An Analysis of the Effectiveness of Mitigation Measures at Roadkill Hotspots in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Roadkill Data
2.2. Analysis of Roadkill Hotspots
2.3. Proposal of Roadkill Mitigation Measures
2.4. Analysis of Mitigation Effectiveness
3. Results and Discussion
3.1. Development of the New Scheme for the Roadkill Mitigation Strategy
3.2. Proposal for the Roadkill Mitigation Measures for Roadkill Hotspots
3.3. Results of Roadkill Mitigation Measure Implementation
3.4. Effectiveness of Mitigation Measures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, M.G.; Kang, H.; Choi, S.U. Assessment of coastal ecosystem services for conservation strategies in South Korea. PLoS ONE 2015, 10, e0133856. [Google Scholar] [CrossRef] [PubMed]
- Andersen, D.; Jang, Y. Biodiversity and transportation infrastructure in the Republic of Korea: A review on impacts and mitigation in developing the country. Diversity 2021, 13, 519. [Google Scholar] [CrossRef]
- Coffin, A.W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 2007, 15, 396–406. [Google Scholar] [CrossRef]
- Jo, S.; Kim, K.; Cui, W.; Kim, N. Basic performance evaluation of a tack coat material for use with a spray paver. KSCE J. Civ. Environ. Eng. Res. 2021, 41, 737–744. [Google Scholar]
- Statistics Korea. Available online: https://www.index.go.kr/unity/potal/eNara/sub/showStblGams3.do?stts_cd=120702&idx_cd=1207&freq=Y&period=N (accessed on 21 July 2023).
- Seiler, A.; Helldin, J.-O.; Seiler, C. Road mortality in Swedish mammals: Results of a drivers’ questionnaire. Wildl. Biol. 2004, 10, 225–233. [Google Scholar] [CrossRef]
- Santos, E.; Cordova, M.; Rosa, C.; Rodrigues, D. Hotspots and season related to wildlife roadkill in the Amazonia–Cerrado transition. Diversity 2022, 14, 657. [Google Scholar] [CrossRef]
- Kioko, J.; Kiffner, C.; Jenkins, N.; Collinson, W.J. Wildlife roadkill patterns on a major highway in northern Tanzania. Afr. Zool. 2015, 50, 17–22. [Google Scholar] [CrossRef]
- Medrano-Vizcaíno, P.; Grilo, C.; Silva Pinto, F.A.; Carvalho, W.D.; Melinski, R.D.; Schultz, E.D.; González-Suárez, M. Roadkill patterns in Latin American birds and mammals. Glob. Ecol. Biogeogr. 2022, 31, 1756–1783. [Google Scholar] [CrossRef]
- Grilo, C.; Borda-de-Água, L.; Beja, P.; Goolsby, E.; Soanes, K.; le Roux, A.; Koroleva, E.; Ferreira, F.Z.; Gagné, S.A.; Wang, Y.; et al. Conservation threats from roadkill in the global road network. Glob. Ecol. Biogeogr. 2021, 30, 2200–2210. [Google Scholar] [CrossRef]
- Jackson, N.D.; Fahrig, L. Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 2011, 144, 3143–3148. [Google Scholar] [CrossRef]
- Kim, M.; Park, H.; Lee, S. Analysis of roadkill on the Korean expressways from 2004 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 10252. [Google Scholar] [CrossRef] [PubMed]
- Choi, T. Estimation of the Water deer (Hydropotes inermis) Roadkill Frequency in South Korea. Ecol. Resil. Infrastruct. 2016, 3, 162–168. [Google Scholar] [CrossRef]
- Shilling, F.; Perkins, S.E.; Collinson, W. Wildlife/roadkill observation and reporting systems. In Handbook of Road Ecology; Wiley: Hoboken, NJ, USA, 2015; pp. 492–501. [Google Scholar]
- Ascensão, F.; Yogui, D.R.; Alves, M.H.; Alves, A.C.; Abra, F.; Desbiez, A.L.J. Preventing wildlife roadkill can offset mitigation investments in short-medium term. Biol. Conserv. 2021, 253, 108902. [Google Scholar] [CrossRef]
