating copper. Environ. Sci. Pollut. Res. 2021, 28, 14115–14120. [Google Scholar] [CrossRef] [PubMed]
- Gladkov, E.A.; Gladkova, O.V. Ornamental plants adapted to urban ecosystem pollution: Lawn grasses tolerating deicing reagents. Environ. Sci. Pollut. Res. 2022, 29, 22947–22951. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Xu, Y.L.; Feng, G.L.; Jiang, X.Y.; Liu, N.; Li, J.M.; Li, G.Y.; Yang, Y.L. Distribution characteristics of heavy metals in soil and its influence on greening plants in a main road of Lanzhou City, Northwest China. Chin. J. Appl. Ecol. 2020, 31, 1341–1348. [Google Scholar] [CrossRef]
- Gladkov, E.A.; Gladkova, O.V. New directions of biology and biotechnology in urban environmental sciences. Hem. Ind. 2021, 75, 365–368. [Google Scholar] [CrossRef]
- Gladkov, E.A.; Tashlieva, I.I.; Gladkova, O.V. Cell selection for increasing resistance of ornamental plants to copper. Environ. Sci. Pollut. Res. 2022, 29, 25965–25969. [Google Scholar] [CrossRef] [PubMed]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of heavy metals on plant growth: An overview. In Contaminants in Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 79–101. [Google Scholar] [CrossRef]
- Hernández, A.J.; Pastor, J. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ. Geochem. Health 2008, 30, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Yang, C.; Zhang, C.Y.; Fan, M.Y.; Wu, A.P.; Zhang, Y.L. [Analysis on the Characteristics of Oxidation Potential and Influence Sources of PM2.5 in Baoding City in Winter]. Huan jing ke xue= Huanjing kexue 2022, 43, 2878–2887. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.F.; Zhang, S.W.; Luo, M.; Wei, H.B.; Song, Q.; Fang, B.; Zhuang, H.J.; Chen, H.Y. Characteristics of Plant Diversity and Heavy Metal Enrichment and Migration Under Different Ecological Restoration Modes in Abandoned Mining Areas. Huanjing Kexue/Environ. Sci. 2022, 43, 985–994. [Google Scholar] [CrossRef]
- Tovar-Sánchez, E.; Hernández-Plata, I.; SantoyoMartínez, M.; Valencia-Cuevas, L.; Galante, P.M.; Tovar-Sánchez, E.; Hernández-Plata, I.; SantoyoMartínez, M.; Valencia-Cuevas, L.; Galante, P.M. Heavy Metal Pollution as a Biodiversity Threat. In Heavy Metals; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Han, J.; Wu, H.; Zhong, Q.; Liu, W.; He, S.; Zhang, L. Diversity patterns and drivers of soil microbial communities in urban and suburban park soils of Shanghai, China. PeerJ 2021, 9, e11231. [Google Scholar] [CrossRef]
- Signorini, M.; Midolo, G.; Cesco, S.; Mimmo, T.; Borruso, L. A Matter of Metals: Copper but Not Cadmium Affects the Microbial Alpha-Diversity of Soils and Sediments—A Meta-analysis. Microb. Ecol. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Mejias Carpio, I.E.; Ansari, A.; Rodrigues, D.F. Relationship of Biodiversity with Heavy Metal Tolerance and Sorption Capacity: A Meta-Analysis Approach. Environ. Sci. Technol. 2018, 52, 184–194. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Z.; He, L.; Sheng, X. Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead-zinc mine tailings. Chemosphere 2012, 87, 1171–1178. [Google Scholar] [CrossRef]
- Ma, Y.; Oliveira, R.S.; Freitas, H.; Zhang, C. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Front. Plant Sci. 2016, 7, 918. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef]
- Sun, L.; He, L.; Zhang, Y.; Zhang, W.; Wang, Q.; Sheng, X. Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens. Wei Sheng Wu Xue Bao 2009, 49, 1360–1366. [Google Scholar] [PubMed]
- Efe, D. Potential Plant Growth-Promoting Bacteria with Heavy Metal Resistance. Curr. Microbiol. 2020, 77, 3861–3868. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.K.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.H.; Jia, H.L.; Atif, S.; Hua, L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Harbort, C.J.; Hashimoto, M.; Inoue, H.; Niu, Y.; Guan, R.; Rombolà, A.D.; Kopriva, S.; Voges, M.J.E.E.E.; Sattely, E.S.; Garrido-Oter, R.; et al. Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell Host Microbe 2020, 28, 825–837.e6. [Google Scholar] [CrossRef]
