The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery
Abstract
:1. Introduction
2. The Overview of the Deep-Sea Biosphere and Novelty
2.1. The Deep-Sea Habitats and Biodiversity: A Realm of Uncharted Biowealth
2.2. The Deep-Sea Actinobacteria: A Biogenic Repository of Specialized Metabolites
2.3. Genomic Insights of Deep-Sea Actinobacteria: Unveiling the Hidden Biosynthetic Gene Clusters
2.4. Novel Species and Compounds of Deep-Sea Actinomycetes
Novel Species | Family | Source, Depth, and Geographic Location | Ref. |
---|---|---|---|
Amycolatopsis albispora (KCTC 39642T = MCCC 1A10745T) | Pseudonocardiaceae | Sediment at 2945 m The Indian Ocean | [97] |
Brevibacterium sediminis (CGMCC 1.15472T = DSM 102229T) | Brevibacteriaceae | Sediment at 3690 m The Carlsberg Ridge | [98] |
Kocuria oceani (CGMCC 4.6946T = DSM 24949T) | Micrococcaceae | Hydrothermal plume at 2800 m The Southwest Indian Ridge | [99] |
Pseudonocardia profundimaris (MCCC 1A10574T = KCTC 39641T) | Pseudonocardiaceae | Sediment at 7118 m The Western Pacific Ocean | [100] |
Rubrobacter indicoceani DSM 105148T = CGMCC 1.16398T) | Rubrobacteraceae | Sediment at 4602 m The Indian Ocean | [101] |
Rubrobacter tropicus (KCTC 49412T = CGMCC 1.13853T) & Rubrobacter marinus (KCTC 49411T = CGMCC 1.13852T) | Rubrobacteraceae | Sediment at 3448 m The South China Sea | [102] |
Nesterenkonia salmonea (KCTC 39639T = MCCC 1A11256T) & Nesterenkonia sphaerica (KCTC 39640T = MCCC 1A10688T) | Micrococcaceae | Sediment at 3223 and 2859 m The Southern Atlantic Ocean | [103] |
Micromonospora pelagivivens (NBRC 113519T = TBRC 9233T) | Micromonosporaceae | Sediment at 226 m Kagoshima, Japan | [104] |
Actinomarinicola tropica (KCTC 49408T = CGMCC 1.17503T) | Lamiaceae | Sediment at 460 m The South China Sea | [105] |
Brevibacterium profundi (JCM 33845T = MCCC 1A16744T) | Brevibacteriaceae | Sediment at 7068 m The Western Pacific Ocean | [106] |
Micromonospora provocatoris (NCIMB 15245T = TISTR 2834T) | Micromonosporaceae | Sediment at 10,898 m The Mariana Trench | [80] |
Marinisubtillis pacificus (CGMCC 1.17143T = KCTC 49299T) | Microbacteriaceae | Seawater at 400 m The Tropical Western Pacific Ocean | [107] |
Microcella flavibacter (KCTC 39637T = MCCC 1A07099T) | Microbacteriaceae | Sediment at 3039 m The Indian Ocean | [108] |
Chryseoglobus indicus (JCM 33842T = MCCC 1A16619T) | Microbacteriaceae | Deep-sea water (depth not stated) The Indian Ocean | [109] |
Pseudonocardia abyssalis (DSM 111918T = NCIMB 15270T) & Pseudonocardia oceani (DSM 111919T = NCIMB 15269T) | Pseudonocardiaceae | Sediment at 4539 and 4060 m The Southern Ocean | [110] |
Streptomyces bathyalis (DSM 106605T = NCCB 100657T) | Streptomycetaceae | Sponge at 1000–4000 m The North Atlantic Ocean | [111] |
Nesterenkonia sedimenti (LMG 28111T = MCCC 1A09979T = JCM 19767T = CGMCC 1.12784T) | Micrococcaceae | Sediment (depth not stated) The Western Pacific Ocean | [112] |
Micromonospora ferruginea (NCTC 14469T = DSMZ 111791T) | Micromonosporaceae | Sponge at 971 m The Atlantic Ocean | [82] |
Miltoncostaea marina (DSM 110281T = CGMCC 1.18757T) & Miltoncostaea oceani (KCTC 49527T = CGMCC 1.18758T) | Miltoncostaeaceae | Sediment at 460 and 323 m The South China Sea | [113] |
Mycetocola spongiae (MCCC 1K06265T = KCTC 49701T) | Microbacteriaceae | Sponge at 2681 m The Mariana Trench | [114] |
Name and Structure | Chemical Group | Region, Depth, Organism, and Bioactivity | Ref. |
---|---|---|---|
Phenolics | The Southwestern Indian Ocean; 1654 m; Williamsia sp. MCCC 1A11233; no bioactive test. | [95] | |
Diketopiperazine | The South China Sea; 3536 m; Streptomyces sp. SCSIO 04496; no cytotoxic activity (concentration: 100 µM) against five tumor cell lines including SF-268, MCF-7, NCI-H460, HepG-2, and LX-2 cells. | [116] | |
Dioic acid | The South China Sea; 3536 m; Streptomyces somaliensis SCSIO ZH66; no cytotoxic activity against the hepatic carcinoma cell line (Huh 7.5). | [117] | |
Bisindole pyrroles spiroindimicins | The Tautra Ridge in the Trondheim fjord, Norway; 450 m; Streptomyces sp. MP131-18; no antibacterial activity against Escherichia coli, Bacillus subtilis, and Pseudomonas putida. Spiroindimicin E displays weak cytotoxic activity against the growth of T24 bladder carcinoma cells. | [118] | |
Macrolide | The Cantabrian Sea; 3000 m; Pseudonocardia carboxydivorans M-227; antibacterial activity against the panel of Gram-positive bacteria (Corynebacterium urealyticum, Clostridium perfringens, and Micrococcus luteus) and Gram-negative bacterium (Neisseria meningitidis). | [119] | |
Diketopiperazine | Deep-sea sediment (region and depth not specify); Nocardiopsis sp. YIM M13066; displaying cytotoxic activity against human cancer cell lines (H1299, HeLa, HL7702, MCF-7, PC3, and U251). | [120] | |
Glycosylated paulomycins | Submarine Aviles Canyon; 1800 m; Micromonospora matsumotoense M-412; displaying strong cytotoxic activity against various human tumor cell lines (pancreatic adenocarcinoma (MiaPaca_2), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (HepG2)). | [84] | |
Spirotetronate | Submarine Aviles Canyon; 1800 m; Streptomyces sp. M-207; displaying cytotoxic activity against human tumor cell lines (pancreatic adenocarcinoma (MiaPaca_2), and breast adenocarcinoma (MCF-7)); Moderate and selective antibacterial activity against Staphylococcus aureus. | [121] | |
Novel indole | The Southwestern Indian Ocean; 1603 m; Microbacterium sp. MCCC 1A11207; no significant cytotoxic activity against RBL-2H3 cells and no anti-allergic activity against RBL-2H3 cells. | [122] | |