- Kim, K.; Woo, D.; Seo, H.; Park, T.; Song, E.; Choi, T. Korea Roadkill Observation System: The first case to integrate roadkill data in national scale by government. J. Forest Environ. Sci. 2019, 35, 281–284. [Google Scholar]
- Santos, S.M.; Marques, J.T.; Lourenço, A.; Medinas, D.; Barbosa, A.M.; Beja, P.; Mira, A. Sampling effects on the identification of roadkill hotspots: Implications for survey design. J. Environ. Manag. 2015, 162, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Secco, H.; Farina, L.F.; da Costa, V.O.; Beiroz, W.; Guerreiro, M.; Gonçalves, P.R. Identifying roadkill hotspots for mammals in the Brazilian Atlantic Forest using a functional group approach. Environ. Manag. 2023, 1–13. [Google Scholar] [CrossRef]
- Zimmermann Teixeira, F.; Kindel, A.; Hartz, S.M.; Mitchell, S.; Fahrig, L. When roadkill hotspots do not indicate the best sites for roadkill mitigation. J. Appl. Ecol. 2017, 54, 1544–1551. [Google Scholar] [CrossRef]
- Dale, M.R.T.; Fortin, M.-J. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pak, S.I.; Lee, G.J. A study on building methodology for identifying roadkill hot-spots on highways and its empirical application. J. Plan. Assoc. 2015, 50, 319–333. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Spatial patterns and factors influencing small vertebrate fauna roadkill aggregations. Biol. Conserv. 2003, 109, 15–26. [Google Scholar] [CrossRef]
- Seo, C.; Thorne, J.H.; Choi, T.; Kwon, H.; Park, C.-H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 2015, 11, 87–99. [Google Scholar] [CrossRef]
- Seok, S.; Lee, J. A study on the correlation between roadkill hotspot and habitat patches. J. Environ. Impact Assess. 2015, 24, 233–243. [Google Scholar] [CrossRef]
- Shilling, F.M.; Waetjen, D.P. Wildlife–vehicle collision hotspots at US highway extents: Scale and data source effects. Nat. Conserv. 2015, 11, 41–60. [Google Scholar] [CrossRef]
- Kim, I.R.; Choi, W.; Kim, A.; Lim, J.; Lee, D.H.; Lee, J.R. Genetic diversity and population structure of nutria (Myocastor coypus) in South Korea. Animals 2019, 9, 1164. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Seo, H.; Kim, K.; Woo, D.; Park, T.; Choi, T. Analysis of roadkill hotspot according to the spatial clustering methods. J. Environ. Impact Assess. 2019, 28, 580–591. [Google Scholar]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K. Drainage culverts as habitat linkages and factors affecting passage by mammals. J. Appl. Ecol. 2001, 38, 1340–1349. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Fahrig, L. Effects of road fencing on population persistence. Conserv. Biol. 2004, 18, 1651–1657. [Google Scholar] [CrossRef]
- Rytwinski, T.; Soanes, K.; Jaeger, J.A.; Fahrig, L.; Findlay, C.S.; Houlahan, J.; van der Ree, R.; van der Grift, E.A. How effective is road mitigation at reducing roadkill? A meta-analysis. PLoS ONE 2016, 11, e0166941. [Google Scholar] [CrossRef]
- Job, R.S. Evaluations of speed camera interventions can deliver a wide range of outcomes: Causes and policy implications. Sustainability 2022, 14, 1765. [Google Scholar] [CrossRef]
- Average Daily Traffic Volume. Available online: https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=1212 (accessed on 17 November 2023).