- Herrera-Quiterio, A.; Toledo-Hernández, E.; Aguirre-Noyola, J.L.; Romero, Y.; Ramos, J.; Palemón-Alberto, F.; Toribio-Jiménez, J. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Rev. Argent. Microbiol. 2020, 52, 231–239. [Google Scholar] [CrossRef]
- Grobelak, A.; Kokot, P.; Światek, J.; Jaskulak, M.; Rorat, A. Bacterial ACC Deaminase Activity in Promoting Plant Growth on Areas Contaminated with Heavy Metals. J. Ecol. Eng. 2018, 19, 150–157. [Google Scholar] [CrossRef]
- Wang, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Natarajan, D.; Ma, Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Front. Microbiol. 2022, 13, 2934. [Google Scholar] [CrossRef]
- Van Der Ent, A.; Vinya, R.; Erskine, P.D.; Malaisse, F.; Przybyłowicz, W.J.; Barnabas, A.D.; Harris, H.H.; Mesjasz-Przybyłowicz, J. Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper–cobalt belt in Northern Zambia. Metallomics 2020, 12, 682–701. [Google Scholar] [CrossRef]
- Li, Y.; Iqbal, M.; Zhang, Q.; Spelt, C.; Bliek, M.; Hakvoort, H.W.J.; Quattrocchio, F.M.; Koes, R.; Schat, H. Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana. New Phytol. 2017, 215, 1102–1114. [Google Scholar] [CrossRef] [Green Version]
- Alford, É.R.; Pilon-Smits, E.A.H.; Paschke, M.W. Metallophytes—A view from the rhizosphere. Plant Soil 2010, 337, 33–50. [Google Scholar] [CrossRef]
- Borymski, S.; Cycon, M.; Beckmann, M.; Mur, L.A.J.; Piotrowska-Seget, Z. Plant species and heavy metals affect biodiversity of microbial communities associated with metal-tolerant plants in metalliferous soils. Front. Microbiol. 2018, 9, 1425. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ma, L.; Liu, Q.; Topalović, O.; Wang, Q.; Yang, X.; Feng, Y. Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfredii. Chemosphere 2020, 256, 127156. [Google Scholar] [CrossRef]
- Islam, M.S.; Kormoker, T.; Idris, A.M.; Proshad, R.; Kabir, M.H.; Ustaoğlu, F. Plant–microbe–metal interactions for heavy metal bioremediation: A review. Crop Pasture Sci. 2021, 73, 181–201. [Google Scholar] [CrossRef]
- Sorour, A.A.; Khairy, H.; Zaghloul, E.H.; Zaghloul, H.A.H. Microbe- plant interaction as a sustainable tool for mopping up heavy metal contaminated sites. BMC Microbiol. 2022, 22, 174. [Google Scholar] [CrossRef] [PubMed]
- Ramana, S.; Tripathi, A.K.; Kumar, A.; Singh, A.B.; Bharati, K.; Sahu, A.; Rajput, P.S.; Saha, J.K.; Srivastava, S.; Dey, P.; et al. Potential of cotton for remediation of Cd-contaminated soils. Environ. Monit. Assess. 2021, 193, 186. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Han, H.J. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation in plants. J. Hazard. Mater. 2019, 379, 120825. [Google Scholar] [CrossRef]
- Poole, R.K. Advances in MICROBIAL PHYSIOLOGY. Adv. Microb. Physiol. 2010, 57, i–iii. [Google Scholar] [CrossRef]
- Kuffner, M.; Puschenreiter, M.; Wieshammer, G.; Gorfer, M.; Sessitsch, A. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 2008, 304, 35–44. [Google Scholar] [CrossRef]
- Guo, S.; Xiao, C.; Zhou, N.; Chi, R. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environ. Chem. Lett. 2021, 19, 1413–1431. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Guo, S.; Yu, J.; Chi, R.; Xiao, C. Enhanced phytoremediation of hexavalent chromium contamination in phosphate mining wasteland by a phosphate solubilizing bacterium. Bioremediat. J. 2022. [CrossRef]
- Xiao, C.; Guo, S.; Wang, Q.; Chi, R. Enhanced reduction of lead bioavailability in phosphate mining wasteland soil by a phosphate-solubilizing strain of Pseudomonas sp., LA, coupled with ryegrass (Lolium perenne L.) and sonchus (Sonchus oleraceus L.). Environ. Pollut. 2021, 274, 116572. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Feng, B.; Xiao, C.; Wang, Q.; Chi, R. Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil. Bioremediat. J. 2021, 25, 271–281. [Google Scholar] [CrossRef]