Novel cyclic ether | The Eastern Pacific Ocean; 5302 m; Nesterenkonia flava MCCC 1K00610; moderate anti-allergic activity against RBL-2H3 cells. | [123] | |
Nocapyrone S | α-pyrone | The Arctic Ocean; 2042 m; Nocardiopsis dassonvillei subsp. dassonvillei DMS 43111 (T); no cytotoxic activity against K562, MCF-7, SGC7901, A375, Hela, and HepG2 cell lines. | [124] |
Benzofluorene-containing angucyclines | The Northern South China Sea; 3025 m; Micromonospora echinospora SCSIO 04089; no antibacterial activity against seven bacterial strains (Escherichia coli, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis, Acinetobacter baumannii, methicillin-resistant S. aureus, and Vibrio alginolyticus). | [125] | |
Polycyclic macrolactones | The South China Sea; 3536 m; Streptomyces koyangensis SCSIO 5802; no cytotoxic against HIV-1 virus and no antibacterial activity against the panel of Gram positive (Bacillus thuringiensis, Micrococcus luteus, Enterococcus faecalis, & Staphylococcus aureus) and clinical isolates of methicillin-resistant S. aureus: MRSA-862, MRSA-669, MRSA-991, and MRSA-A1. | [126] | |
Antimycin-type depsipeptide | The South China Sea; 3536 m; Streptomyces somaliensis SCSIO ZH66; weak cytotoxic activity against human umbilical vein endothelial cells. No antibacterial activity against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Enterococcus faecium, and Salmonella typhimurium. | [127] | |
α-pyrones | Deep-sea sediment (region and depth not specify); Nocardiopsis sp. YIM M13066; no cytotoxic activity against H1299, HeLa, HL7702, MCF-7, PC3 and U251 cell lines. | [128] | |
Cyclic tetrapeptide | The Atlantic Ocean; 2875 m; Saccharopolyspora cebuensis MCCC 1A09850; weak anti-allergic and anti-proliferate activity against Hela and H1299 tumor cell lines. | [129] | |
Angucyclines | Deep-sea sponge (region and depth not specify); Nocardiopsis sp. HB-J378; Antimicrobial activity against methicillin-resistant Staphylococcus aureus. | [87] | |
3-hydroxyquinaldic acid | The Cantabrian Sea; 2000 m; Streptomyces cyaneofuscatus M-157; no antibacterial activity against Gram positive (MRSA) and Gram negative (Escherichia coli and Acinetobacter baumannii); weak cytotoxic activity against human tumor cell line HepG2. | [130] | |
Naphthoquinone macrolides | The Indian Ocean; 4617 m; Streptomyces olivaceus SCSIO T05; No bioactive test. | [94] | |
Hydroxamatet-ype siderophore | The Indian Ocean; 2945 m; Amycolatopsis albisporachelin WP1T; chelating agent for coordinating iron uptake. | [96] | |
Angucycline | The Indian Ocean; 4495 m; Streptomyces lusitanus OUCT16-27; antibacterial activity against multi-drug resistant strains of Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus. | [131] | |
Macrolactams | The South Mid-Atlantic Ridge; 2782 m; Streptomyces sp. OUCMDZ-3159; no cytotoxic activity against MCF-7, A549, K549, and HL-60 cell lines; no antimicrobial activity against pathogenic bacteria. Streptolactam A and C display antifungal activity against Candida albicans. | [132] | |
Salicylamide, diketopiperazine, and phenylethanediol | The Mariana Trench; 11,000 m; Streptomyces sp. SY1965; antifungal activity against Candida albicans. | [86] | |
β,γ-butanoate and α-pyrone | The Mariana Trench; 4448 m; Nocardiopsis sp. HDN 17-237; no antioxidant and antibacterial activity against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Vibrio parahemolyticus, Bacillus subtilis, and Mycobacterium phlei. | [133] | |
Polycyclic tetramate macrolactams | The South China Sea; 3536 m; Streptomyces somaliensis SCSIO ZH66; antifungal activity against Fusarium oxysporum and moderate cytotoxic activity against human cell lines of HCT116 and K562. | [134] | |
New phenazine | The Mariana Trench; 10898 m; Dermacoccus abyssi MT1.1; no bioactive test. | [93] | |
Enediyne | The Japan Trench; 329 m; Nonomuraea sp. MM565M-173N2; strong antibacterial activity against carbapenem-resistant Enterobacteriaceae. | [135] | |
Naphthyridine | The Mariana Trench; 11,000 m; Streptomyces sp. SY2111; antiproliferative activity against human glioma U87MG and U251 cells. | [136] | |
bis-indole alkaloids | The South China Sea; 1765 m; Streptomyces sp. SCSIO 11791; dionemycin shows antibacterial activity against methicillin-resistant Staphylococcus aureus and cytotoxic activity against human cell lines (NCI-H460, MDA-MB-231, HCT-116, and HepG2) and noncancerous MCF10A. | [137] | |
Tetrahydroisoquinolines | The South China Sea; 3536 m; Streptomyces niveus SCSIO 3406; aclidinomycins D, E, G, J, and K display antibacterial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and a panel of MRSA (MRSA 991, MRSA 1862, and MRSA SH1). | [138] | |
Spirotetronate | The South China Sea; 3565 m; Streptomyces sp. 4506; antibacterial activity against Micrococcus luteus, Bacillus thuringiensis, Staphylococcus aureus, MRSA, Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. | [139] | |
Benzofluorene-containing angucyclines | The Northern South China Sea; 3025 m; Micromonospora echinospora SCSIO 04089; no bioactive test. | [92] | |
Chromone derivatives | The Southwest Indian Ocean; 2945 m; Amycolatopsis sp. WP1; weak inhibitory activity against the ABH2 enzyme. | [88] | |
Salinomycin and α-pyrone | The Okinawa Trough; 1039 m; Streptomyces sp. SCSIO ZS0520; no bioactive test. | [90] | |
Pluramycin-class polyketide | Deep water sample; Rhodococcus sp. RD015140; antimicrobial activity against Gram-positive bacteria. | [140] | |
Pyrrolosesquiterpenes | The East Sea of Korea; 2163 m; Streptomyces sp. GGS53; antiviral activity against influenza A virus. | [141] | |