- Collinson, W.J.; Marneweck, C.; Davies-Mostert, H.T. Protecting the protected: Reducing wildlife roadkill in protected areas. Anim. Conserv. 2019, 22, 396–403. [Google Scholar] [CrossRef]
No. | Common Name | Scientific Name | Roadkill Incidents |
---|---|---|---|
1 | Korean water deer | Hydropotes inermis | 11,638 |
2 | Raccoon dog | Nyctereutes procyonoides | 1731 |
3 | Siberian roe deer | Capreolus pygargus | 557 |
4 | Wild boar | Sus scrofa | 315 |
5 | Leopard cat | Prionailurus bengalensis | 239 |
6 | Siberian weasel | Mustela sibirica | 156 |
7 | Asian badger | Meles leucurus | 141 |
8 | Korean hare | Lepus coreanus | 85 |
9 | Eurasian otter | Lutra lutra | 78 |
10 | Red squirrel | Sciurus vulgaris | 19 |
11 | Siberian chipmunk | Eutamias sibiricus | 17 |
12 | Goat | Capra hircus | 6 |
13 | Nutria | Myocastor coypus | 4 |
14 | European fallow deer | Dama dama | 3 |
15 | Yellow-throated marten | Martes flavigula | 3 |
16 | Brown rat | Rattus norvegicus | 2 |
17 | Ussuri mole | Mogera robusta | 1 |
18 | Striped field mouse | Apodemus agrarius | 1 |
19 | Siberian Flying Squirrel | Pteromys volans aluco | 1 |
20 | - | unidentified (mammals) | 215 |
21 | Dog | Canis lupus familiaris * | 1016 |
22 | Cat | Felis catus * | 4661 |
23 | - | Birds, amphibians, reptiles, etc. * | 508 |
Grade | Kernel Values | Number of Area (%) |
---|---|---|
1 | 70.13–109.04 | 16 (32%) |
2 | 50.03–70.13 | 14 (28%) |
3 | 36.35–50.03 | 7 (14%) |
4 | 26.51–36.35 | 8 (16%) |
5 | 18.81–26.51 | 5 (10%) |
Hotspot No. | Province | Address | Hotspot Grade | Hotspot Length (km) | Distance to the Nearest Hotspot (km) | Speed Limit (km/h) |
---|---|---|---|---|---|---|
1 | Gangwon-do | Seongsan-myeon, Gangneung-si | 5 | 0.3 | 87.84 | 80 |
2 | Gangwon-do | Yeongwol-eup, Yeongwol-gun | 5 | 0.6 | 57.03 | 80 |
3 | Gangwon-do | Hoengseong-eup, Hoengseong-gun | 5 | 0.2 | 57.03 | 60 |
4 | Gyeonggi-do | Juksan-myeon, Anseong-si | 1 | 1.5 | 9.2 | 70 |
5 | Gyeonggi-do | Samjuk-myeon, Anseong-si | 3 | 0.7 | 9.2 | 70 |
6 | Gyeonggi-do | Yangseong-myeon, Anseong-si | 3 | 0.6 | 3.01 | 80 |
7 | Gyeonggi-do | Yangseong-myeon, Anseong-si | 2 | 0.7 | 3.01 | 80 |
8 | Gyeonggi-do | Idong-eup, Cheoin-gu, Yongin-si | 2 | 0.7 | 4.25 | 80 |
9 | Gyeonggi-do | Majang-myeon, Icheon-si | 2 | 0.6 | 26.33 | 70 |
10 | Gyeonggi-do | Poseung-eup, Pyeongtaek-si | 2 | 0.7 | 24.66 | 70 |
11 | Gyeongsangnam-do | Sadeung-myeon, Geoje-si | 5 | 1.0 | 38.28 | 70 |
