Diversity and Carbon Sequestration of Seaweed in the Ma’an Archipelago, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation Area
2.2. Investigation Method
3. Data Analysis
4. Results
4.1. Species Diversity
4.2. Distribution Characteristics
4.3. Carbon Sequestration Capacity
5. Discussion
5.1. Distribution Characteristics
5.2. Carbon Sequestration Capacity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, S.H.; Shen, M.; Lin, J.; Wu, X.C.; Liu, H.S. Sediment characteristics and bearing capacity in an artificial reef area of Ma’an Archipelago. J. Fish. China 2019, 43, 441–453. [Google Scholar]
- Wu, Z.L.; Cui, X.S.; Tang, F.H.; Xiong, M.S. Research on genecology of benthic macroalgae. Fish. Inf. Strategy 2018, 33, 36–44. [Google Scholar]
- Pangestuti, M.B.; Suhartini, S.; Hidayat, N. Life cycle assessment of bioenergy production from macroalgae: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012070. [Google Scholar] [CrossRef]
- Yan, Q.W.; Huang, H.J.; Chen, J.T.; Yang, X.G. Estimation of Carbon Sink Capacity of Algal Mariculture in the Coastal Areas of China. Adv. Mar. Sci. 2011, 29, 537–545. [Google Scholar]
- Ou, G.Y.; Wang, X.J.; Yang, A.Q.; Ke, A.Y.; Guan, W.C. Interspecific differences in carbon sink capacity of macroalgae. J. Zhejiang Agric. Sci. 2017, 58, 1436–1439. [Google Scholar]
- He, P.M.; Liu, Y.Y.; Zhang, J.W.; Wu, H.L.; Yu, K.F.; Huo, Y.Z.; Zhang, J.H. Research progress on the effects of macroalgae on carbon sink. J. Fish. Sci. China 2015, 22, 588–595. [Google Scholar]
- Yang, Y.F.; Luo, H.T.; Wang, Q.; He, Z.L.; You, A.M. Large-scale cultivation of seaweed is effective approach to increase marine carbon sequestration and solve coastal environmental problems. Bull. Chin. Acad. Sci. 2021, 36, 259–269. [Google Scholar]
- Aurélie, B.; Charles, F.B.; Marc, V.; Thierry, T. The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci. Rep. 2019, 9, 5250. [Google Scholar]
- Miss, L.J.; Hoare, A.H.; Hughes, H. Antimicrobial Properties of Fucus Vesiculosus and Porphyra Dioica Collected from the Irish Coast. Sure-J. Sci. Undergrad. Res. J. 2019, 1, 5. [Google Scholar]
- Li, X.M.; Wang, K.; Chen, J.Q.; Zhang, S.Y. Allometric Growth of Sargassum fusiforme (Ochrophyta, Fucales) Organs in the Maturation Period Based on Biomass Analysis of Samples from Gouqi Island. J. Mar. Sci. Eng. 2021, 9, 1320. [Google Scholar] [CrossRef]
- Chen, J.Q.; Li, X.M.; Wang, K.; Zhang, S.Y.; Li, J. Estimation of Seaweed Biomass Based on Multispectral UAV in the Intertidal Zone of Gouqi Island. Remote Sens. 2022, 14, 2143. [Google Scholar] [CrossRef]
- Hynes, S.; Chen, W.; Vondolia, K.; Armstrong, C.; O’Connor, E. Valuing the ecosystem service benefits from kelp forest restoration: A choice experiment from Norway. Ecol. Econ. 2021, 179, 106833. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, K.; Zhang, S.Y.; Feng, M.P. Distribution and Flora of Seaweed Beds in the Coastal Waters of China. Sustainability 2021, 13, 3009. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Bi, Y.X.; Wang, W.D.; Sui, Y.Z.; Lu, K.E.; Feng, M.P.; Liang, J.; Zhou, D.D. Spatial distribution patterns of Sargassum vachellianum in coastal waters of northern zhejiang typical islands. Acta Hydrobiol. Sin. 2019, 43, 1114–1121. [Google Scholar]
- Liu, Q.Q.; Yang, F.; Ma, M.J.; Zhou, Y.L.; Li, Y.H.; Yang, Y. The effects of temperature on the absorption efficiency of nitrogen and phosphorus and photosynthetic physiological charateristics in four macroalgae species. Acta Hydrobiol. Sin. 2018, 42, 1050–1056. [Google Scholar]