- Ju, W.; Liu, L.; Fang, L.; Cui, Y.; Duan, C.; Wu, H. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol. Environ. Saf. 2019, 167, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Muehe, E.M.; Weigold, P.; Adaktylou, I.J.; Planer-Friedrich, B.; Kraemer, U.; Kappler, A.; Behrens, S. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl. Environ. Microbiol. 2015, 81, 2173–2181. [Google Scholar] [CrossRef] [Green Version]
- Cocozza, C.; Vitullo, D.; Lima, G.; Maiuro, L.; Marchetti, M.; Tognetti, R. Enhancing phytoextraction of Cd by combining poplar (clone “I-214”) with Pseudomonas fluorescens and microbial consortia. Environ. Sci. Pollut. Res. 2014, 21, 1796–1808. [Google Scholar] [CrossRef]
- Hou, D.; Lin, Z.; Wang, R.; Ge, J.; Wei, S.; Xie, R.; Wang, H.; Wang, K.; Hu, Y.; Yang, X.; et al. Cadmium exposure-Sedum alfredii planting interactions shape the bacterial community in the hyperaccumulator plant rhizosphere. Appl. Environ. Microbiol. 2018, 84, 12. [Google Scholar] [CrossRef] [Green Version]
- Monaci, F.; Trigueros, D.; Mingorance, M.D.; Rossini-Oliva, S. Phytostabilization potential of Erica australis L. and Nerium oleander L.: A comparative study in the Riotinto mining area (SW Spain). Environ. Geochem. Health 2020, 42, 2345–2360. [Google Scholar] [CrossRef]
- Yi, X.; Wen, P.; Liang, J.L.; Jia, P.; Yang, T.; Feng, S.; Liao, B.; Shu, W.; Li, J. tian Phytostabilization mitigates antibiotic resistance gene enrichment in a copper mine tailings pond. J. Hazard. Mater. 2023, 443, 130255. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environ. Health Perspect. 2008, 116, 278. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, F.; Díaz, G.; Torres, P.; Campoy, M.; Roldán, A. Synergistic enhancement of the phytostabilization of a semiarid mine tailing by a combination of organic amendment and native microorganisms (Funneliformis mosseae and Bacillus cereus). Chemosphere 2022, 312, 137106. [Google Scholar] [CrossRef]
- Egendorf, S.P.; Groffman, P.; Moore, G.; Cheng, Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: A critical review. Int. J. Phytoremediat. 2020, 22, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Shabaan, M.; Asghar, H.N.; Akhtar, M.J.; Ali, Q.; Ejaz, M. Role of plant growth promoting rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. Int. J. Phytoremediat. 2021, 23, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Loria, C.C.; Peralta-Perez, M.D.R.; Buendia-Gonzalez, L.; Volke-Sepulveda, T.L. Effect of a saprophytic fungus on the growth and the lead uptake, translocation and immobilization in Dodonaea viscosa. Int. J. Phytoremediat. 2012, 14, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Checcucci, A.; Bazzicalupo, M.; Mengoni, A. Exploiting nitrogen-fixing rhizobial symbionts genetic resources for improving phytoremediation of contaminated soils. In Enhancing Cleanup of Environmental Pollutants; Springer: Cham, Switzerland, 2017; pp. 275–288. [Google Scholar] [CrossRef]
- Mishra, J.; Singh, R.; Arora, N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Wang, L.; Yang, J. The Willingness and Technology Preferences of Farmers and Their Influencing Factors for Soil Remediation. Land 2022, 11, 1821. [Google Scholar] [CrossRef]
- Haller, H.; Jonsson, A. Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). Chemosphere 2020, 254, 126826. [Google Scholar] [CrossRef]
- Mommer, L.; Visser, E.J.W. Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity. Ann. Bot. 2005, 96, 581–589. [Google Scholar] [CrossRef]
- Trought, M.C.T.; Drew, M.C. Effects of waterlogging on young wheat plants (Triticum aestivum L.) and on soil solutes at different soil temperatures. Plant Soil 1982, 69, 311–326. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Jackson, M.B. Plant Adaptations to Anaerobic Stress. Ann. Bot. 1997, 79, 3–20. [Google Scholar] [CrossRef]
- Stepanova, A.Y.; Polyakova, L.I.; Dolgikh, Y.I.; Vartapetian, B.B. The response of sugarcane (Saccharum officinarum) cultured cells to anoxia and the selection of a tolerant cell line. Russ. J. Plant Physiol. 2002, 49, 406–412. [Google Scholar] [CrossRef]