12 | Gyeongsangnam-do | Sangni-myeon, Goseong-gun | 4 | 0.6 | 38.28 | 80 |
13 | Gyeongsangbuk-do | Sandong-myeon, Gumi-si | 4 | 0.8 | 6.47 | 80 |
14 | Gyeongsangbuk-do | Jangcheon-myeon, Gumi-si | 4 | 2.2 | 6.47 | 80 |
15 | Gyeongsangbuk-do | Ian-myeon, Sangju-si | 3 | 1.6 | 3.14 | 50 |
16 | Gyeongsangbuk-do | Gonggeom-myeon, Sangju-si | 2 | 0.7 | 3.14 | 80 |
17 | Gyeongsangbuk-do | Oeseo-myeon, Sangju-si | 2 | 1.7 | 4.25 | 80 |
18 | Gyeongsangbuk-do | Jangsu-myeon, Yeongju-si | 3 | 1.2 | 6.97 | 80 |
19 | Gyeongsangbuk-do | Anjeong-myeon, Yeongju-si | 4 | 1.4 | 10.78 | 80 |
20 | Gyeongsangbuk-do | Gamcheon-myeon, Yecheon-gun | 4 | 1.3 | 6.97 | 80 |
21 | Jeollanam-do | Namyang-myeon, Goheung-gun | 4 | 0.6 | 96.09 | 80 |
22 | Jeollanam-do | Seji-myeon, Naju-si | 5 | 0.5 | 86.20 | 80 |
23 | Jeollabuk-do | Haseo-myeon, Buan-gun | 4 | 0.6 | 67.08 | 80 |
24 | Jeollabuk-do | Ingye-myeon, Sunchang-gun | 4 | 0.6 | 36.21 | 80 |
25 | Jeollabuk-do | Gwanchon-myeon, Imsil-gun | 3 | 0.6 | 21.74 | 80 |
26 | Jeollabuk-do | Osu-myeon, Imsil-gun | 3 | 1.1 | 21.74 | 80 |
27 | Sejong-si | Jeonui-myeon, | 1 | 2.3 | 8.03 | 80 |
28 | Chungcheongnam-do | Gyeryong-myeon, Gongju-si | 2 | 1.0 | 22.15 | 70 |
29 | Chungcheongnam-do | Jeongan-myeon, Gongju-si | 1 | 1.0 | 7.30 | 70 |
30 | Chungcheongnam-do | Gwangdeok-myeon, Cheonan-si | 2 | 1.5 | 7.30 | 80 |
31 | Chungcheongnam-do | Gwangseok-myeon, Nonsan-si | 1 | 1.8 | 22.15 | 70 |
32 | Chungcheongnam-do | Pangyo-myeon, Seocheon-gun | 3 | 1.0 | 44.02 | 70 |
33 | Chungcheongnam-do | Sinpyeong-myeon, Dangjin-si | 1 | 1.1 | 24.66 | 70 |
34 | Chungcheongnam-do | Unsan-myeon, Seosan-si | 1 | 1.9 | 26.31 | 80 |
35 | Chungcheongnam-do | Sinchang-myeon, Asan-si | 1 | 2.2 | 3.61 | 80 |
36 | Chungcheongnam-do | Chosa-dong, Asan-si | 1 | 1.2 | 3.61 | 80 |
37 | Chungcheongnam-do | Songak-myeon, Asan-si | 1 | 2.0 | 14.71 | 60 |
38 | Chungcheongnam-do | Sinam-myeon, Yesan-gun | 1 | 0.8 | 14.25 | 80 |
39 | Chungcheongnam-do | Oga-myeon, Yesan-gun | 1 | 0.8 | 14.39 | 60 |
40 | Chungcheongnam-do | Deoksan-myeon, Yesan-gun | 2 | 1.2 | 14.39 | 70 |
41 | Chungcheongnam-do | Mokcheon-eup, Dongnam-gu, Cheonan-si | 2 | 1.3 | 23.65 | 70 |
42 | Chungcheongnam-do | Taean-eup, Taean-gun | 1 | 1.5 | 29.63 | 70 |
43 | Chungcheongbuk-do | Chilseong-myeon, Goesan-gun | 2 | 0.9 | 45.80 | 80 |
44 | Chungcheongbuk-do | Simcheon-myeon, Yeongdong-gun | 2 | 0.9 | 4.34 | 60 |
