Ex Situ Conservation of Atriplex taltalensis I.M. Johnst. via In Vitro Culturing of Its Axillary Shoots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Disinfection of Plant Material and Collection of Initial Explants of A. taltalensis
2.2. Culture Conditions
2.2.1. Culture of Initial Explants of A. taltalensis under Different Multiplication Treatments
2.2.2. Effect of Shoots Subcultures on the Multiplication, Elongation, and Rooting In Vitro of A. taltalensis
2.3. Statistical Analysis
3. Results
3.1. Induction of Initial Explants from Uninodal Segments of A. taltalensis
3.2. Culture Initial Explants
3.3. Subculture of New Shoots for In Vitro Multiplication
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Román-Figueroa, C.; Herrea, S.; Cortez, D.; Uribe, J.M.; Paneque, M. Methodology for the estimation of land suitability for Atriplex L. [Amaranthaceae Juss. (s.l)] cultivation in arid and semi-arid regions. Arid Land Res. Manag. 2019, 33, 412–426. [Google Scholar] [CrossRef]
- Reyes-Vera, I.; Potenza, C.; Barrow, J. Hyperhydricity reversal and clonal propagation of four wing saltbush (Atriplex canescens, Chenopodiaceae) cultivated in vitro. Aust. J. Bot. 2008, 56, 358–362. [Google Scholar] [CrossRef]
- Aldahhak, O.; Zaid, S.; Teixeira da Silva, J.A.; Abdul-Kader, A.M. In vitro approach to the multiplication of a halophyte species forage shrub Atriplex halimus L. and in vitro selection for salt tolerance. Int. J. Plant Dev. Biol. 2010, 4, 8–14. [Google Scholar]
- Robles, A.; Cardoso, J.; Ramos, M. Influencia de la salinidad en la germinación de especies del género Atriplex. In C4 y CAM: Características Generales y uso en Programas de Desarrollo de Tierras Árida y Semiáridas, 1st ed.; José Luis, G., Ana, C., Eds.; CSIC: Madrid, Spain, 2010; pp. 157–164. ISBN 9788400092139. [Google Scholar]
- Paneque, M. Saltbush biomass for energy. Agric. Res. Technol. Open Access 2018, 15, 555949. [Google Scholar] [CrossRef]
- Lailhacar-Kind, S.; Laude, H.M. An improvement of seed germination in Atriplex repanda. J. Range Manag. 1975, 6, 491–494. [Google Scholar] [CrossRef]
- Kumar, V.; AlMomin, S.; Shajan, A.; Al-Aqeel, H.; Al-Salameen, F.; Nair, S. High-frequency multiple shoot induction from nodal segments and assessment of genetic homogeneity of micropropagated Atriplex halimus L. Res. J. Biotech. 2019, 14, 7–15. [Google Scholar]
- Terán, A.F.; Ascarrunz, M.E.; Tejada, E.; Zapata, A. Propagation of three species of Atriplex by means of cultivation of you woven in vitro organogenesis. Biofarbo 1998, 6, 3–9. [Google Scholar]
- Sen, D.; Rajput, P. Ecophysiological aspects of the vegetative propagation of saltbush (Atriplex spp.) and mulberry (Morus spp.). In Handbook of Plant and Crop Physiology, 2nd ed.; Pessarakli, M., Ed.; CRC Press: New York, NY, USA, 2001; pp. 127–142. ISBN 9780429208096. [Google Scholar]
- Jara, P.A.; Arancio, G.; Moreno, R.; Carmona, M.R. Factores abioticos que influencian la germinación de seis especies herbáceas de la zona árida de Chile. Rev. Chil. Hist. Nat. 2006, 79, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Ellern, S.J. Rooting cuttings of salthbush (Atriplex halimus L.). J. Range Manag. 1972, 25, 154–155. [Google Scholar] [CrossRef]
- Pardo, J. Propagación de ocho arbustos nativos del desierto costero de Atacama, Chile. Chloris Chil. 2018, 21. Available online: https://www.chlorischile.cl/ocho%20arbustos-pardo/ocho%20especies-%20Pardo.htm (accessed on 15 September 2022).