- Tereshonok, D.V.; Stepanova, A.Y.; Dolgikh, Y.I.; Osipova, E.S.; Belyaev, D.V.; Kudoyarova, G.R.; Vysotskaya, L.B.; Vartapetian, B.B. Effect of the ipt gene expression on wheat tolerance to root flooding. Russ. J. Plant Physiol. 2011, 58, 799–807. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Andreeva, I.N.; Generozova, I.P.; Polyakova, L.I.; Maslova, I.P.; Dolgikh, Y.I.; Stepanova, A.Y. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann. Bot. 2003, 91, 155–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, S.P.; Su, N.; Midmore, D.J. Oxygation Unlocks Yield Potentials of Crops in Oxygen-Limited Soil Environments. Adv. Agron. 2005, 88, 313–377. [Google Scholar]
- Sasidharan, R.; Bailey-Serres, J.; Ashikari, M.; Atwell, B.J.; Colmer, T.D.; Fagerstedt, K.; Fukao, T.; Geigenberger, P.; Hebelstrup, K.H.; Hill, R.D.; et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol. 2017, 214, 1403–1407. [Google Scholar] [CrossRef] [Green Version]
- Loreti, E.; Perata, P. The Many Facets of Hypoxia in Plants. Plants 2020, 9, 745. [Google Scholar] [CrossRef]
- Tian, L.X.; Zhang, Y.C.; Chen, P.L.; Zhang, F.F.; Li, J.; Yan, F.; Dong, Y.; Feng, B.L. How Does the Waterlogging Regime Affect Crop Yield? A Global Meta-Analysis. Front. Plant Sci. 2021, 12, 130. [Google Scholar] [CrossRef] [PubMed]
- Waters, I.; Morrell, S.; Greenway, H.; Colmer, T.D. Effects of anoxia on wheat seedlings: II. Influence of o2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. J. Exp. Bot. 1991, 42, 1437–1447. [Google Scholar] [CrossRef]
- Eysholdt-Derzsó, E.; Sauter, M. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. Plant Physiol. 2017, 175, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Shukla, V.; Lombardi, L.; Iacopino, S.; Pencik, A.; Novak, O.; Perata, P.; Giuntoli, B.; Licausi, F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. Mol. Plant 2019, 12, 538–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Huber, H.; Beljaars, S.J.M.; Birnbaum, D.; De Best, S.; De Kroon, H.; Visser, E.J.W. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: Linking plant performance to root functioning. Ann. Bot. 2017, 120, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Polanco, M.; Señorans, J.; Zwiazek, J.J. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. BMC Plant Biol. 2012, 12, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argus, R.E.; Colmer, T.D.; Grierson, P.F. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens. Plant. Cell Environ. 2015, 38, 1189–1199. [Google Scholar] [CrossRef] [Green Version]
- Dawood, T.; Rieu, I.; Wolters-Arts, M.; Derksen, E.B.; Mariani, C.; Visser, E.J.W. Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AoB Plants 2014, 6, plt058. [Google Scholar] [CrossRef] [Green Version]
- Vidoz, M.L.; Loreti, E.; Mensuali, A.; Alpi, A.; Perata, P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010, 63, 551–562. [Google Scholar] [CrossRef]
- Zhang, Q.; Visser, E.J.W.; De Kroon, H.; Huber, H. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara. Ann. Bot. 2015, 116, 279. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, O.; Sauter, M.; Colmer, T.D.; Nakazono, M. Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytol. 2021, 229, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Sou, H.D.; Masumori, M.; Yamanoshita, T.; Tange, T. Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions. Sci. Rep. 2021, 11, 4520. [Google Scholar] [CrossRef]
- Yamauchi, T.; Shimamura, S.; Nakazono, M.; Mochizuki, T. Aerenchyma formation in crop species: A review. F. Crop Res. 2013, 152, 8–16. [Google Scholar] [CrossRef]