Aromatic acids and leucine derivatives | The Indian Ocean; 3386 m; Streptomyces chumphonensis SCSIO 5079; no antibacterial and cytotoxic activity against bacterial pathogenic strains and human cancer cell lines. | [142] | |
Piperazinedione | The Pacific Ocean; 5591 m; Georgenia sp. 40DY180; anti-tyrosinase activity against mushroom tyrosinase enzyme. | [89] | |
Angucyclinones | Kumejima Island, Okinawa, Japan; 612 m; Actinomadura sp. KD439; cytotoxic activity against P388 murine leukemia cells. | [85] | |
Pyrone polyketide | The Okinawa Trough; 1039 m; Streptomyces sp. SCSIO ZS0520; no bioactive test. | [91] | |
Cyclohexylacetic acid, depsipeptide, spermidine, and fatty acid | The South China Sea; 2061 m; Agrococcus sp. SCSIO 52902; no cytotoxic activity against human tumor cell lines (A-549, HL-60, and HCT-116) and no antibacterial activity against Bacillus subtilis, Bacillus thuringiensis, Staphylococcus aureus, and Escherichia coli. | [83] |
3. Limitations and Challenges of Acquiring Natural Products from Actinobacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akova, M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence 2016, 7, 252–266. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Singh, I.P.; Ahmad, F.; Chatterjee, D.; Bajpai, R.; Sengar, N. Natural products: Drug Discovery and Development. In Drug Fiscovery and Development: From Targets and Molecules to Medicines; Poduri, R., Ed.; Springer: Singapore, 2021; pp. 11–65. [Google Scholar] [CrossRef]
- Trindade, M.; Van Zyl, L.J.; Navarro-Fernández, J.; Abd Elrazak, A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front. Microbiol. 2015, 6, 890. [Google Scholar] [CrossRef]
- Voser, T.M.; Campbell, M.D.; Carroll, A.R. How different are marine microbial natural products compared to their terrestrial counterparts? Nat. Prod. Rep. 2022, 39, 7–19. [Google Scholar] [CrossRef]
- Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar] [CrossRef]
- Sigwart, J.D.; Blasiak, R.; Jaspars, M.; Jouffray, J.B.; Tasdemir, D. Unlocking the potential of marine biodiscovery. Nat. Prod. Rep. 2021, 38, 1235–1242. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef]
- Stonik, V.A.; Makarieva, T.N.; Shubina, L.K. Antibiotics from marine bacteria. Biochemistry 2020, 85, 1362–1373. [Google Scholar] [CrossRef]
- Subramani, R.; Narayanasamy, M. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J. Microbiol. Biotechnol. 2009, 25, 2103–2111. [Google Scholar] [CrossRef]
- Leary, D.; Vierros, M.; Hamon, G.; Arico, S.; Monagle, C. Marine genetic resources: A review of scientific and commercial interest. Mar. Policy 2009, 33, 183–194. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Anandan, R.; Dharumadurai, D.; Manogaran, G.P. An Introduction to Actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; Dhanasekaran, D., Jiang, Y., Eds.; IntechOpen: London, UK, 2016; pp. 3–37. [Google Scholar] [CrossRef] [Green Version]
- Subramani, R.; Sipkema, D. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products. Mar. Drugs 2019, 17, 249. [Google Scholar] [CrossRef] [Green Version]
- Donald, L.; Pipite, A.; Subramani, R.; Owen, J.; Keyzers, R.A.; Taufa, T. Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol. Res. 2022, 13, 418–465. [Google Scholar] [CrossRef]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Mast, Y.; Stegmann, E. Actinomycetes: The antibiotics producers. Antibiotics 2019, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Kamjam, M.; Sivalingam, P.; Deng, Z.; Hong, K. Deep-sea actinomycetes and their secondary metabolites. Front. Microbiol. 2017, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Subramani, R.; Aalbersberg, W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiol. Res. 2012, 167, 571–580. [Google Scholar] [CrossRef]
- Sun, C.; Mudassir, S.; Zhang, Z.; Feng, Y.; Chang, Y.; Che, Q.; Gu, Q.; Zhu, T.; Zhang, G.; Li, D. Secondary metabolites from deep-sea derived microorganisms. Curr. Med. Chem. 2019, 27, 6244–6273. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; De Mol, B.; Escobar, E.; German, C.R.; Levin, L.A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 2010, 7, 2851–2899. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Lyla, P.S.; Khan, S.A. Marine microbial diversity and ecology: Importance and future perspectives. Curr. Sci. 2006, 90, 1325–1335. [Google Scholar]
- Kaur, J.; Vishnu, A.L.; Khipla, N.; Kaur, J. Microbial Life in Cold Regions of the Deep-Sea. In Survival Strategies in Cold-Adapted Microorganisms; Goel, R., Soni, R., Suyal, D.C., Khan, M., Eds.; Springer: Singapore, 2022; pp. 63–86. [Google Scholar] [CrossRef]
- Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep. 2014, 31, 999–1025. [Google Scholar] [CrossRef]
- Skropeta, D. Deep-sea natural products. Nat. Prod. Rep. 2008, 25, 1131–1166. [Google Scholar] [CrossRef] [Green Version]
- Costello, M.J.; Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 2017, 27, 2051. [Google Scholar] [CrossRef]
- Thurber, A.R.; Sweetman, A.K.; Narayanaswamy, B.E.; Jones, D.O.B.; Ingels, J.; Hansman, R.L. Ecosystem function and services provided by the deep-sea. Biogeosciences 2014, 11, 3941–3963. [Google Scholar] [CrossRef] [Green Version]
- Folkersen, M.V.; Fleming, C.M.; Hasan, S. The economic value of the deep-sea: A systematic review and meta-analysis. Mar. Policy 2018, 94, 71–80. [Google Scholar] [CrossRef]
- Thistle, D. The Deep-Sea Floor: An Overview. In Ecosystems of the Deep Oceans; Tyler, P.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; p. 5. [Google Scholar]
