Advancing Forensic Chemical Analysis to Classify Wild and Captive Turtles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Stable Isotope Analyses
2.2.1. δ13C and δ15N Analysis
2.2.2. δ2H and δ18O
2.3. Trace Element Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fry, B. Stable Isotope Ecology; Springer: New York, NY, USA, 2006; Volume 521. [Google Scholar]
- Natusch, D.J.D.; Carter, J.F.; Aust, P.W.; Tri, N.V.; Tinggi, U.; Riyanto, A.; Lyons, J.A. Serpent’s Source: Determining the Source and Geographic Origin of Traded Python Skins Using Isotopic and Elemental Markers. Biol. Conserv. 2017, 209, 406–414. [Google Scholar] [CrossRef]
- Jiguet, F.; Kardynal, K.J.; Hobson, K.A. Stable isotopes reveal captive vs. wild origin of illegally captured songbirds in France. Forensic Sci. Int. 2019, 302, 109884. [Google Scholar] [CrossRef]
- Castelli, P.M.; Reed, L.M. Use of Stable Isotopes to Distinguish Wild from Pen-Raised Northern Bobwhite. Wildl. Soc. Bull. 2017, 41, 140–145. [Google Scholar] [CrossRef]
- van Schingen, M.; Ziegler, T.; Boner, M.; Streit, B.; Nguyen, Q.T.; Crook, V.; Ziegler, S. Can isotope markers differentiate between wild and captive reptile populations? A case study based on crocodile lizards (Shinisaurus crocodilurus) from Vietnam. Glob. Ecol. Conserv. 2016, 6, 232–241. [Google Scholar] [CrossRef]
- Cerling, T.E.; Andanje, S.A.; Gakuya, F.; Kariuki, J.M.; Kariuki, L.; Kingoo, J.W.; Khayale, C.; Lekolool, I.; Macharia, A.N.; Anderson, C.R.; et al. Stable isotope ecology of black rhinos (Diceros bicornis) in Kenya. Oecologia 2018, 187, 1095–1105. [Google Scholar] [CrossRef]
- Hopkins, J.B., III; Frederick, C.A.; Yorks, D.; Pollock, E.; Chatfield, M.W. Forensic application of stable isotopes to distinguish between wild and captive turtles. Biology 2022, 11, 1728. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.R.; Lynch, J.M.; Balazs, G.H.; Jones, T.T.; Pawloski, J.; Rice, M.R.; French, A.D.; Liu, J.; Cobb, G.P.; Klein, D.M. Trace element concentrations in blood and scute tissues from wild and captive Hawaiian green sea turtles (Chelonia mydas). Environ. Toxicol. Chem. 2021, 40, 208–218. [Google Scholar] [CrossRef]
- UNODC. World Wildlife Crime Report; UNODC: Vienna, Austria, 2016; p. 9. [Google Scholar]
- Jones, M.T.; Willey, L.L. Status and Conservation of the Wood Turtle in the Northeastern United States; Northeast Association of Fish and Wildlife Agencies’ Regional Conservation Needs Program: Cabot, VT, USA, 2015; 271p. [Google Scholar]
- Jones, M.T.; Willey, L.L.; Mays, J.D.; Akre, T.S.B.; Tamplin, J.W.; Gipe, K.D.; Burne, M.R.; Kleopfer, J.D.; Badje, A. Habitat in Biology and Conservation of the Wood Turtle; Northeast Association of Fish and Wildlife Agencies, Inc.: Petersburgh, NY, USA, 2021; pp. 81–111. [Google Scholar]
- Willey, L.L.; Akre, T.S.B.; Jones, M.T.; Browm, D.J.; Tamplin, J.W. Chapter 6: Spatial Ecology and Seasonal Behavior. In Biology and Conservation of the Wood Turtle; Jones, M.T., Willey, L.L., Eds.; Northeast Association of Fish and Wildlife Agencies, Inc.: Petersburgh, NY, USA, 2021. [Google Scholar]
- Hopkins, J.B., III; Cutting, K.A.; Warren, J.M. Use of Stable Isotopes to Investigate Keratin Deposition in the Claw Tips of Ducks. PLoS ONE 2013, 8, e81026. [Google Scholar] [CrossRef]
- Aresco, M.J.; Travis, J.; MacRae, P.S.D. Trophic Interactions of Turtles in a North Florida Lake Food Web: Prevalence of Omnivory. Copeia 2015, 103, 343–356. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 5 June 2023).
