Comparing the Effectiveness of Biodiversity Conservation across Different Regions at County Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
- (1)
- (2)
- Computing the reference condition index. To eliminate the background difference, a reference condition index was computed to represent the biological background based on the idea of the reference ecosystem.
- (3)
- Computing the conservation effectiveness index. The conservation effectiveness index can be constructed based on the reference condition index.
2.3.1. Proxy for Biodiversity
2.3.2. Reference Condition Index
2.3.3. Conservation Effectiveness Index
3. Results
3.1. Ecological Background of the BNKEFAs
3.2. Temporal Trends in HQ and CEI across Different BNKEFAs
3.3. CEI across Counties
3.4. Change in CEI from 1980 to 2018
4. Discussion
4.1. Significance of Comparative Assessment of Biodiversity Conservation across BNKEFAs at the County Scale
4.2. Implications for Management
4.3. Limitations of this Study
5. Conclusions
- The ecological background was well reflected by our RCI. For the RCI values of the seven BNKEFAs, the following order was observed: HND > SJPY > QB > WLS > ZDN > CD > ZXB.
- The CEI value was computed as the difference between the habitat quality of a BNKEFA and its corresponding RCI, so the CEI eliminated the ecological background difference. In the comparative results for the CEI, the order was ZXB > HND > ZDN > WLS > QB > CD > SJPY.
- Taibai County in QB had the biggest CEI, while Fujin City in SJPY had the smallest CEI. The difference in CEI in different counties could reflect the biodiversity conservation efforts of their administrative departments. This will stimulate enthusiasm for protecting biodiversity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAs | Protected areas |
BACI | Before–After–Control–Intervention |
BNKEFAs | Biodiversity National Key Ecological Functional Areas |
CD | Forest and Biodiversity Ecological Function Area of Yunnan and Sichuan |
HND | Tropical Rainforest Ecological Function Area in Mountain Areas in the Middle of Hainan Island |
QB | Biodiversity Ecological Function Area of Qinba Mountain |
SJPY | Wetland Ecological Function Area of the Three River Plain |
WLS | Biodiversity and Soil Conservation Ecological Function Area in Wuling Mountain |
ZDN | Forest Ecological Function Area on the Edge of the Plateau in the Southeast of Tibet |
ZXB | Desert Ecological Function Area on the Northwest Qiangtang Plateau |
HQ | Habitat quality |
CEI | Conservation effectiveness index |
RCI | Reference condition index |
References
- Rull, V. Biodiversity crisis or sixth mass extinction? Does the current anthropogenic biodiversity crisis really qualify as a mass extinction? Embo Rep. 2022, 23, e54193. [Google Scholar] [CrossRef] [PubMed]
- Chape, S.; Harrison, J.; Spalding, M.; Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. B 2005, 360, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, B.W.; Gaston, K.J.; Chown, S.L. Local scale comparisons of biodiversity as a test for global protected area ecological performance: A meta-analysis. PLoS ONE 2014, 9, e105824. [Google Scholar] [CrossRef]
- Gaston, K.J.; Jackson, S.F.; Cantú-Salazar, L.; Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 93–113. [Google Scholar] [CrossRef]
- Loos, J. Reconciling conservation and development in protected areas of the global south. Basic Appl. Ecol. 2021, 54, 108–118. [Google Scholar] [CrossRef]
- UNEP-WCMC; IUCN; NGS. Protected Planet Live Report 2021; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland; NGS: Washington, DC, USA, 2021. [Google Scholar]
- Adams, V.M.; Iacona, G.D.; Possingham, H.P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2019, 2, 404–411. [Google Scholar] [CrossRef]
- Reed, J.; Oldekop, J.; Barlow, J.; Carmenta, R.; Geldmann, J.; Ickowitz, A.; Narulita, S.; Rahman, S.A.; Van Vianen, J.; Yanou, M. The extent and distribution of joint conservation-development funding in the tropics. One Earth 2020, 3, 753–762. [Google Scholar] [CrossRef]
- Wilson, K.A.; McBride, M.F.; Bode, M.; Possingham, H.P. Prioritizing global conservation efforts. Nature 2006, 440, 337–340. [Google Scholar] [CrossRef]
- Fan, J.; Sun, W.; Zhou, K.; Chen, D. Major function oriented zone: New method of spatial regulation for reshaping regional development pattern in china. Chin. Geogr. Sci. 2012, 22, 196–209. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, L.J.; Peng, W.J.; Zhang, C.P.; Li, C.; Robinson, B.E.; Wu, X.C.; Kong, L.Q.; Li, R.N.; Xiao, Y.; et al. Realizing the values of natural capital for inclusive, sustainable development: Informing china’s new ecological development strategy. Proc. Natl. Acad. Sci. USA 2019, 116, 8623–8628. [Google Scholar] [CrossRef]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Viña, A.; Winkler, J.A.; Chung, M.G.; Huang, Q.; Dou, Y.; McShea, W.J.; Songer, M.; Zhang, J.; Liu, J. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 2021, 777, 145995. [Google Scholar] [CrossRef] [PubMed]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef]