- Jebbar, M.; Franzetti, B.; Girard, E.; Oger, P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015, 19, 721–740. [Google Scholar] [CrossRef]
- Paulus, E. Shedding light on deep-sea biodiversity—A highly vulnerable habitat in the face of anthropogenic change. Front. Mar. Sci. 2021, 8, 667048. [Google Scholar] [CrossRef]
- Wang, Y.N.; Meng, L.H.; Wang, B.G. Progress in research on bioactive secondary metabolites from deep-sea derived microorganisms. Mar. Drugs 2020, 18, 614. [Google Scholar] [CrossRef] [PubMed]
- Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012, 19, 85–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danovaro, R.; Carugati, L.; Berzano, M.; Cahill, A.E.; Carvalho, S.; Chenuil, A.; Cinzia, C.; Sonia, C.; Romain, D.; Antonio, D. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 2016, 3, 213. [Google Scholar] [CrossRef]
- Feng, J.C.; Liang, J.; Cai, Y.; Zhang, S.; Xue, J.; Yang, Z. Deep-sea organisms research oriented by deep-sea technologies development. Sci. Bull. 2022, 67, 1802–1816. [Google Scholar] [CrossRef] [PubMed]
- Saide, A.; Lauritano, C.; Ianora, A. A treasure of bioactive compounds from the deep-sea. Biomedicines 2021, 9, 1556. [Google Scholar] [CrossRef]
- Tortorella, E.; Tedesco, P.; Fortunato, P.E.; January, G.G.; Fani, R.; Jaspars, M.; Donatella, D.P. Antibiotics from deep-sea microorganisms: Current discoveries and perspectives. Mar. Drugs 2018, 16, 355. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Yang, J.; Zhang, M.; Ding, G.; Jia, C.; Qin, J.; Guo, L. Marine natural products: The important resource of biological insecticide. Chem. Biodivers. 2021, 18, e2001020. [Google Scholar] [CrossRef]
- Pilkington, L. A chemometric analysis of deep-sea natural products. Molecules 2019, 24, 3942. [Google Scholar] [CrossRef]
- Stewart, E.J. Growing unculturable bacteria. J. Bacteriol. 2012, 194, 4151–4160. [Google Scholar] [CrossRef] [Green Version]
- Bérdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012, 65, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, Y.; Zhang, X.H. Cultivation of microbes from the deep-sea environments. Top. Stud. Oceanogr. 2018, 155, 34–43. [Google Scholar] [CrossRef]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A. Prokaryote diversity and taxonomy: Current status and future challenges. Philos. Trans. R. Soc. Lond. B 2004, 359, 623–638. [Google Scholar] [CrossRef]
- Nawaz, M.Z.; Subin Sasidharan, R.; Alghamdi, H.A.; Dang, H. Understanding interaction patterns within deep-sea microbial communities and their potential applications. Mar. Drugs 2022, 20, 108. [Google Scholar] [CrossRef]
- Hui, M.L.Y.; Tan, L.T.H.; Letchumanan, V.; He, Y.W.; Fang, C.M.; Chan, K.G.; Law, J.W.F.; Lee, L.H. The extremophilic actinobacteria: From microbes to medicine. Antibiotics 2021, 10, 682. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhang, Z.; Yang, T.; Chen, M.; Li, J.; Chen, F.; Yang, J.; Li, W.; Zhang, B. Comparative genomics analysis of Streptomyces species reveals their adaptation to the marine environment and their diversity at the genomic level. Front. Microbiol. 2016, 7, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamjam, M.; Xie, Q.; Deng, Z.; Hong, K. Isolation and diversity of actinomycetes from sediments of different depths between 34 m and 3235 m in south china sea. Chiang Mai J. Sci. 2018, 45, 1595–1609. [Google Scholar]
- Fan, S.; Wang, M.; Ding, W.; Li, Y.X.; Zhang, Y.Z.; Zhang, W. Scientific and technological progress in the microbial exploration of the hadal zone. Mar. Life Sci. Technol. 2022, 4, 127–137. [Google Scholar] [CrossRef]
- Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs 2021, 19, 365. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, L.; Guo, X.; Dai, X.; Liu, L.; Xi, L.; Wang, J.; Song, L.; Wang, Y.; Zhu, W. Diversity, biogeography, and biodegradation potential of actinobacteria in the deep-sea sediments along the southwest indian ridge. Front. Microbiol. 2016, 7, 1340. [Google Scholar] [CrossRef] [Green Version]
- Siro, G.; Pipite, A.; Christi, K.; Srinivasan, S.; Subramani, R. Marine actinomycetes associated with stony corals: A potential hotspot for specialized metabolites. Microorganisms 2022, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Han, L.; Li, C.; Cao, Q.; Zhu, D.; Barrett, N.H.; Harmody, D.; Chen, J.; Zhu, H. Bioprospecting deep-sea actinobacteria for novel anti-infective natural products. Front. Microbiol. 2018, 9, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Gui, C.; Shao, M.; Kumar, P.S.; Huang, H.; Ju, J. Antimicrobial tunicamycin derivatives from the deep-sea derived Streptomyces xinghaiensis SCSIO S15077. Nat. Prod. Res. 2020, 34, 1499–1504. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.X.; Xie, C.L.; Zhou, M.; Xia, M.L.; Zhou, T.T.; Chen, H.F.; Yang, X.W.; Yang, Q. Chemical constituents from the deep-sea derived Streptomyces xiamenensis MCCC 1A01570 and their effects on RXRα transcriptional regulation. Nat. Prod. Res. 2020, 34, 1461–1464. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.; Wang, B.; Li, X.; Yue, S.; Chen, J.; Zhang, H.; Wang, H. Production and identification of inthomycin B produced by a deep-sea sediment-derived Streptomyces sp. YB104 Based on cultivation-dependent approach. Curr. Microbiol. 2018, 75, 942–951. [Google Scholar] [CrossRef]
- Palazzotto, E.; Weber, T. Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr. Opin. Microbiol. 2018, 45, 109–116. [Google Scholar] [CrossRef]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Schwecke, T.; Aparicio, J.F.; Molnar, I.; König, A.; Khaw, L.E.; Haydock, S.F.; Oliynyk, M.; Caffrey, P.; Cortés, J.; Lester, J.B. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 1995, 92, 7839–7843. [Google Scholar] [CrossRef] [Green Version]
