Next Article in Journal
Molecular Phylogeny of Selected Kenyan Eucalyptus Species Inferred from MatK, rbcL and TrnL-F Genes and Their Suitability for Power Transmission Poles
Next Article in Special Issue
The Species Diversity Assessment of Azygia Looss, 1899 (Digenea: Azygiidae) from the Volga, Ob, and Artyomovka Rivers Basins (Russia), with Description of A. sibirica n. sp.
Previous Article in Journal
Examination of Forest Steppe Species in the Case of Areas Where Traditional Cultivation Was Abandoned
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Parasites, Bacteria and Viruses of the Edible Dormouse Glis glis (Rodentia: Gliridae) in the Western Palaearctic

by
Alexander A. Kirillov
1,
Nadezhda Yu. Kirillova
1 and
Alexander B. Ruchin
2,*
1
Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, 10 Komzina Street, Togliatti 445003, Russia
2
Joint Directorate of the Mordovia State Nature Reserve and National Park “Smolny”, 30 Krasnaya Street, Saransk 430005, Russia
*
Author to whom correspondence should be addressed.
Diversity 2022, 14(7), 562; https://doi.org/10.3390/d14070562
Submission received: 9 June 2022 / Revised: 1 July 2022 / Accepted: 12 July 2022 / Published: 14 July 2022
(This article belongs to the Special Issue Biodiversity of Parasites in Vertebrates in the Wildlife)

Abstract

:
An overview of the parasites, bacteria and viruses of Glis glis (Rodentia, Gliridae) inhabiting the Western Palearctic is given. A total of 85 articles published from 1895 to 2021 were reviewed and analysed in our study. According to the literature’s data, 104 species associated with G. glis are recorded: 4 viruses, 8 Protozoa, 6 Cestoda, 6 Trematoda, 4 Nematoda, 1 Heteroptera, 2 Anoplura, 39 Siphonaptera and 34 Acari. The most studied group is ectoparasites. To a lesser extent, parasitic worms in G. glis were studied. There is very little data about the dormouse protozoans and viruses. The most studied parasites, viruses and protozoans of G. glis are in Germany, where 21 species were noted. The largest number of parasites was found in the dormouse in Russia (22), but of two groups only: helminths and ectoparasites. Only 20 out of 104 parasite species recorded in G. glis are host-specific. Most parasites (60 species) found in G. glis have a Palaearctic and cosmopolitan distribution. Three viruses, six species of protozoa and three helminths have veterinary and medical significance as potential pathogens of dangerous zoonoses. Also, many species of fleas, mites and ticks found on G. glis are vectors of a number of dangerous vector-borne diseases in humans and domestic and wild animals.

1. Introduction

Rodents (Rodentia), due to their number and species diversity, are important elements of natural ecosystems. Some species of rodents are widely distributed [1,2,3,4,5,6,7]. The European edible dormouse, Glis glis (Linnaeus, 1766) is one such species and is widespread across western Eurasia. This rodent species is found in most European countries and regions of western Asia: through northern Turkey to the Caucasus, northern Iran and Turkmenistan [8,9,10,11]. Glis glis is the largest member of the family Gliridae, arboreal rodent with a nocturnal lifestyle. This rodent has the longest period of hibernation among the mammals of Europe, up to 9 months [12].
It is known that small wild rodents play an important role in the life cycles of the helminths of carnivorous mammals and birds of prey in higher trophic levels. Small rodents are involved in maintaining natural foci of zoonoses—diseases dangerous to humans and animals [4,13,14,15,16,17,18,19,20,21]. In this regard, the study of the parasite fauna of G. glis is of great scientific (biodiversity monitoring) and practical importance (study of the dormouse’s role in the spread and preservation of zoonoses).
The literature on parasites, viruses and protozoans of G. glis currently contains about 180 references, covering an approximately 200-year period. The first attempts to bring together data about the viruses, parasites and protozoans of G. glis were undertaken in the reviews by Rossolimo [22] and Kryštufek [23,24], which contained data on 64 species of ecto- and endoparasites found in the dormouse. Unfortunately, these reviews did not include most papers not indexed in electronic databases, so they are still inaccessible to most researchers.
Therefore, the purpose of our study is to review the parasites, pathogens and symbionts associated with G. glis across the rodent range and to systematize all data about them taking into account recent conceptions.
Our overview is based on analysis of literature data on parasites, bacteria and viruses of the edible dormouse inhabiting the Western Palaearctic. We searched and selected relevant papers using the online international databases Scopus, Web of Science Core Collection and Google Scholar and the Russian scientific electronic library eLIBRARY.ru. Our searches covered the scientific literature published up to February 2022 with no time or language limits. To find studies on G. glis, the following search strings were used: Topic: [(“Parasites” or “Helminths” or “Trematodes” or “Cestodes” or “Nematodes” or “Acanthocephalans” or “Ectoparasites” or “Siphonaptera” or “Fleas” or “Acari” or “Mites” or “Ticks” or “Viruses” or “Protozoa” or “Bacteria”) and (“Dormouse” or “Edible dormouse” or “Glis glis” or “Glis” or “Myoxus glis” or “Gliridae”)]. Both English and Russian characters were used to enter search strings in eLIBRARY.ru (a Russian database).
A number of articles for our review were taken from former USSR parasitological literature in Russian, which were not indexed in electronic databases. Literature sources were collected in public libraries: the National Library of Russia (St. Petersburg), M. Gorky Scientific Library of St Petersburg University and Samara Regional Universal Scientific Library. Analysis of literary sources was carried out on journal articles, conference papers, books and book chapters in the period from 1895 to 2021. Complementary data were obtained from reviews on the rodent parasites from the former USSR [13,25,26,27,28,29,30,31,32,33] and adjacent countries, such as Moldova [34], Bulgaria [35] and Belarus [36]. Data about the medical and veterinary significance of the viruses, protozoans and parasites found in G. glis are given according to the papers and reviews on this theme [13,17,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56].
Recent parasite taxonomy is given according to the Fauna Europaea Database (https://fauna-eu.org/, (accessed on 18 February 2022)) [57], Global Cestode Database (http://tapewormdb.uconn.edu (accessed on 12 February 2022)) [58] and articles of Makarikov with co-authors [59,60,61].

2. Parasites, Bacteria and Viruses of Glis glis in the Western Palaearctic

At the present stage of research, 104 species (with subspecies) of viruses, protozoans, ectoparasites and helminths were recorded in G. glis: 4 viruses, 8 Protozoa, 6 Cestoda, 6 Trematoda, 4 Nematoda, 1 Heteroptera, 2 Anoplura, 39 Siphonaptera and 34 Acari.

2.1. Viruses of Glis glis

The study of viruses in G. glis has a short history spanning only the last decades. Four viruses of three families were found in the edible dormouse (Table 1).
Encephalocarditis virus (EMCV) is found in many species of wild and domestic animals in various regions of the world [49]. The host-specific Polyomavirus found in G. glis belongs to a group of DNA viruses that infect mammals, birds and fish [67,68]. Hantaan orthohantavirus (formerly known as Hantaan virus) is a negative-sense RNA virus species. The edible dormouse is a reservoir host for the Hantaan orthohantavirus (HTNV). Dobrava-Belgrade virus (also known as Dobrava virus), found in the edible dormouse, is common in the former Yugoslavia, Germany, Estonia, Slovakia, European Russia and other Eastern European countries [69]. All viruses have a European range (Table 1).

2.2. Protozoa of Glis glis

Eight protozoan species from the five families are known in the edible dormouse (Table 2).
Among the protozoa found in G. glis, Borellia spp. (family Spirochaetaceae) are most represented (four species). They belong to the Borrelia burgdorferi (Johnson et al., 1984) sensu lato species complex. The natural reservoir hosts of Borrelia are wild animals (rodents, birds and deer). Borrelia afzelii and B. bavariensis are associated with rodents [45,72,78]. Borrelia garinii is better adapted to birds [79].
The obligate intracellular bacteria Rickettsia typhi (Wolbach and Todd, 1920) is best known as the causative agent of an endemic human typhus that occurs worldwide [39]. This protozoan species can be transmitted to a mammalian host by the bite of an infected flea or louse [80].
In nature, carriers of the bacteria Yersinia pestis (Lehmann and Neumann, 1896) are about 300 species of wild and domestic animals, especially rodents (rats, marmots, ground squirrels, voles and gerbils). Despite the fact that the infection caused by Y. pestis is very fatal for humans, for the edible dormouse, this bacteria species can qualify as a commensal or opportunistic microorganism [54].
The apicomplexan parasite Eimeria gliris Musaev and Veysov, 1961 and the aerobic bacterium Francisella tularensis (McCoy and Chapin, 1912) were also recorded in G. glis (Table 2). The intracellular parasitic protozoa E. gliris belongs to a group of host-specific parasites of G. glis. In addition, it is possible to find Anaplasma spp. rickettsia in G. glis, previously noted in other species of European glirids [22].
Two species of protozoa are cosmopolitans. One species has a Holarctic distribution. The distribution of five protozoan species is limited to Europe (Table 2).