- Meng, Z.Q.; Dong, J.W.; Zhai, J.; Huang, L.; Liu, M.; Eills, E.C. Effectiveness in protected areas at resisting development pressures in China. Appl. Geogr. 2022, 141, 102682. [Google Scholar] [CrossRef]
- Gray, C.L.; Hill, S.L.; Newbold, T.; Hudson, L.N.; Börger, L.; Contu, S.; Hoskins, A.J.; Ferrier, S.; Purvis, A.; Scharlemann, J.P. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016, 7, 12306. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Cherkaoui, I.; Goedhart, P.W.; van der Hout, J.; Lammertsma, D. Waterbirds increase more rapidly in ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 2014, 51, 289–298. [Google Scholar] [CrossRef]
- Gaveau, D.L.; Wandono, H.; Setiabudi, F. Three decades of deforestation in southwest sumatra: Have protected areas halted forest loss and logging, and promoted re-growth? Biol. Conserv. 2007, 134, 495–504. [Google Scholar] [CrossRef]
- Laurance, W.F.; Camargo, J.L.; Luizão, R.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Williamson, G.B.; Benítez-Malvido, J.; Vasconcelos, H.L. The fate of amazonian forest fragments: A 32-year investigation. Biol. Conserv. 2011, 144, 56–67. [Google Scholar] [CrossRef]
- Liu, J.G.; Linderman, M.; Ouyang, Z.Y.; An, L.; Yang, J.; Zhang, H.M. Ecological degradation in protected areas: The case of wolong nature reserve for giant pandas. Science 2001, 292, 98–101. [Google Scholar] [CrossRef]
- Reyes Arriagada, R.; Hiriart Bertrand, L.; Riquelme, V.; Simeone, A.; Pütz, K.; Lüthi, B.; Raya Rey, A.N. Population trends of a mixed-species colony of humboldt and magellanic penguins in southern chile after establishing a protected area. Avian Conserv. Ecol. 2013, 8, 13–23. [Google Scholar] [CrossRef]
- Barnes, M.D.; Craigie, I.D.; Harrison, L.B.; Geldmann, J.; Collen, B.; Whitmee, S.; Balmford, A.; Burgess, N.D.; Brooks, T.; Hockings, M. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 2016, 7, 12747. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Carolina Useche, D.; Rendeiro, J.; Kalka, M.; Bradshaw, C.J.; Sloan, S.P.; Laurance, S.G.; Campbell, M.; Abernethy, K.; Alvarez, P. Averting biodiversity collapse in tropical forest protected areas. Nature 2012, 489, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Terraube, J.; Helle, P.; Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 2020, 11, 2957. [Google Scholar] [CrossRef] [PubMed]
- Wauchope, H.S.; Jones, J.P.; Geldmann, J.; Simmons, B.I.; Amano, T.; Blanco, D.E.; Fuller, R.A.; Johnston, A.; Langendoen, T.; Mundkur, T. Protected areas have a mixed impact on waterbirds, but management helps. Nature 2022, 605, 103–107. [Google Scholar] [CrossRef]
- Feng, C.T.; Cao, M.; Liu, F.Z.; Zhou, Y.; Du, J.H.; Zhang, L.B.; Huang, W.J.; Luo, J.W.; Li, J.S.; Wang, W. Improving protected area effectiveness through consideration of different human-pressure baselines. Conserv. Biol. 2022, 36, e13887. [Google Scholar] [CrossRef]
- Gatiso, T.T.; Kulik, L.; Bachmann, M.; Bonn, A.; Bösch, L.; Eirdosh, D.; Freytag, A.; Hanisch, S.; Heurich, M.; Sop, T. Effectiveness of protected areas influenced by socio-economic context. Nat. Sustain. 2022, 5, 861–868. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, K.; Liu, H.; Cheng, T.F.; He, D. Research on transfer payment of national key ecological function regions—Taking five counties in gansu and two counties in inner mongolia as examples. For. Econ. 2017, 3, 3–15. [Google Scholar]
- Liu, G.H.; Wen, Y.H.; Xie, J.; Liu, H.J. Evolution of transfer payment policy for national key ecological function areas and suggestions for improvement. Environ. Prot. 2020, 48, 9–14. [Google Scholar]
- Dong, K.K.; Hou, G.L.; Xu, D.D.; He, H.L.; Liu, Z.L. A method to compare the biodiversity conservation effectiveness between regions based on a reference condition. Sustainability 2018, 10, 3694. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Liu, Z.L.; Hou, G.L.; Dong, K.K.; Zhang, Y.H.; Yang, C.B. Period-oriented spatial comparative evaluation of biodiversity conservation effectiveness in China. Front. Ecol. Evol. 2022, 10, 1031008. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. National Key Functional Zoning Plan. 2010. Available online: http://files.in5.cn/202005/%E5%85%A8%E5%9B%BD%E4%B8%BB%E4%BD%93%E5%8A%9F%E8%83%BD%E5%8C%BA%E8%A7%84%E5%88%92.pdf (accessed on 1 February 2023).