- Tillett, D.; Dittmann, E.; Erhard, M.; von Döhren, H.; Börner, T.; Neilan, B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide–polyketide synthetase system. Chem. Biol. 2000, 7, 753–764. [Google Scholar] [CrossRef]
- Wang, H.; Fewer, D.P.; Holm, L.; Rouhiainen, L.; Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 2014, 111, 9259–9264. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wong, H.L.; Kindler, G.S.; MacLeod, F.I.; Benaud, N.; Ferrari, B.C.; Burns, B.P. Discovery of an abundance of biosynthetic gene clusters in shark bay microbial mats. Front. Microbiol. 2020, 11, 1950. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Seyedsayamdost, M.R. Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis. Cell Chem. Biol. 2017, 24, 1437–1444.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, T.; Charusanti, P.; Musiol-Kroll, E.M.; Jiang, X.; Tong, Y.; Kim, H.U.; Lee, S.W. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes. Trends Biotechnol. 2015, 33, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Doroghazi, J.R.; Metcalf, W.W. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genom. 2013, 14, 611. [Google Scholar] [CrossRef] [Green Version]
- Van der Meij, A.; Worsley, S.F.; Hutchings, M.I.; Van Wezel, G.P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 2017, 41, 392–416. [Google Scholar] [CrossRef] [Green Version]
- Hifnawy, M.S.; Fouda, M.M.; Sayed, A.M.; Mohammed, R.; Hassan, H.M.; AbouZid, S.F.; Rateb, M.E.; Keller, A.; Adamek, M.; Ziemert, N. The genus Micromonospora as a model microorganism for bioactive natural product discovery. RSC Adv. 2020, 10, 20939–20959. [Google Scholar] [CrossRef] [PubMed]
- Mitousis, L.; Thoma, Y.; Musiol-Kroll, E.M. An update on molecular tools for genetic engineering of actinomycetes—The source of important antibiotics and other valuable compounds. Antibiotics 2020, 9, 494. [Google Scholar] [CrossRef] [PubMed]
- Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes–a review. Nat. Prod. Rep. 2016, 33, 988–1005. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Tu, J.; Zhang, H.; Wei, X.; Ju, J.; Li, Q. Genome mining and metabolic profiling uncover polycyclic tetramate macrolactams from Streptomyces koyangensis SCSIO 5802. Mar. Drugs 2021, 19, 440. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, W.; Qin, X.; Ju, J. Genome sequencing of Streptomyces olivaceus SCSIO T05 and activated production of lobophorin CR4 via metabolic engineering and genome mining. Mar. Drugs 2019, 17, 593. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Liao, L.; Yu, Y.; Zhang, J.; Chen, B. Genomic data mining of an antarctic deep-sea actinobacterium, Janibacter limosus P3-3-X1. Mar. Genom. 2019, 48, 100684. [Google Scholar] [CrossRef]
- Albuquerque, P.; Ribeiro, I.; Correia, S.; Mucha, A.P.; Tamagnini, P.; Braga-Henriques, A.; Carvalho, M.F.; Mendes, M.V. Complete genome sequence of two deep-sea Streptomyces isolates from madeira archipelago and evaluation of their biosynthetic potential. Mar. Drugs 2021, 19, 621. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yang, Z.; Zhang, C.; Liu, Z.; He, J.; Liu, Q.; Zhang, T.; Ju, J.; Ma, J. Genome mining of Streptomyces atratus SCSIO ZH16: Discovery of atratumycin and identification of its biosynthetic gene cluster. Org. Lett. 2019, 21, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.M.; de Oliveira, B.F.R.; Jackson, S.A.; Laport, M.S.; Clarke, D.J.; Dobson, A.D.W. Identification of BgP, a cutinase-like polyesterase from a deep-sea sponge-derived actinobacterium. Front. Microbiol. 2022, 13, 888343. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, T.; Chai, G.; Li, Z. Complete genome of Mycetocola spongiae MSC19T isolated from deep-sea sponge Cacospongia mycofijiensis indicates the adaptation to deep-sea environment and sponge-microbe symbioses. Mar. Genom. 2022, 63, 100955. [Google Scholar] [CrossRef]
- Abdel-Mageed, W.M.; Al-Wahaibi, L.H.; Lehri, B.; Al-Saleem, M.S.M.; Goodfellow, M.; Kusuma, A.B.; Nouioui, I.; Soleh, H.; Pathom-Aree, W. Biotechnological and ecological potential of Micromonospora provocatoris sp. nov., a gifted strain isolated from the challenger deep of the mariana trench. Mar. Drugs 2021, 19, 243. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, Q.; Liu, X.; Chen, P.; Guo, X.; Ma, L.Z.; Dong, H.; Huiang, Y. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem. Geol. 2019, 525, 390–399. [Google Scholar] [CrossRef]
- Back, C.R.; Stennett, H.L.; Williams, S.E.; Wang, L.; Ojeda Gomez, J.; Abdulle, O.M.; Duffy, T.; Neal, C.; Mantell, J.; Jepson, M.A. A new Micromonospora strain with antibiotic activity isolated from the microbiome of a mid-Atlantic deep-sea sponge. Mar. Drugs 2021, 19, 105. [Google Scholar] [CrossRef]
- Ding, W.; Li, Y.; Tian, X.; Chen, M.; Xiao, Z.; Chen, R.; Yin, Y.; Zhang, S. Investigation on metabolites in structural diversity from the deep-sea sediment-derived bacterium Agrococcus sp. SCSIO 52902 and their biosynthesis. Mar. Drugs 2022, 20, 431. [Google Scholar] [CrossRef]