- Yamauchi, T.; Tanaka, A.; Tsutsumi, N.; Inukai, Y.; Nakazono, M. A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots. Plants 2020, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Gunawardena, A.H.L.A.N.; Pearce, D.M.; Jackson, M.B.; Hawes, C.R.; Evans, D.E. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 2001, 212, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Rajhi, I.; Nakazono, M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 2011, 6, 759–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimamura, S.; Yamamoto, R.; Nakamura, T.; Shimada, S.; Komatsu, S. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann. Bot. 2010, 106, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Voesenek, L.A.C.J.; Benschop, J.J.; Bou, J.; Cox, M.C.H.; Groeneveld, H.W.; Millenaar, F.F.; Vreeburg, R.A.M.; Peeters, A.J.M. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann. Bot. 2003, 91, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauter, M. Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften 2000, 87, 289–303. [Google Scholar] [CrossRef]
- Perata, P.; Voesenek, L.A.C.J. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 2007, 12, 43–46. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ram, P.C. Physiological and Molecular Basis of Susceptibility and Tolerance of Rice Plants to Complete Submergence. Ann. Bot. 2003, 91, 227. [Google Scholar] [CrossRef] [Green Version]
- Saddique, N.; Jehanzaib, M.; Sarwar, A.; Ahmed, E.; Muzammil, M.; Khan, M.I.; Faheem, M.; Buttar, N.A.; Ali, S.; Bernhofer, C. A Systematic Review on Farmers’ Adaptation Strategies in Pakistan toward Climate Change. Atmosphere 2022, 13, 1280. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. MICROBIAL STRESS-RESPONSE PHYSIOLOGY AND ITS IMPLICATIONS FOR ECOSYSTEM FUNCTION. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Liesack, W.; Schnell, S.; Revsbech, N.P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 2000, 24, 625–645. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Crutzen, P.J.; Dentener, F.J.; Lelieveld1, J.; Crutzen2, P.J.; Dentener1, F.J. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem. Phys. Meteorol. 2016, 50, 128–150. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef] [PubMed]
- Hemati Matin, N.; Jalali, M. The effect of waterlogging on electrochemical properties and soluble nutrients in paddy soils. Paddy Water Environ. 2017, 15, 443–455. [Google Scholar] [CrossRef]
- Bardelli, T.; Gómez-Brandón, M.; Ascher-Jenull, J.; Fornasier, F.; Arfaioli, P.; Francioli, D.; Egli, M.; Sartori, G.; Insam, H.; Pietramellara, G. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Sci. Total Environ. 2017, 575, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Francioli, D.; Cid, G.; Kanukollu, S.; Ulrich, A.; Hajirezaei, M.R.; Kolb, S. Flooding Causes Dramatic Compositional Shifts and Depletion of Putative Beneficial Bacteria on the Spring Wheat Microbiota. Front. Microbiol. 2021, 12, 3371. [Google Scholar] [CrossRef]
- Gschwend, F.; Aregger, K.; Gramlich, A.; Walter, T.; Widmer, F. Periodic waterlogging consistently shapes agricultural soil microbiomes by promoting specific taxa. Appl. Soil Ecol. 2020, 155, 103623. [Google Scholar] [CrossRef]
- Shah, A.; Shah, S.; Shah, V. Impact of flooding on the soil microbiota. Environ. Chall. 2021, 4, 100134. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. B 2020, 375, 20190112. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Naveed, M.; Mustafa, A.; Abbas, A. The good, the bad, and the ugly of rhizosphere microbiome. In Probiotics and Plant Health; Springer: Singapore, 2017; pp. 253–290. ISBN 9789811034732. [Google Scholar]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Paterson, E.; Gebbing, T.; Abel, C.; Sim, A.; Telfer, G. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 2007, 173, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Neumann, G.; Römheld, V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 1999, 211, 121–130. [Google Scholar] [CrossRef]
- Mimmo, T.; Hann, S.; Jaitz, L.; Cesco, S.; Gessa, C.E.; Puschenreiter, M. Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L. Plant Physiol. Biochem. PPB 2011, 49, 1272–1278. [Google Scholar] [CrossRef]
- Willig, S.; Varanini, Z.; Nannipieri, P. Types, Amounts, and Possible Functions of Compounds Released into the Rhizosphere by Soil-Grown Plants. In The Rhizosphere; CRC Press: Boca Raton, FL, USA, 2020; pp. 35–36. [Google Scholar]
- Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V.; Jeffery, L.D. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [Green Version]