2.3. Helminths of Glis glis

In total, 16 species of parasitic worms were recorded in G. glis: 6 Cestoda, 6 Trematoda and 4 Nematoda (Table 3). Most of the helminth species parasitise the edible dormouse at the mature stage (14 species). Only two species of helminths were noted at the larval stage: the trematode Alaria alata (Goeze, 1782) and the cestode Mesocestoides lineatus (Goeze, 1782), for which the dormice serve as paratenic hosts. The finding of a small number of larval stages of parasitic worms indicates an insignificant role of G. glis in the life cycles of helminths of vertebrates of high trophic levels.
Seven species (the trematodes Lyperosomum armenicum (Stcherbakova, 1942), Lecithodendrium semen (Kirschenblatt, 1941), the cestodes Armadolepis myoxi (Rudolphi, 1819), Armadolepis longisoma (Makarikov, Stakheev and Tkach, 2018), Armadolepis genovi Makarikov and Georgiev, 2020, Armadolepis sp. and the nematode Paraheligmonina gracilis (Leuckart, 1842)) are host-specific parasites of the edible dormouse.
Trematode species are most represented in the helminth fauna of G. glis. The edible dormouse has six species of trematodes from five families: Dicrocoeliidae (2), Brachylaimidae (1), Plagiorchiidae (1), Lecithodendriidae (1) and Diplostomidae (1) (Table 3). Six species of cestodes of two families, Hymenolepididae (5) and Mesocestoididae (1) are recorded in G. glis. Only four species of nematodes from three families are noted in the dormouse: Capillariidae (1), Heligmonellidae (1) and Rictulariidae (1) (Table 3).
The most common species of helminths are the nematode P. gracilis and the cestode A. myoxi, which are noted in dormice in 12 and 6 countries, respectively (Table 3). The nematode Rictularia cristata is registered in G. glis in the countries of Central Europe. The trematode L. armenicum is recorded in two countries. Other species of helminths are found only in one country each (Table 3).
The following are some remarks on the taxonomy of helminths found in G. glis. Genov [35] considers that all noted and described Lecithodendrium spp. from glirids (including L. semen) are synonyms of Lecithodendrium linstowi (Dollfus, 1931), which has a wide morphological variability. In addition to L. semen, Lecithodendrium dryomi (Matsaberidze and Khotenovskiy, 1966) in Georgia, Lecithodendrium granulosum (Looss, 1907) in Ukraine and L. linstowi in Bulgaria were found in Dryomys nitedula (Pallas, 1778) [35,116,117,118].
A recent revision of hymenolepidids by Makarikov with co-authors [59,60,61] revealed that G. glis was reliably parasitized by three species of Armadolepis: Armadolepis myoxi (Rudolphi, 1819), Armadolepis longisoma (Makarikov, Stakheev and Tkach, 2018) and Armadolepis genovi (Makarikov and Georgiev, 2020). Armadolepis sp., found by Sosnina [84] in the Caucasus Nature Reserve (Russia) (reported as Hymenolepis myoxi (Rudolphi, 1819)), probably also belongs to species A. longisoma, described by Makarikov with co-authors [60] in the edible dormouse from the Republic of Adygeya (Caucasus). Armadolepis myoxi (Rudolphi, 1819) is one of the most common parasites of G. glis, recorded over most of the rodent’s range. Two other species of the genus Armadolepis (A. longisoma and A. genovi) have local distributions—the Caucasus (Russia) and Bulgaria, respectively.
Other species of hymenolepidids, such as Arostrilepis horrida (Linstow, 1901) (reported as Hymenolepis horrida (Linstow, 1901) [34,36,102], Hymenolepis diminuta (Rudolphi, 1819) [103], Rodentolepis straminea (Goeze, 1782) [36,104] and Rodentolepis sp. [91], were previously recorded in G. glis. However, according to Makarikov [59], there was a misidentification of cestodes/misidentification of other Armadolepis species, or these were potentially undescribed species. For example, Makarikov [59] established that the specimen recorded by Merkusheva and Bobkova [119] in Dryomis nitedula in Belarus, originally identified as R. straminea, belongs to the genus Armadolepis.
The nematode P. sadovskoi is a parasite of many rodent species, recorded mainly in the territory of the former USSR [31,35]. Moravec [120] suggested that P. sadovskoi is synonymous with Aonchotheca annulosa (Dujardin, 1845), a parasite that is also commonly reported in small rodents in Europe.
Anderson [121] considers Rictularia amurensis as a synonym of Rictularia cristata. Molecular genetic studies are necessary to confirm the validity of these two species.
Noteworthy is the low helminth diversity in G. glis compared to other rodent species. The arboreal lifestyle and the predominantly herbivorous diet of these dormice with a small proportion of animal food cause their relatively low helminth infection. Low contact with the soil reduces the likelihood of contact of the edible dormouse with the invasive helminth eggs and larvae. The short annual period of the rodent’s activity probably also affects infection with helminths. A long period of hibernation excludes the possibility of infection of dormice with helminths.
The helminth infection values of different G. glis populations vary widely. Because of this, Sosnina [84] noted a common high infection of the edible dormouse with helminths in the Caucasus Nature Reserve—92.5%. The nematode P. gracilis (prevalence of infection (p) = 86.2%; mean abundance (MA) = 31.6) and cestode Hymenolepididae sp., reported as H. myoxis (p = 50.0%; MA = 6.8) are most often observed in the dormouse. The trematode B. recurva was recorded in only one dormouse in the amount of two specimens [84]. a host-specific parasite, the nematode P. gracilis, was most often found in the edible dormouse, noted in 80% of dormice in Armenia [111]. Only one parasite species, the nematode P. gracilis (reported as Longistriata schulzi), was found in G. glis from the Belovezhskaya Pushcha (Belarus); the infection rates were 53.9% and 14.8 [83]. Only two species of parasites were found in G. glis in Croatia: Armadolepis myoxi and Paraheligmonina gracilis [93,94]. Konjevic [93] reported a common helminth infestation of G. glis—63.7%. The common infection rate of the dormouse with helminths in Busch [94] was 87.2%.
At the same time, there are many studies that have not revealed infection of edible dormouse with helminths. Helminths were not found in the studied dormice in the studies of Bychovskaya-Pavlovskaya [122], Melnichenko and Panasenko [123] in Ukraine, Ershova [124] in the Caucasus Nature Reserve and Shaldybin [125] in the Mordovia Nature Reserve (Russia). In our studies of the parasite fauna in rodents from the Samarskaya Luka (Russia), we also did not find helminths in G. glis [126,127].
The distribution of about half of the helminth species (7) found in the dormouse is limited to Europe. Five species of helminths have a Palearctic distribution. Only one species is distributed in the Holarctic. Two species are cosmopolitan (Table 3).