- Iglesias, L.; Prieto, J.A.; Alarcón, M. La propagación vegetativa de plantas forestales. Rev. Mex. De Cienc. For. 1996, 21, 16–41. [Google Scholar]
- Saldías, G. Vegetative propagation by cuttings of Monttea chilensis Gay. Gayana Bot. 2016, 73, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Brigone, N.F.; Denham, S.S.; Pozner, R. Synopsis of the genus Atriplex (Amaranthaceae, Chenopodioideae) for South America. Aust. Syst. Bot. 2016, 29, 324–357. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente (MMA). Ficha de Especie Clasificada Atriplex taltalensis. Available online: https://clasificacionespecies.mma.gob.cl/wp-content/uploads/2019/10/Atriplex_taltalensis_P07.pdf (accessed on 13 September 2022).
- Rosas, M. El género Atriplex (Chenopodiaceae) en Chile. Gayana Bot. 1989, 46, 3–82. [Google Scholar]
- Gutiérrez, G.; Lazo, L. Plantas Medicinales Silvestres de uso Tradicional en la Localidad de Paposo, Costa del Desierto de Atacama, II región, Chile; Creces: Santiago, Chile, 1996; p. 103. [Google Scholar]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.; Rao, U.; Ungar, E. In vitro propagation and related biochemical changes in Atriplex nummularia in saline condition. J. Plant Physiol. 1996, 1, 10–13. [Google Scholar]
- Kenny, L.; Caligari, P.D.S. Androgenesis of the salt tolerant shrub Atriplex glauca. Plant Cell Rep. 1996, 15, 829–832. [Google Scholar] [CrossRef]
- Wochok, Z.S.; Sluis, C.J. Gibberellic acid promotes Atriplex shoot multiplication and elongation. J. Plant Sci. 1980, 17, 363–369. [Google Scholar] [CrossRef]
- Papafotiou, M.; Majumder, D.A.N.; Martini, A.N.; Bertsouklis, K.F. Micropropagation of Atriplex halimus L. Acta Hortic. 2016, 1113, 207–210. [Google Scholar] [CrossRef]
- Sharry, S.; Adema, M.; Abedini, W. Plantas de Probeta: Manual Para la Propagación de Plantas por Cultivo de Tejidos In Vitro; Edulp: La Plata, Argentina, 2015; pp. 112–120. [Google Scholar]
- Moola, A.K.; Kumari, B.D.R. Rapid propagation of Celastrus paniculatus Willd.: An endangered medicinal plant through indirect organogenesis. Vegetos 2020, 33, 277–285. [Google Scholar] [CrossRef]
- Bacchetta, G.; Bueno-Sanchez, A.; Fenu, G.; Jiménez-Alfaro, B.; Mattana, E.; Piotto, B.; Virevaire, M. Conservación ex situ de Plantas Silvestres; Principado de Asturias/La Caixa: Oviedo, Spain, 2008; p. 378. [Google Scholar]
- Cob, J.; Sabjab, A.M.; Ríos, D.; Lara, A.; Donoso, P.J.; Arias, L.; Escobar, B. Potential of organogenesis as a strategy to the in vitro propagation of Persea lingue in the south-central region of Chile. Bosque 2010, 31, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Indacochea, B.; Parrales, J.; Hernández, A.; Castro, C.; Vera, M.; Zhindón, A.; Gabriel, J. Evaluación de medios de cultivo in vitro para especies forestales nativas en peligro de extinción en Ecuador. Agron. Costarric. 2018, 42, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Höxtermann, E. Cellular “elementary organisms” in vitro. The early vision of Gottlieb Habertlandt and its realization. Physiol. Plant 1997, 100, 716–728. [Google Scholar] [CrossRef]
- Pedroza-Manrique, J.A.; Bejarano-Tibocha, A. Propagación vegetativa in vitro de Puya santossi. Rev. Colomb. Biotecnol. 2008, 1, 36–48. [Google Scholar]
- DeBergh, P.; Aitken-Christie, J.; Cohen, D.; Grout, B.; Von Arnold, S.; Zimmerman, R.; Ziv, M. Reconsideration of the term vitrification as used in micropropagation. Plant Cell Tissue Organ Cult. 1992, 30, 135–140. [Google Scholar] [CrossRef]