- Sarmiento-Vizcaíno, A.; Braña, A.F.; Pérez-Victoria, I.; Martín, J.; De Pedro, N.; Cruz, M.D.; Diaz, C.; Vicente, F.; Acuña, J.L.; Reyes, F. Paulomycin G: A new natural product with cytotoxic activity against tumor cell lines produced by deep-sea sediment derived Micromonospora matsumotoense M-412 from the avilés canyon in the cantabrian sea. Mar. Drugs 2017, 15, 271. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; In, Y.; Fukaya, K.; Yang, T.; Harunari, E.; Urabe, D.; Imada, C.; Oku, N.; Igarashi, Y. Kumemicinones A–G, cytotoxic angucyclinones from a deep-sea-derived actinomycete of the genus Actinomadura. J. Nat. Prod. 2022, 85, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Qin, L.; Lian, X.Y.; Zhang, Z. New antifungal metabolites from the mariana trench sediment-associated actinomycete Streptomyces sp. SY1965. Mar. Drugs 2020, 18, 385. [Google Scholar] [CrossRef]
- Xu, D.; Nepal, K.K.; Chen, J.; Harmody, D.; Zhu, H.; McCarthy, P.J.; Wright, A.E.; Wang, G. Nocardiopsistins A-C: New angucyclines with anti-MRSA activity isolated from a marine sponge-derived Nocardiopsis sp. HB-J378. Synth. Syst. Biotechnol. 2018, 3, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.; Wang, S.; Bao, X.; Li, S.; Wei, B.; Zhang, H.; Whang, H. Amycolachromones A-F, isolated from a Streptomycin-resistant strain of the deep-sea marine actinomycete Amycolatopsis sp. WP1. Mar. Drugs 2022, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, S.; Xu, Y.; Zhang, H.; Wang, H. Anti-tyrosinase compounds from the deep-sea-derived actinomycete Georgenia sp. 40DY180. Chem. Biodivers. 2022, 19, e202200037. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Li, Y.; Song, Y.; Ma, J.; Ju, J. Secondary metabolites and biosynthetic gene clusters analysis of deep-sea hydrothermal vent-derived Streptomyces sp. SCSIO ZS0520. Mar. Drugs 2022, 20, 393. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Huang, Y.; Yuan, J.; Wei, X.; Ju, J. Discovery, structure correction, and biosynthesis of actinopyrones, cytotoxic polyketides from the deep-sea hydrothermal-vent-derived Streptomyces sp. SCSIO ZS0520. J. Nat. Prod. 2022, 85, 625–633. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, Z.; Zhang, Q.; Liu, W.; Zhang, L.; Zhang, W.; Yang, C.; Zhang, H.; Zhu, W.; Zhang, C. Discovery of a new asymmetric dimer nenestatin B and implications of a dimerizing enzyme in a deep-sea actinomycete. Org. Biomol. Chem. 2021, 19, 4243–4247. [Google Scholar] [CrossRef]
- Abdel-Mageed, W.M.; Juhasz, B.; Lehri, B.; Alqahtani, A.S.; Nouioui, I.; Pech-Puch, D.; Tabudravu, J.N.; Goodfellow, M.; Rodríguez, J.; Jaspars, M.; et al. Whole genome sequence of Dermacoccus abyssi MT1.1 isolated from the challenger deep of the mariana trench reveals phenazine biosynthesis locus and environmental adaptation factors. Mar. Drugs 2020, 18, 131. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, C.; Qin, X.; Wei, X.; Liu, Q.; Li, Q.; Ju, J. Genome mining of Streptomyces olivaceus SCSIO T05: Discovery of olimycins A and B and assignment of absolute configurations. Tetrahedron 2018, 74, 199–203. [Google Scholar] [CrossRef]
- Xie, C.L.; Niu, S.W.; Zhou, T.T.; Zhang, G.Y.; Yang, Q.; Yang, X.W. Chemical constituents and chemotaxonomic study on the marine actinomycete Williamsia sp. MCCC 1A11233. Biochem. Syst. Ecol. 2016, 67, 129–133. [Google Scholar] [CrossRef]
- Wu, Q.; Deering, R.W.; Zhang, G.; Wang, B.; Li, X.; Sun, J.; Chen, J.; Zhang, H.; Rowley, D.C.; Wang, H. Albisporachelin, a new hydroxamate type siderophore from the deep ocean sediment-derived actinomycete Amycolatopsis albispora WP1T. Mar. Drugs 2018, 16, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Wang, L.; Li, J.; Zhou, Y. Amycolatopsis albispora sp. nov., isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 3860–3864. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, L.; Wang, J.; Ruan, J.; Han, X.; Huang, Y. Brevibacterium sediminis sp. nov., isolated from deep-sea sediments from the Carlsberg and Southwest Indian Ridges. Int. J. Syst. Evol. Microbiol. 2016, 66, 5268–5274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xi, L.; Ruan, J.; Huang, Y. Kocuria oceani sp. nov., isolated from a deep-sea hydrothermal plume. Int. J. Syst. Evol. Microbiol. 2017, 67, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, L.; Li, J.; Zhou, Y. Pseudonocardia profundimaris sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2017, 67, 1693–1697. [Google Scholar] [CrossRef]
- Chen, R.W.; Wang, K.X.; Wang, F.Z.; He, Y.Q.; Long, L.J.; Tian, X.P. Rubrobacter indicoceani sp. nov., a new marine actinobacterium isolated from Indian Ocean sediment. Int. J. Syst. Evol. Microbiol. 2018, 68, 3487–3493. [Google Scholar] [CrossRef]
- Chen, R.W.; Li, C.; He, Y.Q.; Cui, L.Q.; Long, L.J.; Tian, X.P. Rubrobacter tropicus sp. nov. and Rubrobacter marinus sp. nov., isolated from deep-sea sediment of the South China Sea. Int. J. Syst. Evol. Microbiol. 2020, 70, 5576–5585. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Xie, F.; Pei, S.; Jiang, L. Nesterenkonia salmonea sp. nov. and Nesterenkonia sphaerica sp. nov., isolated from the southern atlantic ccean. Int. J. Syst. Evol. Microbiol. 2020, 70, 923–928. [Google Scholar] [CrossRef]
- Intra, B.; Panbangred, W.; Inahashi, Y.; Také, A.; Mori, M.; Ōmura, S.; Matsumoto, A. Micromonospora pelagivivens sp. nov., a new species of the genus Micromonospora isolated from deep-sea sediment in Japan. Int. J. Syst. Evol. Microbiol. 2020, 70, 3069–3075. [Google Scholar] [CrossRef]