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. Available online: https://www.jstatsoft.org/v33/i01/ (accessed on 5 June 2023). [CrossRef]
- Estep, M.F.; Dabrowski, H. Tracing food webs with stable hydrogen isotopes. Science 1980, 209, 1537–1538. [Google Scholar] [CrossRef]
- Hobson, K.A. Tracing Origins and Migration of Wildlife Using Stable Isotopes: A Review. Oecologia 1999, 120, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.J.; Wassenaar, L.I.; Hobson, K.A. Global Application of Stable Hydrogen and Oxygen Isotopes to Wildlife Forensics. Oecologia 2005, 143, 337–348. [Google Scholar] [CrossRef]
- Hobson, K.A.; Wassenaar, L.I. Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 1996, 109, 142–148. [Google Scholar] [CrossRef]
- Rubenstein, D.R.; Hobson, K.A. From birds to butterflies: Animal movement patterns and stable isotopes. Trends Ecol. Evol. 2004, 19, 256263. [Google Scholar] [CrossRef]
- Koch, P.L. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; pp. 99–154. [Google Scholar]
- Ricketts, V.; Dierenfeld, E.S.; Sauer, C.; Whitehouse-Tedd, K. Feed intake and dietary composition of iron (Fe), copper (Cu), vitamin E, and tannic acid of five captive black rhinoceros (Diceros bicornis) in a UK collection. Zoo Biol. 2021, 40, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Augustine, L.K.; Terrell, A.; Petzinger, C.; Nissen, B.; Maslanka, M. Nutritional analysis of diet items available to captive and free-ranging hellbenders (Cryptobranchus alleganiensis). Herpetol. Rev. 2016, 47, 63–69. [Google Scholar]
- Fong, J.J.; Sung, Y.H.; Ding, L. Comparative analysis of the fecal microbiota of wild and captive beal’s eyed turtle (Sacalia bealei) by 16S rRNA gene sequencing. Front. Microbiol. 2020, 11, 570890. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N. Removal of iron for safe drinking water. Desalination 2012, 303, 1–11. [Google Scholar] [CrossRef]
- Malakootian, M.; Mansoorian, H.J.; Moosazadeh, M. Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water. Desalination 2010, 255, 67–71. [Google Scholar] [CrossRef]
- Flem, B.; Moen, V.; Finne, T.E.; Viljugrein, H.; Kristoffersen, A.B. Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries. Fish. Res. 2017, 190, 183–196. [Google Scholar] [CrossRef]
- Guo, X.; Zuo, R.; Meng, L.; Wang, J.; Teng, Y.; Liu, X.; Chen, M. Seasonal and spatial variability of anthropogenic and natural factors influencing groundwater quality based on source apportionment. Int. J. Environ. Res. Public Health 2018, 15, 279. [Google Scholar] [CrossRef] [PubMed]
- Gray, T.N.; Marx, N.; Khem, V.; Lague, D.; Nijman, V.; Gauntlett, S. Holistic management of live animals confiscated from illegal wildlife trade. J. Appl. Ecol. 2017, 54, 726–730. [Google Scholar] [CrossRef]
Model | |||
---|---|---|---|
Predictors | SI Ratio (n = 73) | Trace Element (n = 71) | Combined (n = 59) |
Intercept | −39.939 | −6.125 | −69.656 |
δ13C | −2.320 | −3.140 | |
δ15N | −0.896 | −1.585 | |
δ2H | 0.087 | 0.003 | |
δ18O | −0.227 | −0.768 | |
Magnesium-24 | 0.006 | 0.001 | |
Aluminium-27 | |||
Potassium-39 | −0.001 | ||
Calcium-43 | |||
Calcium-44 | |||
Titanium-48 | |||
Manganese-55 | 0.019 | ||
Iron-57 | 0.041 | 0.027 | |
Nickel-60 | |||
Zinc-66 | 0.002 | 0.035 | |
Strontium-88 | |||
Barium-137 | −0.727 | −0.791 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hopkins, J.B., III; Frederick, C.A.; Yorks, D.; Pollock, E.; Chatfield, M.W.H. Advancing Forensic Chemical Analysis to Classify Wild and Captive Turtles. Diversity 2023, 15, 1056. https://doi.org/10.3390/d15101056
Hopkins JB III, Frederick CA, Yorks D, Pollock E, Chatfield MWH. Advancing Forensic Chemical Analysis to Classify Wild and Captive Turtles. Diversity. 2023; 15(10):1056. https://doi.org/10.3390/d15101056
Chicago/Turabian StyleHopkins, John B., III, Cheryl A. Frederick, Derek Yorks, Erik Pollock, and Matthew W. H. Chatfield. 2023. "Advancing Forensic Chemical Analysis to Classify Wild and Captive Turtles" Diversity 15, no. 10: 1056. https://doi.org/10.3390/d15101056
APA StyleHopkins, J. B., III, Frederick, C. A., Yorks, D., Pollock, E., & Chatfield, M. W. H. (2023). Advancing Forensic Chemical Analysis to Classify Wild and Captive Turtles. Diversity, 15(10), 1056. https://doi.org/10.3390/d15101056