- Martínez-Peña, L.M.; Díaz-Espinosa, A.; Vargas-Ríos, O. Protocolo de Propagación de Plantas Hidrófilas y Manejo de Viveros para la Rehabilitación Ecológica de los Parques Ecológicos Distritales de Humedal; Universidad Nacional de Colombia y Secretaría Distrital de Ambiente: Bogotá, Colombia, 2012; p. 181. [Google Scholar]
- Uribe, M.E.; Delaveau, C.; Garcés, M.; Escobar, R. Effect of asepsis and phytohormones on the in vitro establishment of Berberidopsis corallina from nodal segments. Bosque 2008, 2, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Abebe, Z.; Mengesha, A.; Alemayehu, T.; Wondyfraw, T. Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. Afr. J. Biotechnol. 2009, 8, 6817–6821. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. J. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- García-Águila, L.; Álvarez, J.M.; Alvarado-Capó, Y.; González, M.; La, O.M.; Mirabal, D.; Romero, C. In vitro establishment of nodal segments of Annona muricata L. young plants. Biot. Veg. 2012, 12, 229–234. [Google Scholar]
- Quiala, E.; Jiménez-Tello, M.V.; Barbón, R.; Chávez, M.; de Feria, M.; La, O.M.; Pérez, M. Influence of 6-Benzyladenine and gelling agent on the reduction of Hyperhydricity in Tectona grandis L. Rev. Colomb. Biotecnol. 2014, 16, 129–136. [Google Scholar] [CrossRef]
- Hesse, L.; Kampowski, T.; Leupold, J.; Caliaro, S.; Speck, T.; Speck, O. Comparative Analyses of the Self-Sealing Mechanisms in leaves of Delosperma cooperi and Delosperma ecklonis (Aizoaceae). Int. J. Mol. Sci. 2020, 21, 5768. [Google Scholar] [CrossRef]
- González-Valdivia, N.A.; Dzib-Castillo, B.B.; Carballo-Hernández, J.I. Emergencia y crecimiento de plántulas de Piscidia piscipula (L.) Sarg. en condiciones de vivero. Acta Univ. 2020, 30, e2595. [Google Scholar] [CrossRef]
- Olvera-González, E.; Alaniz-Lumbreras, D.; Ivanov-Tsonchev, R.; Villa-Hernández, J.; De la Rosa-Vargas, I.; López-Cruz, I.; Silos-Espino, H.; Lara-Herrera, A. Chlorophyll fluorescence emission of tomato plants as a response to pulsed light based LEDs. Plant Growth Regul. 2013, 69, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, M.; Tamburrino, Í.; Pliscoff, P.; Robles, V.; Colldecarrera, M.; Guerrero, P.C. Flowering phenology adjustment and flower longevity in a South American Alpine species. Plants 2021, 10, 461. [Google Scholar] [CrossRef]
- Pedroza-Manrique, J.A.; Tupaz-Villacorte, W.A. Micropropagation of Ilex kunthiana Triana and Planchon (Aquifoliaceae), a species of great importance in vegetal covers programs. Rev. Colomb. Biotecnol. 2008, 2, 72–84. [Google Scholar]
- Calderón-Arias, A.M.; Restrepo-Gómez, A.; Urrea-Trujillo, A.I. In vitro morphogenesis from apical buds and leaf bases of the Bromelia species Aechrrea veitchii and Racinaea crispa. Actual Biol. 2011, 33, 17–33. [Google Scholar]
- Uribe, E.M.; Ulloa, J.; Delaveau, C.; Sáez, K.; Muñoz, F.; Cartes, P. Influencia de las auxinas sobre el enraizamiento in vitro de Microtallos de Nothofagus glauca (Phil.). Gayana Bot. 2012, 69, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Garay-Arroyo, A.; Sánchez, M.P.; García-Ponce, B.; Álvarez-Buylla, E.R.; Gutiérrez, C. La homeostasis de las auxinas y su importancia en el desarrollo de Arabidopsis thaliana. Rev. Educ. Bioquímica 2014, 33, 13–22. [Google Scholar]
- Skoog, F.; Miller, C.O. Chemical regulation of growth an organ formation. Symp. Soc. Exp. Biol. 1975, 11, 118–131. [Google Scholar]