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Cheng, W.M. Effects of land use/cover on regional habitat quality under different geomorphic types based on invest model. Remote Sens. 2022, 14, 1279. [Google Scholar] [CrossRef]
- Wu, L.L.; Sun, C.G.; Fan, F.L. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—A case study from Guangdong–Hong Kong–Macao greater bay area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Kreuter, U.P.; Güneralp, İ.; Filippi, A.M. Spatial and temporal changes in biodiversity and ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Sci. Total Environ. 2018, 619–620, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Jiang, Z.; Liu, F.; Zhang, D.Z. Monitoring spatio-temporal dynamics of habitat quality in Nansihu lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- Tang, L.P.; Ke, X.L.; Chen, Y.Y.; Wang, L.Y.; Zhou, Q.S.; Zheng, W.W.; Xiao, B.Y. Which impacts more seriously on natural habitat loss and degradation? Cropland expansion or urban expansion? Land Degrad. Dev. 2021, 32, 946–964. [Google Scholar] [CrossRef]
- He, J.H.; Huang, J.L.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.H.; Fan, Z.Y.; Zhang, X.M.; Liu, G.; Wen, W.Y.; Zhang, L. Measuring the effectiveness of protected area management by comparing habitat utilization and threat dynamics. Biol. Conserv. 2017, 210, 253–260. [Google Scholar] [CrossRef]
- Feng, Y.H.; Wang, Y.P.; Su, H.J.; Pan, J.M.; Sun, Y.F.; Zhu, J.L.; Fang, J.Y.; Tang, Z.Y. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecol. Indic. 2021, 130, 108078. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.W.; Cherubini, F.; Hu, X.P.; Pereira, P. Effectiveness of protected areas edges on vegetation greenness, cover and productivity on the Tibetan Plateau, China. Landsc. Urban Plan. 2022, 224, 104421. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef]
Original Land Use Classification | Land Use Reclassification | |
---|---|---|
1st-Level Classes | 2nd-Level Classes | |
1 Cropland | 11 Paddy land | 1 Cropland 11,12 |
12 Dry land | ||
2 Forestland | 21 Forest | 2 Forestland 21,24 |
22 Shrub | 3 Shrub 22 | |
23 Open Forest savanna | 4 Open forest savanna 23 | |
24 Others | ||
3 Grassland | 31 Dense grass | 5 Grassland 31, 32, 33 |
32 Moderate grass | ||
33 Sparse grass | ||
4 Water body | 41 Stream and rivers | 6 Wetlands 41, 42, 43, 44, 45, 46, 64 |
42 Lakes | ||
43 Reservoir and ponds | ||
44 Permanent ice and snow | ||
45 Beach and shore | ||
46 Bottomland | ||
5 Built-up areas | 51 Urban built-up | 7 Urban built-up 51 |
52 Rural settlements | 8 Rural settlements 52 | |
53 Others | 9 Others 53 | |
6 Unused land | 61 Sandy land | 10 Unused land 61, 62, 63, 65, 66, 67 |
62 Gobi | ||
63 Salina | ||
64 Swampland | ||
65 Bare soil | ||
66 Bare rock | ||
67 Others |
Land Use/Land Cover Type | Habitat | Cropland | Urban Built-up | Rural Settlements | Construction Land |
---|---|---|---|---|---|
Forestland | 0.95 | 0.60 | 0.90 | 0.85 | 0.90 |
Shrub | 0.60 | 0.60 | 0.65 | 0.60 | 0.65 |
Open forest savanna | 0.50 | 0.20 | 0.60 | 0.55 | 0.60 |
Grassland | 0.60 | 0.40 | 0.47 | 0.80 | 0.80 |
Wetlands | 1.00 | 0.70 | 0.70 | 0.65 | 0.70 |
Unused land | 0.10 | 0.10 | 0.30 | 0.30 | 0.30 |
Cropland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Urban built-up | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rural settlements | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Construction land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Threat | Max Distance | Weight | Decay |
---|---|---|---|
Cropland | 7 | 0.8 | exponential |
Urban built-up | 10 | 0.95 | exponential |
Rural settlements | 9 | 0.9 | exponential |
Construction land | 10 | 1 | exponential |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Chen, Z.; Li, Y.; Hou, G.; Liu, Z. Comparing the Effectiveness of Biodiversity Conservation across Different Regions at County Scale. Diversity 2023, 15, 1043. https://doi.org/10.3390/d15101043
Dong K, Chen Z, Li Y, Hou G, Liu Z. Comparing the Effectiveness of Biodiversity Conservation across Different Regions at County Scale. Diversity. 2023; 15(10):1043. https://doi.org/10.3390/d15101043
Chicago/Turabian StyleDong, Kaikai, Ziqi Chen, Ying Li, Guanglei Hou, and Zhaoli Liu. 2023. "Comparing the Effectiveness of Biodiversity Conservation across Different Regions at County Scale" Diversity 15, no. 10: 1043. https://doi.org/10.3390/d15101043
APA StyleDong, K., Chen, Z., Li, Y., Hou, G., & Liu, Z. (2023). Comparing the Effectiveness of Biodiversity Conservation across Different Regions at County Scale. Diversity, 15(10), 1043. https://doi.org/10.3390/d15101043