2.4. Ectoparasites of Glis glis

In total, 76 species of ectoparasites were found on G. glis, belonging to Anoplura (2 species), Heteroptera (1), Siphonaptera (39) and Acari (34) (Table 4). Only eight species of ectoparasites are host-specific parasites of the edible dormouse: the lice Schizophthirus gliris (Blagoveshtchensky, 1965) and Schizophthirus pleurophaeus (Burmeister, 1839); the fleas Myoxopsylla jordani (Ioff and Argyropoulo, 1934) and Myoxopsylla laverani (Rothschild, 1911); and the mites Hirstionyssus gliricolus (Masan and Ambros, 2010), Hirstionyssus paulisimilis (Masan and Fenda, 2010), Gliricoptes glirinus (Canestrini, 1895) and Radfordia gliricola (Vesmanis and Lukoschus, 1978). Three species of ectopatasites are common parasites of arboreal rodents (squirrels and dormice): the fleas Ceratophyllus sciurorum (Schrank, 1803) and Leptopsylla sciurobia (Wagner, 1934) and the mite Hirstionyssus sciurinus (Hirst, 1921). The other 65 species of ectoparasites are accidental and facultative dormouse parasites, which parasitise many species of mammals and birds.
Many species of fleas, mites and ticks can parasitise hosts that are not specific to them [180,181]. Species of small mammals inhabiting the biocenosis largely determine the structure of flea and acari fauna. The habitation of animals of various systematic taxa in the same biocenosis leads to the fact that they have common ectoparasite species. The broad exchange of parasitic arthropods is a consequence of the contact of small mammals with each other and with birds and their nests. Sometimes, the main hosts of fleas, mites and ticks are not their specific hosts but animals that dominate in a biocenosis [180]. Most of the ectoparasites found in G. glis pass to the dormice from small mammals (Rodentia and Eulipotyphla).
Sucking lice (Anoplura) in G. glis are represented by two species from the family Hoplopleuridae (Table 4). Findings of S. gliris are limited to Eastern Europe. Schizophthirus pleurophaeus, parasitising all dormice of the family Gliridae, has been reported mainly in Western Europe [128,129]. The identification these louse species on G. glis is considered probable in Hungary [130].
Only one member of the order Hemiptera, Oeciacus hirundinis (Lamarck, 1816) from the family Cimicidae, was found in dormouse nests [131,132]. The swallow bug, O. hirundinis, is widespread in Europe [133]. Oeciacus hirundinis passes to G. glis when the rodent visits bird nests for rest or for feeding.
According to recent data, 33 species and 6 subspecies of fleas (Siphonaptera) from five families were recorded on G. glis (Table 4). The flea family Ceratophyllidae has the largest representation in the parasite fauna of G. glis—21 species. The family Ctenophthalmidae is represented by 13 species in the parasite fauna of G. glis. From the family Hystrichopsyllidae, three species were found on G. glis. The families Pulicidae and Ischnopsyllidae are represented by one species each (Table 4).
The specific flea of squirrels and dormice C. sciurorum, found on G. glis in 17 countries, is the most common parasite of the edible dormouse (Table 4). Doratopsylla dasycnema has been reported in the dormouse in seven countries. Megabothris turbidus has been registered on G. glis in four countries. Ceratophyllus gallinae and M. jordani are found on G. glis in three countries. Seven flea species were each recorded in two countries. The remaining 27 flea species were each registered in only one country (Table 4).
Currently, there are 34 species of mites and ticks from nine families associated with G. glis (Table 4). The most represented family, Trombiculidae, includes 12 species. Seven species of the gamasid mites from the family Laelapidae were recorded on G. glis (Table 4). The ixodid ticks of the family Ixodidae are represented by four species. Additionally, four species from the family Hirstionyssidae are noted on the dormouse. Three species of the snout mites of the family Bdellidae were found in the nests of dormice [168]. The families Myobiidae, Myocoptidae Glycyphagidae and Amblyommidae are represented by one species each (Table 4).
Findings of the rodent parasite Neotrombicula nagayoi Sasa, Hayashi, Sato, Miura and Asahima, 1950 on G. glis in Moldova [102,179] are doubtful and need revision, since this species is similar to closely related N. inopinata and Neotrombicula obscura Schluger and Davidov, 1967 [33].
Among the mites and ticks of G. glis, the most common parasite is the host-specific G. glirinus, which is noted in seven countries (Table 4). Ixodes ricinus and L. europaeum are each found in five European countries. Androlaelaps casalis is recorded on G. glis in three countries. The other 27 species of mites and ticks are found on the dormouse in one to two countries. The sites of the findings are not indicated for L. talpae, I. acuminatus and A. latyshevi (Table 4).
More than half of the ectoparasite species found on G. glis (41 species) have a Palaearctic distribution. The distribution of 21 species of dormouse ectoparasites is limited to Europe. Ten species are cosmopolitans. Only three species are distributed in the Holarctic. Additionally, one flea species has a Nearctic distribution (Table 4).

2.5. Distribution of the Research Effort on Parasites, Bacteria and Viruses of Glis glis among European Countries

Data on parasites, bacteria and viruses of various G. glis populations are mostly fragmentary and are associated with the study of only separate taxonomic groups. The ectoparasites of the edible dormouse were studied quite fully and in detail. From about 180 references, the data on ectoparasites (fleas, mites and ticks) contain about 70 papers and monographs (Table 4). This cannot be said for other taxonomic groups of helminths, viruses and protozoans. The parasitic worms of G. glis have been studied to a lesser extent. Slightly more than 40 articles and monographs on helminths of G. glis are known (Table 3). There are very few data about dormouse protozoa and viruses. The study of viruses in G. glis has a short history—the last 30 years (Table 1 and Table 2).
To date, there are data of varying degrees of completeness on the parasites of G. glis inhabiting 27 European countries (Figure 1).
Of course, the figure does not reflect the entire diversity and distribution of viruses, bacteria or parasites of G. glis but only shows the results of research efforts in these countries aimed at studying one or a few systematic groups. The most fully studied viruses, protozoa, ectoparasites and helminths of G. glis are in Germany, where 21 species have been identified for the dormouse (Figure 1). Three taxonomic groups were studied in Slovenia (16 species), Croatia (10) and Italy (5). In most of the countries (23 out of 27 studied), the studies cover only one or two taxonomic groups of pathogens or symbionts (Figure 1). Ectoparasites and helminths were found in G. glis in 10 countries. In Russia, the greatest number of parasite species (22) related to these groups was identified. Endo- and ectoparasite fauna in G. glis were less diverse in Ukraine (16 species), Slovakia (15) and Belarus (13). In Serbia, ectoparasites (6) and viruses (1) of G. glis are known. Helminths and protozoa parasitising G. glis are studied in Switzerland (3 species) and Azerbaijan (3). There is only data about ectoparasites of the edible dormouse in other 10 countries (Figure 1).
So far, viruses have been detected in G. glis only in four European countries (Table 1, Figure 1). The most protozoan species were found in the edible dormouse in Germany (4 species). Only one bacteria species was found in each of the remaining five countries (Table 2, Figure 1).
The parasitic worms of the edible dormouse were studied in 15 countries (Table 3, Figure 1). The greatest number of helminths was noted in G. glis from Belarus, where nine species of parasites were found. Four species of helminths were registered in G. glis in Russia. Three species of helminths have been found in dormice from Slovakia. Two species of helminths are noted in G. glis in 10 countries (Table 3, Figure 1). Only one species of helminths is found in G. glis from Hungary and Moldova. Nematodes and cestodes are noted in almost all countries where helminths were studied, with the exception of Switzerland, Hungary and Moldova (for nematodes) and France and Armenia (for cestodes). Trematodes are found in G. glis only in three countries: Belarus, Armenia and Russia.
Dormouse ectoparasites are observed in most countries (25) (Figure 1). Sucking lice are found on the edible dormouse in five countries. True bugs on G. glis were only reported in Slovenia (Table 4). Fleas were found on G. glis in 20 countries. Dormouse flea fauna is most represented in Slovenia (13 species), Russia (11) and Germany (9). The flea fauna is relatively less diverse in Ukraine (6), Serbia, Croatia and Lithuania (5 species each). Four species of fleas are found in the dormice from Armenia and Bosnia and Herzegovina. In Montenegro and North Macedonia, three and two species of fleas are found on the dormouse, respectively. In each of the other nine countries, G. glis has one flea species (Table 4).
Mites and ticks on G. glis are found in 17 European countries. The greatest diversity of acarine fauna is noted in Slovakia (11 species). In Ukraine and Russia, eight and four species of ticks are registered, respectively. Six species of ticks were found on the dormouse in each Germany and Moldova. Five species of Acari are found on G. glis in Bulgaria. Two species are noted on the dormouse in Belarus and Croatia. Only one species of tick or mite are each recorded on G. glis in nine countries (Table 4).

3. Conclusions

At the present period of study of G. glis, 104 species of parasites, bacteria and viruses are associated with the dormouse: 4 viruses, 8 Protozoa, 6 Cestoda, 6 Trematoda, 4 Nematoda, 1 Heteroptera, 2 Anoplura, 39 Siphonaptera and 34 Acari. The most studied group is ectoparasites. To a lesser extent, parasitic worms in G. glis were studied. There are very few data regarding dormouse protozoans and viruses.
In the dormouse range, the most studied parasites, viruses and protozoans of G. glis are in Germany, where 21 species from all taxonomic groups were noted. The largest number of parasite species was found in the edible dormouse of the Russian fauna (22), but they belonged to only two groups: helminths and ectoparasites.
Among 104 species of viruses, bacteria and parasites found in G. glis, three viruses, six species of protozoa and three helminths have veterinary and medical significance as potential pathogens of dangerous zoonoses. Additionally, many species of fleas, mites and ticks found on G. glis are vectors and reservoirs of a number of dangerous vector-borne diseases in humans, domestic and wild animals.
Perspectives for further parasitological research: the study of unexplored taxonomic groups of viruses, protozoa and parasites associated with the dormouse as well as expanding the geography of research at the expense of unexplored regions. This is necessary to elucidate the role of the species as an alternative host of parasites, a supporting natural foci of zoocenoses and a possible method of infection of tree-dwelling herbivorous species as well as the organization of its biocoenotic relationships.

Author Contributions

Conceptualization, A.A.K. and N.Y.K.; methodology, A.A.K. and A.B.R.; formal analysis, A.A.K. and A.B.R.; investigation, A.A.K. and N.Y.K.; writing—original draft preparation, A.A.K., N.Y.K. and A.B.R.; writing—review and editing, A.B.R. and A.A.K.; project administration, A.B.R.; funding acquisition, A.B.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

All applicable international, national and institutional guidelines for the use and care of wild animals were followed. No animal was killed with the aim of helminth sampling for our study. Our research was conducted in compliance with the ethical standards of humane treatment of animals according with the recommended standards of the Directive of the European Parliament and of the Council of the European Union of 22 September 2010 “On the protection of animals used for scientific purposes” (EU Directive 2010/63/EU).