- Lloret, P.; Casero, P. Lateral root initiation. In Plant Roots the Hidden Half, 3rd ed.; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; CRC Press: New York, NY, USA, 2002; pp. 127–155. ISBN 9781439846483. [Google Scholar]
- Debi, B.R.; Taketa, S.; Ichii, M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). J. Plant Physiol. 2005, 162, 507–515. [Google Scholar] [CrossRef]
- Li, X.; Mo, X.; Shou, H.; Wu, P. Cytoquinin-mediated cell cycling arrest of perycicle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol. 2006, 47, 1112–1123. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, M.; Lefebvre, V.; Laporte, P.; González-Rizzo, S.; Lelandais-Briére, C.; Frugier, F.; Hartmann, C.; Crespi, M. How the environment regulates root architecture in dicots. Adv. Bot. Res. 2008, 46, 35–74. [Google Scholar] [CrossRef]
- Báez-Pérez, A.; González-Molina, L.; Solís-Moya, E.; Bautista-Cruz, A.; Bernal-Alarcón, M.Á. Effect of the application of indole-3-butyric acid in production and quality of wheat (Triticum estivum L.). Rev. Mex. Cienc. Agrícolas 2015, 6, 523–537. [Google Scholar]
- Salisbury, F.; Ross, C. Fisiología Vegetal, 4th ed.; Grupo Editorial Iberoamericana: Mexico City, Mexico, 1994; p. 759. [Google Scholar]
- Cordoba, A.M.; Cobos, M.; Imán, S.A.; Castro, J.C. An efficient method for in vitro callus induction in Myrciaria dubia (Kunth) Mc Vaugh “Camu Camu”. Sci. Agropecu. 2014, 5, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Casimiro, I.; Marchant, A.; Bhalerao, R.P.; Beeckman, T.; Dhooge, S.; Swarup, R.; Graham, N.; Inzé, D.; Sandberg, G.; Casero, P.J.; et al. Auxin transport promotes Arabidopsis thaliana lateral root initiation. Plant Cell 2001, 13, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, J.L.; Román, P.C.; Velasco, J.R. Evaluación del efecto de diferentes concentraciones de fitohormonas en la propagación de plátano dominico hartón (Musa AAB Simmonds). Financ. Cien. Agropec. 2008, 6, 99–104. [Google Scholar]
- Boschi, C.L. Fitohormonas involucradas en la restricción radical de plantas creciendo en contenedores de bajo volumen. Av. Investig. Agropecu. 2019, 23, 15–22. [Google Scholar]
- Bielach, A.; Podlešáková, K.; Marhavý, P.; Marhavy, P.; Duclercq, J.; Cuesta, C.; Müller, B.; Grunewald, W.; Tarkowski, P.; Benková, E. Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 2012, 24, 3967–3981. [Google Scholar] [CrossRef] [Green Version]
- Chatfield, S.P.; Stirnberg, P.; Forde, B.G.; Leyser, O. The hormonal regulation of axillary bud growth in Arabidopsis. Plant J. 2000, 24, 159–169. [Google Scholar] [CrossRef]
- Shimizu-Sato, S.; Tanaka, M.; Hitoshi, M. Auxin–cytokinin interactions in the control of shoot branching. Mol. Biol. Plant 2009, 69, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Pumisutapon, P.; Visser, R.G.F.; De Klerk, G.J. Hormonal control of the outgrowth of axillary buds in Alstromeria cultured in vitro. Biol. Plant 2011, 55, 664–668. [Google Scholar] [CrossRef]
- Letham, D.S. Cytokinin as phytohormones-sites of biosynthesis, translocation, and function of translocated cytokinin. In Cytokinin: Chemistry, Activity, and Function; Mok, D.W.S., Mok, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 57–80. ISBN 9781315892184. [Google Scholar]
- Tanaka, M.; Takei, K.; Kojima, M.; Sakakibara, H.; Mori, H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006, 45, 1028–1036. [Google Scholar] [CrossRef]