- He, Y.Q.; Chen, R.W.; Li, C.; Shi, S.B.; Cui, L.Q.; Long, L.J.; Tian, X.P. Actinomarinicola tropica gen. nov. sp. nov., a new marine actinobacterium of the family Iamiaceae, isolated from South China Sea sediment environments. Int. J. Syst. Evol. Microbiol. 2020, 70, 3852–3858. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Xie, F.; Niu, S.; Ma, L.; Zhang, R.; Zhang, G. Brevibacterium profundi sp. nov., isolated from deep-sea sediment of the Western Pacific Ocean. Int. J. Syst. Evol. Microbiol. 2020, 70, 5818–5823. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; He, W.X.; Zhang, D.C. Marinisubtilis pacificus gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from a deep-sea seamount. Curr. Microbiol. 2021, 78, 2136–2142. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Pei, S.; Huang, X.; Wang, L.; Kou, J.; Zhang, G. Microcella flavibacter sp. nov., isolated from marine sediment, and reclassification of Chryseoglobus frigidaquae, Chryseoglobus indicus, and Yonghaparkia alkaliphila as Microcella frigidaquae comb. nov., Microcella indica nom. nov., and Microcella alkali. Antonie Leeuwenhoek 2021, 114, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Xie, F.; Wang, W.; Zhang, S.; Zhang, G. Chryseoglobus indicus sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 2021, 71, 4564. [Google Scholar] [CrossRef]
- Parra, J.; Soldatou, S.; Rooney, L.M.; Duncan, K.R. Pseudonocardia abyssalis sp. nov. and Pseudonocardia oceani sp. nov., two novel actinomycetes isolated from the deep Southern Ocean. Int. J. Syst. Evol. Microbiol. 2021, 71, 005032. [Google Scholar] [CrossRef]
- Risdian, C.; Landwehr, W.; Rohde, M.; Schumann, P.; Hahnke, R.L.; Spröer, C.; Bunk, B.; Kämpfer, P.; Schupp, P.J.; Wink, J. Streptomyces bathyalis sp. nov., an actinobacterium isolated from the sponge in a deep-sea. Antonie Van Leeuwenhoek 2021, 114, 425–435. [Google Scholar] [CrossRef]
- Xie, F.; Pei, S.; Zhang, Y.; Tian, Y.; Zhang, G. Nesterenkonia sedimenti sp. nov., isolated from marine sediment. Arch. Microbiol. 2021, 203, 6287–6293. [Google Scholar] [CrossRef]
- Li, C.; He, Y.Q.; Cui, L.Q.; Albuquerque, L.; Chen, R.W.; Long, L.J.; Tian, X.P. Miltoncostaea marina gen. nov. sp. nov., and Miltoncostaea oceani sp. nov., a novel deep branching phylogenetic lineage within the class Thermoleophilia isolated from marine environments, and proposal of Miltoncostaeaceae fam. nov. and Miltoncostaeales or. Syst. Appl. Microbiol. 2021, 44, 126216. [Google Scholar] [CrossRef]
- Chen, Y.; Sang, J.; Sun, W.; Song, Q.; Li, Z. Mycetocola spongiae sp. nov., isolated from deep-sea sponge Cacospongia mycofijiensis. Int. J. Syst. Evol. Microbiol. 2022, 72, 5291. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Tang, G.; Ju, J.; Lu, L.; Huang, H. A new diketopiperazine derivative from a deep-sea derived Streptomyces sp. SCSIO 04496. Nat. Prod. Res. 2016, 30, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, H.; Qiu, Y.; Hou, L.; Ju, J.; Li, W. A new dioic acid from a wbl gene mutant of deep-sea derived Streptomyces somaliensis SCSIO ZH66. Mar. Drugs 2016, 14, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, C.; Rebets, Y.; Tokovenko, B.; Nadmid, S.; Terekhova, L.P.; Myronovskyi, M.; Zotchev, S.B.; Rückert, C.; Braig, S. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci. Rep. 2017, 7, 42382. [Google Scholar] [CrossRef] [Green Version]
- Braña, A.F.; Sarmiento-Vizcaíno, A.; Pérez-Victoria, I.; Otero, L.; Fernández, J.; Palacios, J.J.; Martín, J.; de la Cruz, M.; Díaz, C.; Vicente, F. Branimycins B and C antibiotics produced by the abyssal actinobacterium Pseudonocardia carboxydivorans M-227. J. Nat. Prod. 2017, 80, 569–573. [Google Scholar] [CrossRef]
- Sun, M.; Chen, X.; Li, W.; Lu, C.; Shen, Y. New diketopiperazine derivatives with cytotoxicity from Nocardiopsis sp. YIM M13066. J. Antibiot. 2017, 70, 795–797. [Google Scholar] [CrossRef]
- Braña, A.F.; Sarmiento-Vizcaíno, A.; Osset, M.; Pérez-Victoria, I.; Martín, J.; De Pedro, N.; De la Cruz, M.; Díaz, C.; Vicente, F.; Reyes, F.; et al. Lobophorin K: A new natural product with cytotoxic activity produced by Streptomyces sp. M-207 associated with the deep-sea coral Lophelia pertusa. Mar. Drugs 2017, 15, 144. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Zhou, T.T.; Xie, C.L.; Zhang, G.Y.; Yang, X.W. Microindolinone A, a novel 4, 5, 6, 7-tetrahydroindole, from the deep-sea-derived actinomycete Microbacterium sp. MCCC 1A11207. Mar. Drugs 2017, 15, 230. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.L.; Liu, Q.; Xia, J.M.; Gao, Y.; Yang, Q.; Shao, Z.Z.; Liu, G.; Yang, X.-W. Anti-allergic compounds from the deep-sea-derived actinomycete Nesterenkonia flava MCCC 1K00610. Mar. Drugs 2017, 15, 71. [Google Scholar] [CrossRef]
- Zou, G.; Liao, X.J.; Peng, Q.; Chen, G.D.; Wei, F.Y.; Xu, Z.X.; Zhao, B.X.; Xui, S.H. A new α-pyrone from the deep-sea actinomycete Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111(T). J. Asian Nat. Prod. Res. 2017, 19, 1232–1238. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Q.; Zhu, Y.; Nie, F.; Wu, Z.; Yang, C.; Zhang, L.; Tian, X.; Zhang, C. Isolation, structure elucidation and biosynthesis of benzo[b]fluorene nenestatin A from deep-sea derived Micromonospora echinospora SCSIO 04089. Tetrahedron 2017, 73, 3585–3590. [Google Scholar] [CrossRef]
- Song, Y.; Li, Q.; Qin, F.; Sun, C.; Liang, H.; Wei, X.; Wong, N.K.; Ye, L.; Zhang, Y.; Shao, M.; et al. Neoabyssomicins A–C, polycyclic macrolactones from the deep-sea derived Streptomyces koyangensis SCSIO 5802. Tetrahedron 2017, 73, 5366–5372. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Hou, L.; Ju, J.; Li, W. Discovery of antimycin-type depsipeptides from a wbl gene mutant strain of deepsea-derived Streptomyces somaliensis SCSIO ZH66 and their effects on pro-inflammatory cytokine production. Front. Microbiol. 2017, 8, 678. [Google Scholar] [CrossRef]