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are deeply grateful to Boris Kryštufek (Ljubljana, Slovenian Museum of Natural History) for his help in finding parasitological literature. The work was carried out on the research theme № 1021060107217-0-1.6.19 “Structure, dynamics and sustainable development of ecosystems in the Volga River Basin” of the Institute of Ecology of the Volga River Basin, a branch of the Samara Federal Research Center of the Russian Academy of Sciences.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gremyachikh, V.A.; Kvasov, D.A.; Ivanova, E.S. Patterns of mercury accumulation in the organs of bank vole Myodes glareolus (Rodentia, Cricetidae). Biosyst. Divers. 2019, 27, 329–333. [Google Scholar] [CrossRef]
  2. Rutovskaya, M.V.; Aleksandrov, A.N.; Podshivalina, V.N.; Soboleva, A.S.; Glushenkov, O.V. Habitat conditions of Desmana moschata (Talpidae, Eulipotyphla, Mammalia) in the buffer zone of the Prisurskiy state nature reserve (Russia). Nat. Conserv. Res. 2020, 5, 36–46. [Google Scholar] [CrossRef]
  3. Ermakov, O.A.; Mishta, A.V.; Sheftel, B.I.; Obolenskaya, E.V.; Lada, G.A.; Bystrakova, N.V.; Ruchin, A.; Lissovsky, A. Does the Mediterranean water shrew Neomys anomalus (Soricidae, Eulipotyphla) expand the eastern part of the distribution range? Rus. J. Ther. 2020, 19, 112–130. [Google Scholar] [CrossRef]
  4. Ahissa, L.; Akpatou, B.K.; Bohoussou, H.K.; Kadjo, B.; Kone, I. Species composition and community structure of terrestrial small mammals in Tanoe-Ehy Swamp Forest (South-East Ivory Coast): Implication for conservation. Nat. Conserv. Res. 2020, 5, 53–63. [Google Scholar] [CrossRef]
  5. Yakimova, A.E.; Gaidysh, I.S. The species composition and abundance of terrestrial small mammals in the Finnish-Russian friendship nature reserve. Nat. Conserv. Res. 2021, 6 (Suppl. 1), 127–136. [Google Scholar] [CrossRef]
  6. Dubrovskiy, V.Y.; Tumasian, P.A. Populations of small mammals (Rodentia, Insectivora) in small river valleys before and after a flood. Biol. Bull. 2021, 48, 166–168. [Google Scholar] [CrossRef]
  7. Bashinskiy, I.V. Beaver impact on water coverage of forest-steppe territories (Penza region, European Russia). Nat. Conserv. Res. 2021, 6, 88–97. [Google Scholar] [CrossRef]
  8. Airapetyants, A.E. Dormice; Leningrad University Press: Leningrad, Russia, 1983; pp. 3–192. [Google Scholar]
  9. Holden, M.E. Family Gliridae. In Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed.; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, USA, 2005; pp. 3–841. [Google Scholar]
  10. Amori, G.; Hutterer, R.; Kryštufek, B.; Yigit, N.; Mitsainas, G.; Muñoz, L.; Meinig, H.; Juškaitis, R. Glis glis. The IUCN Red List of Threatened Species 2021: E.T39316A197292692. 2021. Available online: https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T39316A197292692.en.1 (accessed on 11 March 2022).
  11. Vekhnik, V.A. Comparative analysis of biology and ecology of Glis glis (Gliridae, Rodentia) in the Zhiguli state nature reserve (Russia) and adjacent territories. Nat. Conserv. Res. 2020, 5, 1–20. [Google Scholar] [CrossRef]
  12. Ivashkina, V.A. Abundance and activity of the edible dormouse (Glis glis L. 1766) in the Zhiguli Mountains (Russia, Middle Volga Region). Pol. J. Ecol. 2006, 54, 337–344. [Google Scholar]
  13. Ioff, I.G.; Tiflov, V.E. Keys to Aphaniptera (Suctoria-Aphaniptera) of the South-East of the USSR; Stavropol Book Publisher: Stavropol, Russia, 1954; pp. 3–201. [Google Scholar]
  14. Kirillova, N.Y.; Kirillov, A.A. Estimation of the epizootic role of small mammals in the Samara region. Bull. Sam. Luk. 2005, 16, 196–202. [Google Scholar]
  15. Kirillova, N.Y.; Kirillov, A.A. Ectoparasites of rodents (Rodentia) from the Samarskaya Luka. Proceed. Sam. Sci. Cent. RAS 2008, 10, 479–487. [Google Scholar]
  16. Meerburg, B.G.; Singleton, G.R.; Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef] [PubMed]
  17. Kirillov, A.A.; Kirillova, N.Y.; Chikhlyaev, I.V. Trematodes of Land Vertebrates from the Middle Volga Region; Cassandra: Togliatti, Russia, 2012; pp. 3–329. [Google Scholar]
  18. Bordes, F.; Blasdell, K.; Morand, S. Transmission ecology of rodent-borne diseases: New frontiers. Integr. Zool. 2015, 10, 424–435. [Google Scholar] [CrossRef] [PubMed]
  19. Krucken, J.; Blumke, J.; Maaz, D.; Demeler, J.; Ramunke, S.; Antolova, D.; Schaper, R.; von Samson-Himmelstjerna, G. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany. PLoS ONE 2017, 12, e0172829. [Google Scholar] [CrossRef] [Green Version]
  20. Levykh, A.Y.; Panin, V.V. Species composition and community structure of small mammals in Parapolsky Dol (Koryak State Nature Reserve, Kamchatka). Nat. Conserv. Res. 2019, 4, 1–12. [Google Scholar] [CrossRef]
  21. Kirillova, N.; Ruchin, A.; Kirillov, A. Helminths in myomorph rodents (Rodentia, Myomorpha) from the National park “Smolny” and its surroundings (European Russia). Forests 2021, 12, 1510. [Google Scholar] [CrossRef]
  22. Rossolimo, O.L.; Potapova, E.G.; Pavlinov, I.Y.; Kruskop, S.V.; Voltzit, O.V. Dormice (Myoxidae) of the world. Arch. Zool. Mus. Mos. St. Univ. 2001, 42, 3–229. [Google Scholar]
  23. Kryštufek, B. Glis glis (Rodentia: Gliridae). Mammal. Spec. 2010, 42, 195–206. [Google Scholar] [CrossRef] [Green Version]
  24. Kryštufek, B. Edible dormouse—Characteristics and life. In Polh in Človek: Ekološki Forum LDS; Kryštufek, B., Flajsman, B., Eds.; Liberalna Akademija: Ljubljana, Slovenia, 2007; pp. 43–89. [Google Scholar]
  25. Pomerantzev, B.I. Ixodid ticks (Ixodidae). Fauna of USSR. Volume 4. Arachnida; Academy of Sciences of the USSR Publisher: Moscow-Leningrad, Russia, 1950; pp. 3–224. [Google Scholar]
  26. Ioff, I.G.; Mikulin, M.A.; Skalon, O.I. Keys to Fleas of Central Asia and Kazakhstan; Medicine: Moscow, Russia, 1965; pp. 3–370. [Google Scholar]
  27. Bregetova, N.G.; Bulanova-Zahvatkina, E.M.; Volgin, V.I.; Dubinin, V.B.; Zahvatkin, A.A.; Zemskaya, A.A.; Lange, A.B.; Pavlovsky, E.N.; Serdyukova, G.V.; Schluger, E.G. Mites of Rodents of Fauna of the SSSR; Academy of Sciences of the USSR Publisher: Moscow-Leningrad, Russia, 1955; pp. 3–459. [Google Scholar]
  28. Filippova, N.A. Ixodid Ticks of the Subfamily Ixodinae. Fauna of the USSR. Arachnida; Nauka: Leningrad, Russia, 1977; Volume 4, pp. 3–393. [Google Scholar]
  29. Filippova, N.A. Ixodid Ticks of the Subfamily Amblyomminae. Fauna of Russia and Adjacent Countries. Arachnida; Nauka: St. Petersburg, Russia, 1997; Volume 4, pp. 3–436. [Google Scholar]
  30. Ryzhikov, K.M.; Gvozdev, E.V.; Tokobaev, M.M.; Shaldybin, L.C.; Matsaberidze, G.V.; Merkusheva, I.V.; Nadtochy, E.V.; Khokhlova, I.G.; Sharpilo, L.D. Keys to the Helminths of Rodents in the USSR Fauna. Cestodes and Trematodes; Nauka: Moscow, Russia, 1978; pp. 3–232. [Google Scholar]
  31. Ryzhikov, K.M.; Gvozdev, E.V.; Tokobaev, M.M.; Shaldybin, L.C.; Matsaberidze, G.V.; Merkusheva, I.V.; Nadtochy, E.V.; Khokhlova, I.G.; Sharpilo, L.D. Keys to the Helminths of Rodents in the USSR Fauna. Nematodes and Acanthocephalans; Nauka: Moscow, Russia, 1979; pp. 3–272. [Google Scholar]