- Albany, N.; Vilchez, J.; León de Sierralta, S.; Molina, M.; Chacín, P. Una metodología para la propagación in vitro de Aloe vera L. Rev. Fac. Agron. 2006, 23, 215–224. [Google Scholar]
- Pedroza-Manrique, J.A.; Fernández-Lizarazo, C.; Suárez-Silva, A. Evaluation of the effect of three growth regulators in the germination of Comparettia facata seeds under in vitro conditions. Vitr. Cell. Dev. Biol. Plant 2005, 41, 838–843. [Google Scholar] [CrossRef]
- Tripathy, S.; Goodin, J.R. Micropropagation of elite biotypes of four-wing saltbush. In Proceedings of the Symposium on Cheatgrass Invasion, Shrub Die-Off, and Other Aspects of Shrub Biology and Management, Las Vegas, NV, USA, 5–7 April 1989. [Google Scholar]
- Ivanova, M.; van Staden, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tissue Organ Cult. 2008, 92, 227–231. [Google Scholar] [CrossRef]
- Vieitez, A.M.; Ballester, A.; San José, M.C.; Vieítez, E. Anatomical and chemical studies of vitrified shoots of chestnut regenerated in vitro. Physiol. Plant. 1985, 65, 177–184. [Google Scholar] [CrossRef]
- Ward, D. The Biology of Deserts, 2nd ed.; Oxford University Press: Oxford, UK, 2016; pp. 261–282. ISBN 9780199211470. [Google Scholar]
- Scherson, R.A.; Luebert, F.; Pliscoff, P.; Fuentes-Castilllo, T. Flora of the hot deserts: Emerging patterns from phylogeny-based diversity studies. Am. J. Bot. 2020, 107, 1467–1469. [Google Scholar] [CrossRef]
- Maestanza-Ramón, C.; Henkanaththegedara, S.M.; Duchicela, P.V.; Tierras, Y.V.; Capa, M.S.; Mejía, D.C.; Gutierrez, M.J.; Guamán, M.C.; Ramón, P.M. In-situ and ex-situ biodiversity conservation in Ecuador: A review of policies, actions and challenges. Diversity 2020, 12, 315. [Google Scholar] [CrossRef]
- Engels, J.M.M.; Ebert, A.W. A critical review of the current global ex situ conservation system for plant agrobiodiversity: I. History of the development of the global system in the context of the political/legal framework and its major conservation components. Plants 2021, 10, 1557. [Google Scholar] [CrossRef]
- Cristea, V.; Palada, M.; Jarda, L.; Butiuc-Keul, A. Ex situ in vitro conservation of Dianthus spiculifolius, endangered and endemic plant species. Stud. UBB Biol. 2013, 1, 57–69. [Google Scholar]
Culture Stage | Treatment | Basal Medium + Phytoregulators |
---|---|---|
Multiplication | AEmc * | MS |
AEm5 | MS + 0.50 mg L−1 IBA | |
AEm1 | MS + 0.50 mg L−1 IBA + 0.05 mg L−1 BAP | |
AEm2 | MS + 0.50 mg L−1 IBA + 0.25 mg L−1 BAP | |
AEm3 | MS + 0.50 mg L−1 IBA + 0.50 mg L−1 BAP | |
AEm4 | MS + 0.50 mg L−1 IBA + 1.00 mg L−1 BAP |
Culture Period (Weeks) | Observed Responses |
---|---|
1 | Reddish and bulging stem base in explants subjected to treatments AEm2, AEm3, AEm4, and AEm5. |
2 | Callus growth in explants subjected to treatments AEm2, AEm3, AEm4, and AEm5. Initial development of lateral roots in explants subjected to the control treatment AEmc and treatments AEm2 and AEm1. Apex elongation and stem growth in explants subjected to treatment AEm1. |
3 | Development of basal buds in explants subjected to treatments AEm2, AEm3, AEm4, and AEm5. Development of axillary buds in nodes of explants subjected to treatment AEm1. Apex elongation and stem growth in explants subjected to treatment AEm2 and control treatment AEmc. |