- Zhang, X.M.; Sun, M.W.; Shi, H.; Lu, C.H. α-pyrone derivatives from a marine actinomycete Nocardiopsis sp. YIM M13066. Nat. Prod. Res. 2017, 31, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.L.; Niu, S.; Xia, J.M.; Peng, K.; Zhang, G.Y.; Yang, X.W. Saccharopolytide A, a new cyclic tetrapeptide with rare 4-hydroxy-proline moieties from the deep-sea derived actinomycete Saccharopolyspora cebuensis MCCC 1A09850. Nat. Prod. Res. 2018, 32, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-López, F.J.; Alcalde, E.; Sarmiento-Vizcaíno, A.; Díaz, C.; Cautain, B.; García, L.A.; Blanco, G.; Reyes, F. New 3-Hydroxyquinaldic acid derivatives from cultures of the marine derived actinomycete Streptomyces cyaneofuscatus M-157. Mar. Drugs 2018, 16, 371. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Hou, L.; Li, H.; Li, W. Antibiotic angucycline derivatives from the deep-sea derived Streptomyces lusitanus. Nat. Prod. Res. 2019, 34, 3444–3450. [Google Scholar] [CrossRef]
- Wang, P.; Wang, D.; Zhang, R.; Wang, Y.; Kong, F.; Fu, P.; Zhu, W. Novel macrolactams from a deep-sea derived Streptomyces species. Mar. Drugs 2020, 19, 13. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, C.X.; Shah, M.; Zhang, G.J.; Gu, Q.Q.; Zhu, T.J.; Che, Q.; Li, D.H. New metabolites from a mariana trench-derived actinomycete Nocardiopsis sp. HDN 17-237. J. Asian Nat. Prod. Res. 2020, 22, 1031–1036. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Z.; Yu, D.; Li, H.; Ju, J.; Li, W. Targeted isolation of new polycyclic tetramate macrolactams from the deepsea-derived Streptomyces somaliensis SCSIO ZH66. Bioorg. Chem. 2020, 101, 103954. [Google Scholar] [CrossRef]
- Igarashi, M.; Sawa, R.; Umekita, M.; Hatano, M.; Arisaka, R.; Hayashi, C.; Ishizaki, Y.; Suzuki, M.; Kato, K. Sealutomicins, new enediyne antibiotics from the deep-sea actinomycete Nonomuraea sp. MM565M-173N2. J. Antibiot. 2021, 74, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Yong, K.; Lian, X.Y.; Zhang, Z. Streptonaphthyridine A: A new naphthyridine analogue with antiproliferative activity against human glioma cells from mariana trench-associated actinomycete Streptomyces sp. SY2111. Nat. Prod. Res. 2021, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Yang, J.; Yu, J.; Li, J.; Yuan, J.; Wong, N.K.; Ju, J. Chlorinated bis-indole alkaloids from deep-sea derived Streptomyces sp. SCSIO 11791 with antibacterial and cytotoxic activities. J. Antibiot. 2020, 73, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Song, Y.; Tang, M.C.; Li, M.; Deng, J.; Wong, N.K.; Ju, J. Genome-directed discovery of tetrahydroisoquinolines from deep-sea derived Streptomyces niveus SCSIO 3406. J. Org. Chem. 2021, 86, 11107–11116. [Google Scholar] [CrossRef]
- Luo, M.; Tang, L.; Dong, Y.; Huang, H.; Deng, Z.; Sun, Y. Antibacterial natural products lobophorin L and M from the marine-derived Streptomyces sp. 4506. Nat. Prod. Res. 2021, 35, 5581–5587. [Google Scholar] [CrossRef]
- Harunari, E.; Bando, M.; Igarashi, Y. Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus. J. Antibiot. 2022, 75, 86–91. [Google Scholar] [CrossRef]
- Ko, K.; Kim, S.H.; Park, S.; Han, H.S.; Lee, J.K.; Cha, J.W.; Hwang, S.; Choi, K.Y.; Song, Y.-J.; Nam, S.-J.; et al. Discovery and photoisomerization of new pyrrolosesquiterpenoids glaciapyrroles D. and, E.; from deep-sea sediment Streptomyces sp. Mar. Drugs 2022, 20, 281. [Google Scholar] [CrossRef]
- Su, Z.; Li, K.; Luo, X.; Zhu, Y.; Mai, S.Y.; Zhu, Q.; Yang, B.; Zhou, X.; Tao, H. Aromatic acids and leucine derivatives produced from the deep-sea actinomycetes Streptomyces chumphonensis SCSIO15079 with antihyperlipidemic Activities. Mar. Drugs 2022, 20, 259. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Rosselló-Móra, R.; Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017, 11, 2399–2406. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Q.; Chen, X.; Jiang, C. Isolation and Cultivation Methods of Actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; Dhanasekaran, D., Jiang, Y., Eds.; InTechOpen: London, UK, 2016; pp. 39–50. [Google Scholar]
- Girão, M.; Ribeiro, I.; Carvalho, M.D.F. Actinobacteria from Marine Environments: A Unique Source of Natural Products. In Natural Products from Actinomycetes: Diversity, Ecology and Drug Discovery; Rai, R.V., Bai, J.A., Eds.; Springer: Singapore, 2022; pp. 1–45. [Google Scholar] [CrossRef]
- Van Bergeijk, D.A.; Terlouw, B.R.; Medema, M.H.; van Wezel, G.P. Ecology and genomics of actinobacteria: New concepts for natural product discovery. Nat. Rev. Microbiol. 2020, 18, 546–558. [Google Scholar] [CrossRef]
- Palma, M.; Barbero, G.F.; Pineiro, Z.; Liazid, A.; Barroso, C.G.; Rostagno, M.A.; Prado, J.M.; Meireles, M.A.A. Extraction of Natural Products: Principles and Fundamental Aspects. In Natural Product Extraction: Principles and Applications; Rostagno, M., Prado, J., Eds.; Royal Society of Chemistry: London, UK, 2022; pp. 58–88. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siro, G.; Donald, L.; Pipite, A. The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. Diversity 2023, 15, 30. https://doi.org/10.3390/d15010030
Siro G, Donald L, Pipite A. The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. Diversity. 2023; 15(1):30. https://doi.org/10.3390/d15010030
Chicago/Turabian StyleSiro, Galana, Lavinia Donald, and Atanas Pipite. 2023. "The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery" Diversity 15, no. 1: 30. https://doi.org/10.3390/d15010030
APA StyleSiro, G., Donald, L., & Pipite, A. (2023). The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. Diversity, 15(1), 30. https://doi.org/10.3390/d15010030