45 | Chungcheongbuk-do | Iwon-myeon, Okcheon-gun | 1 | 0.8 | 4.34 | 60 |
46 | Chungcheongbuk-do | Annae-myeon, Okcheon-gun | 1 | 0.7 | 12.96 | 70 |
47 | Chungcheongbuk-do | Gunbuk-myeon, Okcheon-gun | 2 | 0.7 | 11.97 | 80 |
48 | Chungcheongbuk-do | Dongi-myeon, Okcheon-gun | 2 | 0.6 | 6.74 | 60 |
49 | Chungcheongbuk-do | Iwol-myeon, Jincheon-gun | 1 | 0.7 | 8.76 | 80 |
50 | Chungcheongbuk-do | Munbaek-myeon, Jincheon-gun | 1 | 0.7 | 8.76 | 80 |
Hotspot Grade | Hotspot No. | Mitigation Measures | Roadkill Incidents | |||
---|---|---|---|---|---|---|
Type * | Length and Quantity | 2019 | 2021 | Reduction Rate, % (CI) | ||
1 | 50 | F, W, S | 8.6 km, 4, 4 | 19 | 6 | 68.4 (43.5–87.4) |
1 | 49 | F, W, S | 8.6 km, 4, 4 | 21 | 0 | 100.0 (83.9–100.0) |
1 | 46 | F | 1.7 km | 22 | 0 | 100.0 (84.6–100.0) |
1 | 45 | W | 2 | 22 | 2 | 90.9 (70.8–98.9) |
1 | 42 | F, S | 1.7 km, 1 | 43 | 2 | 95.3 (84.2–99.4) |
1 | 39 | F, W | 1.5 km, 2 | 22 | 3 | 86.4 (65.1–97.1) |
1 | 38 | F | 7.0 km | 29 | 1 | 96.6 (82.2–99.9) |
1 | 37 | W | 4 | 42 | 6 | 85.7 (71.5–94.6) |
1 | 36 | F | 9.8 km | 39 | 2 | 94.9 (82.7–99.4) |
1 | 35 | F | 45 | 9 | 80.0 (65.4–90.4) | |
1 | 34 | F | 4.4 km | 47 | 6 | 87.2 (74.3–95.2) |
1 | 33 | F | 3.5 km | 29 | 1 | 96.6 (82.2–99.9) |
1 | 31 | F, S | 4.0 km, 4 | 56 | 11 | 80.4 (67.6–89.8) |
1 | 27 | F | 4.4 km | 47 | 25 | 46.8 (32.1–61.9) |
1 | 4 | W | 4 | 22 | 4 | 81.8 (59.7–94.8) |
1 | 29 | F, S | 4.6 km, 4 | 38 | 9 | 76.3 (59.8–88.6) |
2 | 30 | F, S | 33 | 7 | 78.8 (61.1–91.0) | |
2 | 48 | W | 2 | 14 | 1 | 92.9 (66.1–99.8) |
2 | 47 | F | 6.4 km | 18 | 3 | 83.3 (58.6–96.4) |
2 | 44 | F | 1.9 km | 22 | 0 | 100.0 (84.6–100.0) |
2 | 43 | F | 3.5 km | 21 | 4 | 81.0 (58.1–94.6) |
2 | 41 | F | 5.0 km | 33 | 0 | 100.0 (89.4–100.0) |
2 | 40 | W | 2 | 26 | 5 | 80.8 (60.7–93.5) |
2 | 28 | F, W | 3.4 km, 1 | 25 | 9 | 64.0 (42.5–82.0) |
2 | 17 | F | 11.0 km | 30 | 1 | 96.7 (82.8–99.9) |
2 | 10 | W | 6 | 15 | 1 | 93.3 (68.1–99.8) |
2 | 9 | F, W | 2.3 km, 2 | 14 | 0 | 100.0 (76.8–100.0) |
2 | 8 | F, W | 7.1 km, 6 | 15 | 8 | 46.7 (21.3–73.4) |
2 | 7 | F | 3.2 km | 14 | 9 | 35.7 (12.8–64.9) |
2 | 16 | F | 12.4 km | 28 | 0 | 100.0 (87.7–100.0) |
3 | 15 | F | 32 | 0 | 100.0 (89.1–100.0) | |
3 | 32 | F | 4.0 km | 21 | 6 | 71.4 (0.5–88.7) |
3 | 26 | W | 4 | 30 | 26 | 13.3 (0.0–30.7) |
3 | 25 | W | 2 | 11 | 1 | 90.9 (58.7–99.8) |
3 | 18 | F | 8.0 km | 34 | 7 | 79.4 (62.1–91.3) |