  32. Kolonin, G.V. World Distribution of Ixodid Ticks (Genus Ixodes); Nauka: Moscow, Russia, 1981; pp. 3–116. [Google Scholar]
  33. Kudryashova, N.I. Chigger mites (Acariformes, Trombiculidae) of Eastern Palearctic. Proceed. Zool. Mus. Mos. St. Univ. 1998, 39, 3–342. [Google Scholar]
  34. Andreyko, O.F. Parasites of Mammals in Moldova; Stiinta: Kishinev, Moldova, 1973; pp. 3–185. [Google Scholar]
  35. Genov, T. Helminths of Insectivores and Rodents in Bulgaria; Bulgarian Academy of Sciences Publishing: Sofia, Bulgaria, 1984; pp. 3–348. [Google Scholar]
  36. Bychkova, E.I.; Akimova, L.Y.; Degtyarik, S.M.; Yakovich, M.M. Helminths of Vertebrates and Humans on the Territory of Belarus; Belaruskaya Navuka: Minsk, Belarus, 2017; pp. 3–317. [Google Scholar]
  37. Traub, R.; Wisseman, C.I. The ecology of murine typhus—A critical review. Trop. Dis. Bull. 1978, 75, 237–317. [Google Scholar]
  38. Lee, H.W.; Baek, L.J.; Johnson, K.M. Isolation of Hantaan virus, the etiologic agent of Korean hemorrhagic fever, from wild urban rats. J. Infect. Dis. 1982, 146, 638–644. [Google Scholar] [CrossRef] [PubMed]
  39. Azad, A.F.; Traub, R. Experimental transmission of murine typhus by Xenopsylla cheopis flea bites. Med. Vet. Entomol. 1989, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
  40. Deng, G.F.; Wang, D.Q.; Gu, Y.M.; Meng, Y.C. Economic Insect Fauna of China. Fasc 40, Acari, Dermanyssoidea; Science Press: Beijing, China, 1993; pp. 26–50. [Google Scholar]
  41. Tarasov, V.V. Medical Entomology; Moscow University: Moscow, Russia, 1996; pp. 3–324. [Google Scholar]
  42. Bugert, J.J.; Welzel, T.M.; Zeier, M.; Darai, G. Hantavirus infection—haemorrhagic fever in the Balkans—Potential nephrological hazards in the Kosovo war. Nephr. Dial. Transpl. 1999, 14, 1843–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Wall, R.; Shearer, D. Veterinary Entomology: Biology, Pathology and Control; Blackwell Science: Oxford, UK, 2001; pp. 3–262. [Google Scholar]
  44. Rosen, S.; Yeruham, I.; Braverman, Y. Dermatitis in humans associated with the mites Pyemotes tritici, Dermanyssus gallinae, Ornithonyssus bacoti and Androlaelaps casalis in Israel. Med. Vet. Entomol. 2002, 16, 442–444. [Google Scholar] [CrossRef]
  45. Richter, D.; Klug, B.; Spielman, A.; Matuschka, F.-R. Adaptation of diverse Lyme disease spirochetes in a natural rodent reservoir host. Infect. Immun. 2004, 72, 2442–2444. [Google Scholar] [CrossRef] [Green Version]
  46. Valiente Moro, C.; Chauve, C.; Zenner, L. Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 2005, 12, 99–109. [Google Scholar] [CrossRef]
  47. Reeves, W.K.; Dowling, A.P.G.; Dasch, A.D. Rickettsial agents from parasitic Dermanyssoidea (Acari: Mesostigmata). Exper. Appl. Acarol. 2006, 38, 181–188. [Google Scholar] [CrossRef]
  48. Taylor, M.A.; Coop, R.L.; Wall, R.L. Veterinary Parasitology, 3rd ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 3–2080. [Google Scholar]
  49. Carocci, M.; Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence 2012, 3, 351–367. [Google Scholar] [CrossRef] [Green Version]
  50. Litusov, N.V. The Causative Agent of the Plague; Ural State Medical Academy Publishing: Ekaterinburg, Rusia, 2012; pp. 3–34. [Google Scholar]
  51. Kotti, B.K. A Checklist of the Fleas (Siphonaptera) of the Fauna of Russia and Adjacent Countries; Al’fa Print: Stavropol, Russia, 2013; pp. 3–156. [Google Scholar]
  52. Stekolnikov, A.A.; Santibáñez, P.; Palomar, A.M.; Oteo, J.A. Neotrombicula inopinata (Acari: Trombiculidae)—A possible causative agent of trombiculiasis in Europe. Parasites Vectors 2014, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
  53. Gaevskaya, A.V. The World of Human Parasites. 3. Cestodes and Foodborne Cestodoses; Institute of Biology of the Southern Seas RAS: Sevastopol, Russia, 2017; pp. 3–357. [Google Scholar]
  54. Hurst, C.J. Opportunistic bacteria associated with mammalian livestock disease. In Advances in Environmental Microbiology. 5. The Connections between Ecology and Infectious Disease; Hurst, C.J., Ed.; Universidad del Valle: Santiago de Cali, Colombia, 2018; pp. 185–238. [Google Scholar]
  55. Kirillova, N.Y.; Kirillov, A.A. Mouse-like rodents as facultative hosts of Dicrocoelium dendriticum (Rudolphi, 1819). In Theory and Practice of Parasitic Disease Control: Proceedings of the International Scientific Conference (Moscow, Russia, 15–17 May 2019); Indyuhova, E.N., Ed.; Nauka: Moscow, Russia, 2019; Volume 20, pp. 268–272. [Google Scholar] [CrossRef]
  56. Carruthers, J.; Lythe, G.; Lopez-Garcıa, M.; Gillard, J.; Laws, T.R.; Lukaszewski, R.; Molina-Parıs, C. Stochastic dynamics of Francisella tularensis infection and replication. PLoS Comput. Biol. 2020, 16, e1007752. [Google Scholar] [CrossRef]
  57. Fauna Europaea. Available online: https://fauna-eu.org/ (accessed on 18 February 2022).
  58. Global Cestode Database. Available online: http://tapewormdb.uconn.edu (accessed on 12 February 2022).
  59. Makarikov, A.A. A taxonomic review of hymenolepidids (Eucestoda, Hymenolepididae) from dormice (Rodentia, Gliridae), with descriptions of two new species. Acta Parasitol. 2017, 62, 1–21. [Google Scholar] [CrossRef] [PubMed]
  60. Makarikov, A.A.; Stakheev, V.V.; Tkach, V.V. Phylogenetic relationships of the genus Armadolepis Spassky, 1954 (Eucestoda, Hymenolepididae), with descriptions of two new species from Palaearctic dormice (Rodentia, Gliridae). Syst. Parasitol. 2018, 95, 65–79. [Google Scholar] [CrossRef]
  61. Makarikov, A.A.; Georgiev, B.B. Review of records of hymenolepidids (Eucestoda: Hymenolepididae) from dormice (Rodentia: Gliridae) in Europe, with a redescription of Armadolepis spasskyi Tenora & Barus, 1958 and the description of A. genovi n. sp. Syst. Parasitol. 2020, 97, 83–98. [Google Scholar] [CrossRef] [PubMed]
  62. Amaddeo, D.; Cardeti, G.; Autorino, G.L. Isolamento del virus dell’encefalomiocardite (EMCV) dal ghiro (Myoxus glis L., 1766). Atti Soc. Ital. Sci. Vet. 1991, 45, 1197–1201. [Google Scholar]
  63. Amaddeo, D.; Cardeti, G.; Autorino, G.L. Isolation of Encephalomyocarditis virus from dormice (Myoxus glis) in Italy. J. Wildl. Dis. 1995, 31, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Ehlers, B.; Anoh, A.E.; Ben Salem, N.; Broll, S.; Couacy-Hymann, E.; Fischer, D.; Gedvilaite, A.; Ingenhütt, N.; Liebmann, S.; Martin, M.; et al. Novel Polyomaviruses in mammals from multiple orders and reassessment of Polyomavirus evolution and taxonomy. Viruses 2019, 11, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  65. Prosenc, K.; Avsic-Zupanc, T.; Trilar, T.; Petrovec, M.; Poljak, M. The fat dormouse Myoxus glis as a natural host of medically important microorganisms. Nat. Croat. 1997, 6, 252–262. [Google Scholar]
  66. Stanojevic, M.; Nikolic, V.; Stajkovic, N.; Stamenkovic, G.; Bozovic, B.; Cekanac, R.; Marusic, P.; Gligic, A. Genetic detection of Dobrava-Belgrade hantavirus in the edible dormouse (Glis glis) in Central Serbia. Epidemiol. Infect. 2015, 143, 400–404. [Google Scholar] [CrossRef]