- Lalegerie, F.; Gager, L.; Stiger-Pouvreau, V.; Connan, S. The stressful life of red and brown seaweeds on the temperate intertidal zone: Effect of abiotic and biotic parameters on the physiology of macroalgae and content variability of particular metabolites. Adv. Bot. Res. 2020, 95, 247–287. [Google Scholar]
- Zhang, S.Y.; Xiang, C.; Zhou, X.J.; Liu, S.R.; Cheng, X.P.; Wang, K. Photosynthetic fluorescence characteristics of six macroalgae species in seaweed beds of Gouqi Island, Zhejiang, China. Chin. J. Appl. Ecol. 2018, 29, 3441–3448. [Google Scholar]
- Bi, Y.X.; Miao, H.; Wang, H.J.; Yang, Q.F. Study on ecological restoration technology of macroalgae based on spore adhesion function. Acta Hydrobiol. Sin. 2022, 46, 160–167. [Google Scholar]
- Koehl, M.A.R.; Silk, W.K.; Liang, H.; Mahadevan, L. How kelp produce blade shapes suited to different flow regimes: A new wrinkle. Integr. Comp. Biol. 2008, 48, 834–851. [Google Scholar] [CrossRef] [Green Version]
- Hurd, C.L. Water motion, marine macroalgal physiology, and production. J. Phycol. 2000, 36, 453–472. [Google Scholar] [CrossRef]
- Sanghvi, D.; Chaudhury, N.R.; Jain, B.K. Macroalgae as indicator species for shore platform zones of Dwarka, Gujarat, India. Indian J. Mar. Sci. 2019, 4, 48. [Google Scholar]
- Cabrera, R.; Díaz-Larrea, J.; Umanzor, S. New Records of Marine Macroalgae on the Caribbean on Coast of Costa Rica. Am. J. Plant Sci. 2019, 10, 1708–1728. [Google Scholar] [CrossRef] [Green Version]
- An, X.L.; Li, X.M.; Wang, K.; Liu, H.Y. Species Analysis and Seasonal Succession of Marine Macroalgae in the Intertidal Zone of Qinhuangdao. J. Ocean Technol. 2019, 38, 70–76. [Google Scholar]
- Duarte, C.M.; Chiscano, C.L. Seagrass biomass and production: A reassessment. Aquat. Bot. 1999, 65, 159–174. [Google Scholar] [CrossRef]
- Khatiwala, S.; Primeau, F.; Hall, T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 2009, 462, 346–349. [Google Scholar] [CrossRef]
- Laffoley, D.; Grimsditch, G. The Management of Natural Coastal Carbon Sinks; IUCN: Gland, Switzerland, 2009; p. 53. [Google Scholar]
- Alpert, S.B.; Spencer, D.F.; Hidy, G. Biospheric options for mitigating atmospheric carbon dioxide levels. Energy Convers. Manag. 1992, 33, 729–736. [Google Scholar] [CrossRef]
- Quan, W.; Ying, M.M.; Kang, H.J.; Xu, C.L.; Zhou, Q.H.; Liang, W.J.; Lin, Z.S.; Cai, J.B. Marine algae culture and the estimation of carbon sink capacity in the coastal areas of China. J. Fish. China 2014, 38, 509–514. [Google Scholar]
- Liu, Y.Q.; Zhang, C.X.; Sun, X.L.; Sun, J.; Yang, G.H. Carbon Sequestration Potential Research of Macroalage in the Intertidal Rocky Zone in Naozhou Island. J. Guangdong Ocean Univ. 2019, 39, 78–84. [Google Scholar]
- Han, B.P.; Han, Z.G.; Fu, X. Algae Photosynthetic Mechanism and Models; Science Press: Beijing, China, 2003; pp. 48–53. [Google Scholar]
- Sousa, W.P. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecol. Monogr. 1979, 49, 227–254. [Google Scholar] [CrossRef]
Phylum | Species | H N | B X | L H | S H | S S | G Q |
---|---|---|---|---|---|---|---|
Ochrophyta | Sargassum thunbergii | + | + | + | + | + | + |
Sargassum fusiforme | + | + | + | + | + | + | |
Sargassum vachellianum | + | + | + | + | + | ||
Scytosiphon lomentarius | + | + | + | + | |||
Undaria pinnatifida | + | + | + | ||||
Pachydictyon coriaceum | + | + | + | ||||
Colpomenia sinuosa | + | + | + | ||||
Sargassum horneri | + | + | |||||
Dictyota dichotoma | + | + | |||||
Ishige okamurai | + | ||||||
Rhodophyta | Pterocladiella capillacea | + | + | + | |||