- Hartman, K.; Tringe, S.G. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem. J. 2019, 476, 2705–2724. [Google Scholar] [CrossRef] [Green Version]
- Henry, A.; Doucette, W.; Norton, J.; Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 2007, 36, 904–912. [Google Scholar] [CrossRef]
- da Silva, W.L.; Yang, K.T.; Pettis, G.S.; Soares, N.R.; Giorno, R.; Clark, C.A. Flooding-Associated Soft Rot of Sweetpotato Storage Roots Caused by Distinct Clostridium Isolates. Plant Dis. 2019, 103, 3050–3056. [Google Scholar] [CrossRef]
- Hawkes, C.V.; Kjøller, R.; Raaijmakers, J.M.; Riber, L.; Christensen, S.; Rasmussen, S.; Christensen, J.H.; Dahl, A.B.; Westergaard, J.C.; Nielsen, M.; et al. Extension of Plant Phenotypes by the Foliar Microbiome. Annu. Rev. Plant Biol. 2021, 72, 823–846. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 2018, 68, 229–245. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.O.; Redman, R.S. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2008, 2, 404–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francioli, D.; Cid, G.; Hajirezaei, M.R.; Kolb, S. Leaf bacterial microbiota response to flooding is controlled by plant phenology in wheat (Triticum aestivum L.). Sci. Rep. 2022, 12, 11197. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Gu, L.; Sun, B.; Cai, W.; Zhang, S.; Zhuang, G.; Bai, Z.; Zhuang, X. Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol. Ecol. 2020, 96, 17. [Google Scholar] [CrossRef]
- Grady, K.L.; Sorensen, J.W.; Stopnisek, N.; Guittar, J.; Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 2019, 10, 4135. [Google Scholar] [CrossRef] [Green Version]
- Ponting, J.; Kelly, T.J.; Verhoef, A.; Watts, M.J.; Sizmur, T. The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil—A review. Sci. Total Environ. 2021, 754, 142040. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, C.; Chen, H.; Chen, G.; White, J.C.; Xing, B. Copper stress in flooded soil: Impact on enzyme activities, microbial community composition and diversity in the rhizosphere of Salix integra. Sci. Total Environ. 2020, 704, 135350. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Abdelrazek, M.A.S.; Elthoth, M.; Moghanm, F.S.; Mohamed, R.; Hamza, A.; El-Habashi, N.; Wang, J.; Rinklebe, J. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Sci. Total Environ. 2019, 649, 1237–1249. [Google Scholar] [CrossRef]
- Bonanno, G.; Cirelli, G.L. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol. Environ. Saf. 2017, 143, 92–101. [Google Scholar] [CrossRef]
- Galal, T.M.; Gharib, F.A.; Ghazi, S.M.; Mansour, K.H. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Environ. Sci. Pollut. Res. 2017, 24, 21636–21648. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zheng, L.; Xu, L.; Wang, X. Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena 2020, 189, 104477. [Google Scholar] [CrossRef]
Effect on plant growth |
Reducing the toxicity of heavy metals |
Increasing plant resistance to heavy metals |
Effect on the accumulation of heavy metals |
Increasing plant species diversity |
Phytoremediation of mine tailings |
Phytoremediation of agricultural soils |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gladkov, E.A.; Tereshonok, D.V.; Stepanova, A.Y.; Gladkova, O.V. Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. Diversity 2023, 15, 175. https://doi.org/10.3390/d15020175
Gladkov EA, Tereshonok DV, Stepanova AY, Gladkova OV. Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. Diversity. 2023; 15(2):175. https://doi.org/10.3390/d15020175
Chicago/Turabian StyleGladkov, Evgeny A., Dmitry V. Tereshonok, Anna Y. Stepanova, and Olga V. Gladkova. 2023. "Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding" Diversity 15, no. 2: 175. https://doi.org/10.3390/d15020175
APA StyleGladkov, E. A., Tereshonok, D. V., Stepanova, A. Y., & Gladkova, O. V. (2023). Plant–Microbe Interactions under the Action of Heavy Metals and under the Conditions of Flooding. Diversity, 15(2), 175. https://doi.org/10.3390/d15020175