  67. Moens, U.; Krumbholz, A.; Ehlers, B.; Zell, R.; Johne, R.; Calvignac-Spencer, S.; Lauber, C. Biology, evolution, and medical importance of polyomaviruses: An update. Infect. Genet. Evol. 2017, 54, 18–38. [Google Scholar] [CrossRef]
  68. Moens, U.; Calvignac-Spencer, S.; Lauber, C.; Ramqvist, T.; Feltkamp, M.C.; Daugherty, M.D.; Verschoor, E.J.; Ehlers, B. ICTV Virus Taxonomy Profile: Polyomaviridae. J. Gen. Virol. 2017, 98, 1159–1160. [Google Scholar] [CrossRef]
  69. Klempa, B.; Avsic-Zupanc, T.; Clement, J.; Dzagurova, T.K.; Henttonen, H.; Heyman, P.; Jakab, F.; Kruger, D.H.; Maes, P.; Papa, A.; et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: Definition of genotypes and their characteristics. Arch. Virol. 2013, 158, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Turk, N.; Milas, Z.; Margaletic, J.; Turk, R.; Barbic, L.; Konjevic, D.; Peric, S.; Stritof, Z.; Staresina, V. The role of fat dormouse (Glis glis L.) as reservoir host for spirochete Borrelia burgdorferi sensu lato in the region of Gorski Kotar, Croatia. Eur. J. Wildl. Res. 2008, 54, 117–121. [Google Scholar] [CrossRef]
  71. Richter, D.; Matuschka, F.-R. Differential contribution of various dormice to the natural transmission cycle of Lyme disease spirochetes in Central Europe. Peckiana 2012, 8, 235–244. [Google Scholar]
  72. Fietz, J.; Tomiuk, J.; Matuschka, F.-R.; Richter, D. Seasonal prevalence of Lyme disease spirochetes in a heterothermic mammal, the edible dormouse (Glis glis). Appl. Environ. Microbiol. 2014, 80, 3615–3621. [Google Scholar] [CrossRef] [Green Version]
  73. Fietz, J.; Langer, F.; Havenstein, N.; Matuschka, F.R.; Richter, D. The vector tick Ixodes ricinus feeding on an arboreal rodent—The edible dormouse Glis glis. Parasitol. Res. 2016, 115, 1435–1442. [Google Scholar] [CrossRef]
  74. Richter, D.; Matuschka, F.-R.; Tomiuk, J.; Fietz, J. Seasonal prevalence of Lyme disease spirochetes in the edible dormouse (Glis glis). In 9th International Dormouse Conference (Svendborg, Denmark, 18–23 September 2014). Book of Abstracts; Aarhus University Publisher: Aarhus, Denmark, 2014; p. 22. [Google Scholar]
  75. Trilar, T.; Radulovic, S.; Walker, D.H. Identification of a natural cycle involving Rickettsia typhi infection of Monopsyllus sciurorum sciurorum fleas from the nests of the fat dormouse (Glis glis). Eur. J. Epidemiol. 1994, 10, 757–762. [Google Scholar] [CrossRef]
  76. Musaev, M.A.; Veysov, A.M. New species of Coccidia from Edible dormouse Glis glis (Linnaeus, 1766). Proceed. Acad. Sci. Azerbaijan. SSR 1961, 17, 1085–1088. [Google Scholar]
  77. Friedl, A.; Heinzer, I.; Fankhauser, H. Tularemia after a dormouse bite in Switzerland. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 352–354. [Google Scholar] [CrossRef]
  78. Margos, G.; Wilske, B.; Sing, A.; Hizo-Teufel, C.; Cao, W.-C.; Chu, C.; Scholz, H.; Straubinger, R.K.; Fingerle, V. Borrelia bavariensis sp. nov. is widely distributed in Europe and Asia. Int. J. Syst. Evol. Microbiol. 2013, 63, 4284–4288. [Google Scholar] [CrossRef] [Green Version]
  79. Hanincova, K.; Taragelova, V.; Koci, J.; Schäfer, S.M.; Hails, R.; Ullmann, A.J.; Piesman, J.; Labuda, M.; Kurtenbach, K. Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Appl. Environ. Microbiol. 2003, 69, 2825–2830. [Google Scholar] [CrossRef] [Green Version]
  80. McLeod, M.P.; Qin, X.; Karpathy, S.E.; Gioia, J.; Highlander, S.K.; Fox, G.E.; McNeill, T.Z.; Jiang, H.; Muzny, D.; Jacob, L.S.; et al. Complete genome sequence of Rickettsia typhi and comparison with sequences of other Rickettsiae. J. Bacteriol. 2004, 186, 5842–5855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Shimalov, V.T.; Shimalov, V.V. Helminth fauna of dormice (Rodentia: Gliridae) in Belarus. Proc. Nat. Acad. Sci. Bel. Agr. Ser. 2000, 2, 123–125. [Google Scholar]
  82. Stcherbakova, E.Y. To the study of helminth fauna of rodents in Armenia. Proc. Arm. Bran. Acad. Sci. USSR 1942, 1–2, 159–173. [Google Scholar]
  83. Morozov, Y.F. Materials on helminth fauna of rodents and insectivores of the Belovezhskaya Pushcha. Proc. Nat. Res. Hunt. Farm “Belovezhskaya Pushcha” 1958, 1, 151–175. [Google Scholar]
  84. Sosnina, E.F. Parasites of Glis glis caspicus Sat. in the Caucasus National Park. Proc. Leningrad. Univ. (Biol.). 1949, 101, 128–144. [Google Scholar]
  85. Merkusheva, I.V. About helminths of dormice (Myoxidae) and jumping mice (Zapodidae) on the territory of Belarus. Proc. Acad. Sci. Belorus. SSR 1974, 18, 278–281. [Google Scholar]
  86. Merkusheva, I.V. Helminths of rodents. In Fauna and Ecology of Rodent Parasites; Chebotarev, R.S., Ed.; Nauka i Tekhnika: Minsk, Belarus, 1963; pp. 53–137. [Google Scholar]
  87. Faivre, J.P.; Vaucher, C. Redescription de Hymenolepis sulcata (von Linstow, 1879), parasite du loir Glis glis (L.). Bull. Soc. Neuchat. Sci. Nat. 1978, 101, 53–58. [Google Scholar]
  88. Barus, V.; Tenora, F. A contribution to the knowledge of the helminth fauna of dormice (Myoxidae) in Czechoslovakia. Biologia 1956, 11, 651–661. [Google Scholar]
  89. Barus, V.; Tenora, F. To the study of helminth fauna of dormice (Myoxidae) in South Slovakia. Ceskoslov. Parasitol. 1957, 4, 53–56. [Google Scholar]
  90. Tenora, F. Supplementary notes on hymenolepidid tapeworms parasitizing glirid dormice in South Slovakian Limestone Area (Czechoslovakia). Ceskoslov. Parazitol. 1965, 12, 299–303. [Google Scholar]
  91. Tenora, F.; Barus, V.; Koubkova, B. Remarks on tapeworms of the family Hymenolepididae (Cyclophyllidea) parasitizing dormice (Gliridae: Rodentia) in Europe. Acta Univ. Agric. Silv. Mendel. Brun. 1999, 47, 13–23. [Google Scholar]
  92. Salamatin, R.; Cielcka, D.; Kabowiak, G.; Stanko, M. Hymenolepis sulcata (von Linstow, 1879): Occurrence in dormice, Glis glis (Rodentia) in Slovak Republic. Helminthologia 2005, 42, 171–186. [Google Scholar]
  93. Konjevic, D.; Spaculova, M.; Beck, R.; Godlova, M.; Severin, K.; Margaletic, J.; Pintur, K.; Keros, T.; Peric, S. First evidence of Paraheligmonina gracilis and Hymenolepis sulcata among fat dormice (Glis glis L.) from Croatia. Helminthologia 2007, 44, 34–36. [Google Scholar] [CrossRef] [Green Version]
  94. Busch, I. Parazitofauna Probavnog Sustava Sivoga Puha (Glis glis). Master’s Thesis, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia, 2020. [Google Scholar]
  95. Murai, E.; Tenora, F. Hymenolepis sulcata (von Linstow, 1879): Occurrence in Glis glis (Rodentia) in Hungary. Parasitol. Hung. 1977, 10, 63–66. [Google Scholar]
  96. Mas-Coma, S.; Feliu, C.; Rey, J.M. Contribucion al Conocimiento de la Helmintofauna de Micromamiferos Ibericos. VI. Parasitos de Glis glis Linnaeus, 1766 (Rodentia: Gliridae). Rev. Iber. Parasitol. 1978, 38, 579–584. [Google Scholar]