4 | Lateral root growth and proliferation in explants subjected to treatments AEm2 and AEm1. Differentiation of basal buds into shoots in explants subjected to treatments AEm2, AEm3, AEm4, and AEm5. Differentiation of axillary buds into shoots in nodes of elongated explants subjected to treatment AEm1. Development of axillary buds in explants subjected to control treatment AEmc and treatment AEm2. |
5 | Callus growth and basal shoot proliferation in explants subjected to treatments AEm2, AEm3, AEm4, and AEm5. Axillary shoot growth and proliferation in nodes of explants growing under control treatment AEmc and treatments AEm2 and AEm1. |
6 | Basal (treatments AEm2, AEm3, AEm4, and AEm5) and axillary shoot growth (control treatment AEmc and treatments AEm2 and AEm1). Formation of whole plants subjected to control treatment AEmc, treatments AEm2 and AEm1. |
Treatment | Phytoregulators (mg L−1) | Nº Shoots/Explant | Explants with Shoots (%) | Explants with Roots (%) |
---|---|---|---|---|
AEmc * | Without phytoregulators | 2.57 (±2.44) b | 62.00 a,b | 73.00 b |
AEm1 | 0.50 IBA | 4.52 (±3.94) a | 65.00 a | 90.00 a |
AEm2 | 0.50 IBA + 0.05 BAP | 2.80 (±3.51) b | 62.00 a,b | 37.00 c |
AEm3 | 0.50 IBA + 0.25 BAP | 2.50 (±3.99) b | 38.00 c | 0.00 d |
AEm4 | 0.50 IBA + 0.50 BAP | 4.83 (±6.65) a | 42.00 b,c | 0.00 d |
AEm5 | 0.50 IBA + 1.00 BAP | 5.34 (±7.90) a | 37.00 c | 0.00 d |
Treatment | Phytoregulators (mg L−1) | Nº Shoots/Explant | Shoot Height (cm) | Rooting (%) | Hyperhydricity (%) |
---|---|---|---|---|---|
1st subculture | |||||
AEmc | Without phytoregulators | 2.06 (±1.90) d | 1.25 (±0.38) a,b | 74.00 a | 0.00 a |
AEm1 | 0.50 IBA | 6.25 (±3.68) a | 1.36 (±0.48) a | 89.00 a | 0.00 a |
AEm2 | 0.05 BAP + 0.50 IBA | 2.85 (±2.44) c,d | 0.94 (±0.25) c,d | 34.00 b | 0.00 a |
AEm3 | 0.25 BAP + 0.50 IBA | 2.00 (±1.38) d | 0.86 (±0.21) d | 15.00 b,c | 31.00 b |
AEm4 | 0.50 BAP + 0.50 IBA | 3.82 (±2.50) b,c | 1.17 (±0.27) a,b,c | 6.00 c | 27.00 b |
AEm5 | 1.00 BAP + 0.50 IBA | 4.92 (±3.68) b | 1.11 (±0.27) b,c | 5.00 c | 24.00 b |
2nd subculture | |||||
AEmc | Without phytoregulators | 2.08 (±2.11) c | 1.21 (±0.40) a,b | 59.00 b | 0.00 a |
AEm1 | 0.50 IBA | 5.94 (±3.50) a | 1.35 (±0.40) a | 87.00 a | 0.00 a |
AEm2 | 0.05 BAP + 0.50 IBA | 2.72 (±3.02) b,c | 1.01 (±0.28) b,c | 43.00 c | 0.00 a |
AEm3 | 0.25 BAP + 0.50 IBA | 1.81 (±1.33) c | 0.86 (±0.23) c | 17.00 d | 41.00 b |
AEm4 | 0.50 BAP + 0.50 IBA | 3.18 (±2.61) b,c | 1.14 (±0.27) b,c | 14.00 d | 53.00 b |
AEm5 | 1.00 BAP + 0.50 IBA | 3.60 (±3.52) b | 1.16 (±0.28) b,c | 13.00 d | 43.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Alcayaga, C.; Soto, J.; Román-Figueroa, C.; Paneque, M. Ex Situ Conservation of Atriplex taltalensis I.M. Johnst. via In Vitro Culturing of Its Axillary Shoots. Diversity 2023, 15, 13. https://doi.org/10.3390/d15010013
Muñoz-Alcayaga C, Soto J, Román-Figueroa C, Paneque M. Ex Situ Conservation of Atriplex taltalensis I.M. Johnst. via In Vitro Culturing of Its Axillary Shoots. Diversity. 2023; 15(1):13. https://doi.org/10.3390/d15010013
Chicago/Turabian StyleMuñoz-Alcayaga, Carolina, Jorge Soto, Celián Román-Figueroa, and Manuel Paneque. 2023. "Ex Situ Conservation of Atriplex taltalensis I.M. Johnst. via In Vitro Culturing of Its Axillary Shoots" Diversity 15, no. 1: 13. https://doi.org/10.3390/d15010013
APA StyleMuñoz-Alcayaga, C., Soto, J., Román-Figueroa, C., & Paneque, M. (2023). Ex Situ Conservation of Atriplex taltalensis I.M. Johnst. via In Vitro Culturing of Its Axillary Shoots. Diversity, 15(1), 13. https://doi.org/10.3390/d15010013