3 | 6 | W, S | 6, 4 | 14 | 0 | 100.0 (76.8–100.0) |
3 | 5 | W | 10 | 11 | 4 | 63.6 (30.8–89.1) |
4 | 24 | F | 1.3 km | 11 | 2 | 81.8 (48.2–97.7) |
4 | 23 | F | 5.0 km | 11 | 0 | 100.0 (71.5–100.0) |
4 | 21 | F | 6.4 km | 13 | 1 | 92.3 (64.0–99.8) |
4 | 20 | F, W | 10.1 km, 2 | 23 | 12 | 47.8 (26.8–0.7) |
4 | 19 | F, W | 9.4 km, 4 | 20 | 2 | 90.0 (68.3–98.8) |
4 | 14 | F | 18.0 km | 33 | 5 | 84.8 (68.1–94.9) |
4 | 13 | F | 15 | 3 | 80.0 (51.9–95.7) | |
4 | 12 | F | 6.4 km | 10 | 1 | 90.0 (55.5–99.8) |
5 | 22 | W | 4 | 11 | 2 | 81.8 (48.2–97.7) |
5 | 11 | S | 4 | 16 | 15 | 6.3 (0.2–30.2) |
5 | 3 | F | 6.0 km | 7 | 5 | 28.6 (3.7–71.0) |
5 | 2 | S | 2 | 13 | 9 | 30.8 (9.1–61.4) |
5 | 1 | W | 4 | 10 | 1 | 90.0 (55.5–99.8) |
Total | 1197 | 237 | 80.2 (77.8–82.4) |
Hotspot Grade | No. of Areas | Roadkill Incidents | Reduction Rate, % (CI) | |
---|---|---|---|---|
2019 | 2021 | |||
2 | 14 | 308 | 48 | 84.4 (79.9–88.3) |
1 | 16 | 543 | 87 | 84.0 (80.6–87.0) |
4 | 8 | 136 | 26 | 80.9 (73.3–87.1) |
3 | 7 | 153 | 44 | 71.2 (63.4–78.3) |
5 | 5 | 57 | 32 | 43.7 (30.7–57.6) |
Total | 50 | 1197 | 237 | 80.2 (77.8–82.4) |
Mitigation Measures * | No. of Areas | Roadkill Incidents | Reduction Rate, % (CI) | |
---|---|---|---|---|
2019 | 2021 | |||
W, S | 1 | 14 | 0 | 100.0 (76.8–100.0) |
F | 24 | 611 | 91 | 85.1 (82.0–87.8) |
F, W, S | 2 | 40 | 6 | 85.0 (70.2–94.3) |
F, S | 4 | 170 | 29 | 82.9 (76.4–88.3) |
W | 11 | 214 | 53 | 75.2 (68.9–80.9) |
F, W | 6 | 119 | 34 | 71.4 (62.4–79.3) |
S | 2 | 29 | 24 | 17.2 (5.9–35.8) |
Total | 50 | 1197 | 237 | 80.2 (77.8–82.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.R.; Kim, K.; Song, E. An Analysis of the Effectiveness of Mitigation Measures at Roadkill Hotspots in South Korea. Diversity 2023, 15, 1199. https://doi.org/10.3390/d15121199
Kim IR, Kim K, Song E. An Analysis of the Effectiveness of Mitigation Measures at Roadkill Hotspots in South Korea. Diversity. 2023; 15(12):1199. https://doi.org/10.3390/d15121199
Chicago/Turabian StyleKim, Il Ryong, Kihyun Kim, and Euigeun Song. 2023. "An Analysis of the Effectiveness of Mitigation Measures at Roadkill Hotspots in South Korea" Diversity 15, no. 12: 1199. https://doi.org/10.3390/d15121199
APA StyleKim, I. R., Kim, K., & Song, E. (2023). An Analysis of the Effectiveness of Mitigation Measures at Roadkill Hotspots in South Korea. Diversity, 15(12), 1199. https://doi.org/10.3390/d15121199