Graateloupia livida | + | + | + | ||||
Chondria crassicaulis | + | + | + | ||||
Gigartina intermedia | + | + | + | ||||
Calliarthron yessoense | + | + | |||||
laurencia intermedia | + | + | |||||
Jania decussato-dichotoma | + | + | |||||
Pachymenia carnosa | + | + | |||||
Corallina officinalis | + | + | |||||
Ceramium boydenii | + | ||||||
Gelidium kintaroi | + | ||||||
Grateloupia filicina | + | ||||||
Chondria tenuissima | + | ||||||
Grateloupia prolongta | + | ||||||
Grateloupia imbricata | + | ||||||
Chondrus ocellatus | + | ||||||
Pachymeniopsis elliptica | + | ||||||
Callophyllis adhaerens | + | ||||||
Callophyllis adhaerens | + | ||||||
Halymenia sinesis | + | ||||||
Amphiroa ephedraea | + | ||||||
Callophyllis adnata | + | ||||||
Hypnea boergesenii | + | ||||||
Polysiphonia japonica | + | ||||||
Ceramium japonicum | + | ||||||
Gymnogongrus flabelliformis | + | ||||||
Gelidium crinale | + | ||||||
Chlorophyta | Ulva pertusa | + | + | + | + | + | + |
Cladophora albida | + |
Investigation Area | Average Biomass (g/m2) | Length of Rock Shoreline (km) | Community Width (m) | Depth (m) | Area (km2) | ||
---|---|---|---|---|---|---|---|
Ochrophyta | Rhodophyta | Chlorophyta | |||||
LH | 6180.89 | 121.48 | 461.70 | 16.99 | 10–30 | 1–8 | 0.17–0.51 |
HN | 3583.70 | 63.00 | 96.26 | 16.10 | 25–60 | 3–11 | 0.40–1.00 |
SH | 4350.11 | 63.03 | 110.01 | 8.00 | 2–10 | 1–12 | 0.16–0.80 |
BX | 3029.25 | 65.43 | 82.65 | 7.80 | 4–8 | 1–7 | 0.31–0.62 |
GQ | 2470.29 | 465.92 | 142.28 | 21.15 | 15–35 | 2–15 | 3.17–7.40 |
SS | 6252.88 | 236.96 | 260.40 | 15.38 | 15–20 | 3–12 | 2.30–3.10 |
Average | 4311.19 | 169.30 | 192.22 |
Species | Ulva pertusa | Sargassum thunbergii | Sargassum fusiforme | Undaria pinnatifida | Sargassum horneri | Sargassum vachellianum |
---|---|---|---|---|---|---|
Content (%) | 29.11 ± 2.10 | 30.00 ± 0.92 | 32.08 ± 5.01 | 36.84 ± 3.33 | 36.37 ± 2.35 | 34.53 ± 1.17 |
Investigation Area | Ulva pertusa | Sargassum thunbergii | Sargassum fusiforme | Undaria pinnatifida | Sargassum horneri | Sargassum vachellianum |
---|---|---|---|---|---|---|
LH | 4.57–13.71 | 38.34–115.03 | 18.42–55.25 | 1.89–5.68 | - | 5.68–17.05 |
HN | 2.24–5.60 | 74.71–186.79 | 11.91–29.77 | - | - | - |
SH | 1.02–5.12 | 26.97–134.83 | 11.55–57.76 | - | - | 3.42–17.12 |
BX | 1.49–2.98 | 23.01–46.03 | 26.47–52.94 | - | - | 8.26–16.52 |
GQ | 25.57–59.69 | 33.53–78.28 | 24.35–56.85 | 25.07–58.53 | 161.66–344.25 | 94.41–220.40 |
SS | 34.87–47.00 | 81.35–287.78 | 61.85–145.10 | 29.52–39.76 | 173.24–437.85 | 43.25–58.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhao, X.; Yuan, H.; Guo, Y.; Li, J.; Zhang, S.; Chen, J.; Wang, Z.; Wang, K. Diversity and Carbon Sequestration of Seaweed in the Ma’an Archipelago, China. Diversity 2023, 15, 12. https://doi.org/10.3390/d15010012
Li X, Zhao X, Yuan H, Guo Y, Li J, Zhang S, Chen J, Wang Z, Wang K. Diversity and Carbon Sequestration of Seaweed in the Ma’an Archipelago, China. Diversity. 2023; 15(1):12. https://doi.org/10.3390/d15010012
Chicago/Turabian StyleLi, Xunmeng, Xu Zhao, Huarong Yuan, Yu Guo, Jun Li, Shouyu Zhang, Jianqu Chen, Zhenhua Wang, and Kai Wang. 2023. "Diversity and Carbon Sequestration of Seaweed in the Ma’an Archipelago, China" Diversity 15, no. 1: 12. https://doi.org/10.3390/d15010012
APA StyleLi, X., Zhao, X., Yuan, H., Guo, Y., Li, J., Zhang, S., Chen, J., Wang, Z., & Wang, K. (2023). Diversity and Carbon Sequestration of Seaweed in the Ma’an Archipelago, China. Diversity, 15(1), 12. https://doi.org/10.3390/d15010012