  97. Feliu, C. Efecto de la dispersion geografica de una especie hospedadora sobre su parasitofauna: El caso de los helmintos de las poblaciones ibericas de Glis glis (Linnaeus, 1766) (Rodentia: Gliridae) y Clethrionomys glareolus (Schreber, 1780) (Rodentia: Arvicolidae). Rev. Iber. Parasitol. Extraord. 1987, 16, 79–83. [Google Scholar]
  98. Von Linstow, O. Helminthologische Untersuchungen. Würt. Nat. Jahresh. 1879, 35, 313–342. [Google Scholar]
  99. Janicki, C. Studien an Säugetiercestoden. Zeitschrift für wissenschaftliche. Zoologie 1906, 81, 505–597. [Google Scholar]
  100. Makarikov, A.A.; Stakheev, V.V.; Orlov, V.N. On helminth fauna of rodents from the Northwest Caucasus. Parazitologiia 2017, 51, 317–328. [Google Scholar]
  101. Makarikov, A.A.; Kornienko, S.A.; Makarikova, T.A.; Stakheev, V.V. Helminths of small mammals of the Northwest Caucasus. In Proceeding of 6th Interregional Scientific Conference “Parasitological studies in Siberia and Far East”, Novosibirsk, Russia, 4–6 September 2019; Ishigenova, L.A., Konyaev, S.V., Kornienko, S.A., Eds.; Garamond: Novosibirsk, Russia, 2019; pp. 82–86. [Google Scholar]
  102. Andreyko, O.F. Parasite fauna in dormice from Moldova. Parasit. Anim. Plant. 1965, 1, 53–60. [Google Scholar]
  103. Fataliev, G.G. The helminth fauna of rodents (Rodentia) in Azerbaijan and the ways of its formation. South Rus. Ecol. Develop. 2009, 4, 118–122. [Google Scholar]
  104. Sharpilo, L.D. General characteristic of rodent helminths of Ukraine and its ecological analysis. In Parasites and Parasitoses of Animals and Humans; Mazurmovich, B.N., Ed.; Naukova Dumka: Kiev, Ukraine, 1975; pp. 62–70. [Google Scholar]
  105. Schiro, G.; Pieri, D.; Lo Valvo, M.; Gradoni, L.; Caccio, S.M.; Severini, F.; Marucci, G.; Galuppo, L.; Cumbo, V.; Puleio, R.; et al. Monitoring campaign over an edible dormouse population (Glis glis; Rodentia: Gliridae) in Sicily: First report of mesocestodiasis. Animals 2021, 11, 934. [Google Scholar] [CrossRef] [PubMed]
  106. Stammer, H.J. Die Parasiten deutscher Kleinsauger. Verhandlungen. der Deutschen Zoologischen Gesselschaft in Erlangen. Zool. Anz. 1956, 19, 362–390. [Google Scholar]
  107. Durette-Desset, M.-C. Redescription de l’Heligmosome du Loir (Glis glis L.). Ann. Parasitol. 1969, 44, 609–616. [Google Scholar] [CrossRef]
  108. Sharpilo, L.D. New helminth species in rodents and insectivores of Ukrainian fauna. Probl. parasitol. 1964, 3, 206–215. [Google Scholar]
  109. Vysotskaya, S.O. Helminths of small mammals from Transcarpathian region (The East Carpathians, Ukraine). Parazitologiia 1997, 3, 346–355. [Google Scholar]
  110. Schakhnazarova, S.S. New species of nematodes in rodents of Azerbaijan. Proc. Helminthol. Lab. Acad. Sci. USSR 1949, 2, 69–86. [Google Scholar]
  111. Alojan, M.T. Nematodes of rodents in Armenia. Zool. Digest Stud. Faun. Armen. SSR 1956, 9, 125–170. [Google Scholar]
  112. Movsesyan, S.O.; Nikoghosian, M.A.; Petrosian, R.A.; Vlasov, E.A.; Kuznetsov, D.N. Nematodes of rodents of Armenia. Ann. Parasitol. 2018, 64, 173–180. [Google Scholar]
  113. Rudolphi, K.A. Entzoorum Synopsis cui Accedunt Mantissa Duplex el Incides Locopletissim; Sumtibus, A., Ed.; Rücker: Berolini, Germany, 1819; pp. 3–831. [Google Scholar]
  114. Diesing, K.M. Systema Helminthum; Braumüller, W., Ed.; Vindobonae: Vienna, Austria, 1851; Volume 2, pp. 3–591. [Google Scholar]
  115. Quentin, J.-C. Essai de classification des nematodes Rictulaires. Mem. Mus Nat. d’Hist. Nat. Ser. A Zool. 1969, 54, 55–115. [Google Scholar]
  116. Sharpilo, V.P.; Iskova, N.P. Fauna of Ukraine. Trematodes. Plagiorchiata; Naukova Dumka: Kiev, Ukraine, 1989; Volume 34, pp. 3–280. [Google Scholar]
  117. Matsaberidze, G.V.; Khotenovskiy, I.A. Lecithodendrium dryomi n. sp. (Lecithodendriidae Odhner 1911) from the intestine of Dryomys nitedula. Coll. Art. Akad. Sci. Georg. SSR 1966, 1, 290–293. [Google Scholar]
  118. Sharpilo, L.D. Parasitisation in rodents of helminths peculiar to other animals. In Parasites and Parasitoses of Animals and Humans; Mazurmovich, B.N., Ed.; Naukova Dumka: Kiev, Ukraine, 1975; pp. 211–216. [Google Scholar]
  119. Merkusheva, I.V.; Bobkova, A.F. Helminths of Domesticated and Wild Animals in Belarus; Nauka i Tehnika: Minsk, Belarus, 1981; pp. 3–120. [Google Scholar]
  120. Moravec, F. Review of capillariid and trichosomoidid nematodes from mammals in the Czech Republic and the Slovak Republic. Acta Soc. Zool. Bohem. 2000, 64, 271–304. [Google Scholar]
  121. Anderson, R.C. Nematode Parasites of Vertebrates. Their Development and Transmission, 2nd ed.; CABI Publishing: New York, NY, USA, 2000; pp. 3–578. [Google Scholar]
  122. Bychovskaya-Pavlovskaya, I.E.; Vysotskaya, S.O.; Kulakova, A.P. Trematodes of small mammals from Transkarpathian region. Parazitologiia 1970, 4, 25–33. [Google Scholar]
  123. Melnichenko, E.D.; Panasenko, N.A. To the Helminth Fauna of Dormice from the Middle Dnieper Region. In Proceedings of the 9th Conference of Ukrainian Parasitological Society, Lviv, Ukraine, 14–16 September 1980. [Google Scholar]
  124. Ershova, M.M. To the helminth fauna of rodents in Caucasus Nature Reserve. Proc. Gorky St. Pedagog. Inst. 1960, 27, 108–110. [Google Scholar]
  125. Shaldybin, L.S. Helminth fauna in mammals from the Mordovia state nature reserve. Proc. Mord. St. Nat. Res. 1964, 2, 135–180. [Google Scholar]
  126. Kirillova, N.Y. Helminths of Small Mammals from the Samarskaya Luka; Lambert Academic Publishing: Saarbrucken, Germany, 2011; pp. 3–251. [Google Scholar]
  127. Kirillova, N.Y.; Kirillov, A.A. Overview of helminths in small mammals in the Zhiguli State Reserve. Nat. Conserv. Res. 2017, 2, 24–37. [Google Scholar] [CrossRef] [Green Version]
  128. Blagoveshtchenskiy, D.L. New species of sucking lice (Siphunculidae) that are parasites of rodents. Communication I. Entomol. Rev. 1965, 44, 85–91. [Google Scholar]
  129. Durden, L.A.; Musser, G.G. The sucking lice (Insecta, Anoplura) of the world: A taxonomic checklist with records of mammalian hosts and geographical distribution. Bull. Am. Mus. Nat. Hist. 1994, 218, 1–90. [Google Scholar]
  130. Vas, Z.; Rekasi, J.; Rozsa, L. A checklist of lice of Hungary (Insecta: Phthiraptera). Ann. Hist.-Nat. Mus Nat. Hung. 2012, 104, 1–105. [Google Scholar]
  131. Trilar, T.; Gogala, A.; Gogala, M. Distribution of the swallow bug (Oeciacus hirundinis) in Slovenia, with an unusual finding in a fat dormouse (Myoxus glis) nest. Acta Entomol. Sloven. 1997, 5, 45–50. [Google Scholar]
  132. Orszagh, I.; Krumpal, M.; Cyprich, D. Contribution to the knowlidge of the Martin bug Oeciacus hirundinis (Heteroptera, Cimicidae) in Czechoslovakia. Zbor. Slov. Nar. Muz. Prir. Vedy 1990, 36, 43–60. [Google Scholar]
  133. Trilar, T. Dormice ectoparasites from Western and Central Balkans. In 4th International Conference on Dormice (Rodentia, Gliridae) (Edirne, Turkey, 13–16 September 1999). Book of Abstracts; Trakya University: Edirne, Turkey, 1999; p. 31. [Google Scholar]
  134. Brelih, S.; Trilar, T. Siphonaptera of squirrels and dormice (Rodentia: Sciuridae, Gliridae) from the Western and Central Balkans. Acta Entomol. Sloven. 2000, 8, 147–189. [Google Scholar]
  135. Vysotskaya, S.O. Fleas of small mammals from Transcarpathian region. Parasitol. Coll. Pap. Zool. Inst. 1964, 22, 153–172. [Google Scholar]
  136. Saakyan, M.S. Fauna of rodents in northern-eastern Armenia. Proc. Armen. Anti-Plag. Stat. 1964, 3, 329–346. [Google Scholar]
  137. Kotti, B.K.; Stakheev, V.V.; Zhiltsova, M.V. Fleas (Siphonaptera) of small mammals in the forest altitudinal belt of Western Caucasus. Med. Parasitol. Par. Dis. 2019, 2, 30–36. [Google Scholar] [CrossRef]
  138. Tatarinov, K.A. Animals of the Western Regions of Ukraine; Academy of Sciences of the Ukrainian SSR Publisher: Kiev, Ukraine, 1956; pp. 3–188. [Google Scholar]
  139. Nazarova, I.V. Fleas of the Volga-Kama Region; Nauka: Moscow, Russia, 1981; pp. 3–168. [Google Scholar]
  140. Kirillova, N.Y.; Kirillov, A.A.; Ivashkina, V.A. Ectoparasites of the edible dormouse Glis glis L. of Samarskaya Luka Peninsula (Russia). Pol. J. Ecol. 2006, 54, 387–390. [Google Scholar]
  141. Kotti, B.K. Fleas (Siphonaptera) of mammals and birds in the Great Caucasus. Parazitologiia 2015, 49, 289–303. [Google Scholar] [CrossRef]
  142. Kotti, B.K.; Kotova, E.G. Fleas (Siphonaptera) of mammals from the mountain area between the Kuban and Great Laba Rivers. Parazitologiia 2014, 48, 393–403. [Google Scholar]
  143. Krampitz, H.E. Present-day Sicily from a hygienic-zoological point of view. Z. Trop. Parasitol. 1958, 9, 111–128. [Google Scholar]
  144. Peus, F. Flöhe aus dem Mittelmeergebiet (Insecta, Siphonaptera) III. Sizilien. Mitt. Mus. Nat. Berl. Zool. Mus. Inst. Spez. Zool. 1959, 35, 79–106. [Google Scholar] [CrossRef]
  145. Mohr, E. Die freilebenden Nagetiere Deutschlands und der Nachbarlander, Dritte Auflage; Gustav Fischer Verlag: Jena, Germany, 1954; pp. 3–212. [Google Scholar]
  146. Von Vietinghoff-Riesch, A.; Frhr, V. Der Siebenschläfer (Glis glis L.). Monographien der Wildsäugetiere; Bd. XIV; VEB Gustav Fischer Verlag: Jena, Germany, 1960; pp. 3–196. [Google Scholar]
  147. Lipatova, I.; Stanko, M.; Paulauskas, A.; Spakovaite, S.; Gedminas, V. Fleas (Siphonaptera) in the nests of dormice (Gliridae: Rodentia) in Lithuania. J. Med. Entomol. 2015, 52, 469–474. [Google Scholar] [CrossRef] [PubMed]
  148. Scuratovicz, W.A.; Bartkowska, K. Pchly (Siphonaptera) zebrane w Jugoslawii. Fragm. Faunist. 1977, 23, 51–65. [Google Scholar]
  149. Nikitchenko, N.T.; Samarskiy, S.L. Ectoparasites of the Edible dormouse Glis glis in the Middle Dniester region. In Problems of Parasitology: Proceedings of 6th Scientific Conference of Parasitologists of the Ukrainian SSR; Markevich, A.P., Ed.; Naukova Dumka: Kiev, Ukraine, 1969; Volume 2, p. 145. [Google Scholar]
  150. Avetisyan, G.A. Overview of the flea fauna of the Armenian SSR. Fauna Ecol. Harm. Invert. Arm. SSR. 1970, 15, 21–49. [Google Scholar]
  151. Arzamasov, I.T. Ectoparasites of rodents. In Fauna and Ecology of Rodent Parasites; Chebotarev, R.S., Ed.; Minsk: Nauka i Tekhnika, Belarus, 1963; pp. 138–235. [Google Scholar]
  152. Szabo, I. A magyarorszagi emlosallatok bolhai. Állat. Közlem. 1967, 54, 151–160. [Google Scholar]
  153. Scuratovicz, W.A. Katalog fauny Polski, cz 31. Pchly (Aphaniptera); Muzeum i Instytut Zoologii Polskiej Akademii Nauk: Warszawa, Poland, 1964; pp. 3–59. [Google Scholar]
  154. Khristov, L. Aphaniptera of insectivores and rodents in the Valley of Roses. Proceed. Zool. Inst. Mus. Bulg. Acad. Sci. 1974, 39, 195–205. [Google Scholar]
  155. Dittmar de la Crus, K.; Worschech, K. Siphonapterafauna aus siebenschlafernestern Myoxus glis (Linnaeus, 1766) der region Altenburg. Saugetier. Mitt. 2002, 5, 197–200. [Google Scholar]
  156. Brelih, S.; Trilar, T. Ceratophyllus (Monopsyllus) carniolicus, new flea species from the family Ceratophyllidae (Siphonaptera). Acta. Entomol. Sloven. 2001, 9, 105–111. [Google Scholar]
  157. Alaniya, I.I.; Dzneladze, M.T.; Rostigayev, B.A.; Shiranovich, P.I. A landscape-ecological analysis of the fauna of small mammals and their fleas in the Adjarian ASSR. Zool. Zhurn. 1971, 50, 561–571. [Google Scholar]
  158. Beaucournu, J.-C.; Launay, H. Les Puces (Siphonaptera) de FRANCE et du Basin Méditerranéen Occidental. Faune de France; Fédération Française des Sociétés de Sciences Naturelles: Paris, France, 1990; Volume 76, pp. 3–548. [Google Scholar]
  159. Thompson, H.V. The Edible dormouse (Glis glis L.) in England, 1902–1951. Proc. Zool. Soc. Lond. 1953, 12, 1017–1024. [Google Scholar] [CrossRef]
  160. Brelih, S. Ectoparasitical entomofauna of Yugoslav mammals. II. Siphonaptera from Dinaromys bogdanovi and Chionomys nivalis (Rodentia: Cricetidae). Scopolia 1986, 11, 1–47. [Google Scholar]
  161. Brelih, S.; Trilar, T. New data on Siphonaptera from Dinaromys bogdanovi (Rodentia: Muridae). Scopolia 2000, 43, 1–22. [Google Scholar]
  162. Wagner, J. Beitrage zur kenntnis der Aphanipterenfauna Jugoslaviens. Bull. Soc. Sci. Skoplje 1939, 20, 155–163. [Google Scholar]
  163. Lipatova, I. Data on the distribution of Hystrichopsylla orientalis fleas (Siphonaptera) in Lithuania. Biologija 2020, 66, 236–241. [Google Scholar] [CrossRef]
  164. Masan, P.; Fenda, P. A Review of the Laelapid Mites Associated with Terrestrial Mammals in Slovakia, with a Key to the European Species (Acari: Mesostigmata: Dermanyssoidea); Institute of Zoology, Slovak Academy of Sciences Publishing: Bratislava, Slovakia, 2010; pp. 3–187. [Google Scholar]
  165. Matuschka, F.R.; Eiffert, H.; Ohlenbusch, A.; Spielman, A. Amplifying role of edible dormice in Lyme disease transmission in Central Europe. J. Infect. Dis. 1994, 170, 122–127. [Google Scholar] [CrossRef]
  166. Erhardt, S.; Langer, F.; Matuschka, F.-R.; Richter, D.; Fietz, J. Collecting ticks: Infestation rates in edible and garden dormice (Glis glis and Eliomys quercinus). In Proceedings of the 10th International Dormouse Conference, Liege, Belgium, 11–16 September 2017. [Google Scholar]
  167. Vesenjak-Hirjan, J.; Calisher, C.H.; Brudnjak, Z.; Tovornik, D.; Galinovic-Veissglass, M. Brac-Focus of Arboviruses. In Proceedings of the 6th FEMS Symposium “Arboviruses in the Mediterranean Countries”, Supetar-Brac, Yugoslavia, 8–10 September 1978. [Google Scholar]
  168. Sosnina, E.F.; Vysotskaya, S.O.; Markov, G.N.; Atanasov, L.K. Predatory mites of the family Bdellidae (Acarina, Prostigmata) from the rodent nests in Bulgaria. Proceed. Zool. Inst. 1965, 35, 272–287. [Google Scholar]
  169. Canestrini, G. Family Sarcoptidae. In Demodicidae und Sarcoptidae. Das Tierreich; Canestrini, G., Kramer, P., Eds.; R. Friedländer und sohn: Berlin, Germany, 1899; pp. 4–132. [Google Scholar]
  170. Canestrini, G. Uber einen neuen Parasiten der Saugethiere. Zool. Anz. 1895, 18, 114–115. [Google Scholar]
  171. Sklyar, B.E.; Bochkov, A.V. Mites Myocoptidae (Acariformes: Listrophoroidea: Myocoptidae) of small mammals in Ukraine. In Proceedings of the 4th Congress of the Russian Society of Parasitologists “Parasitology in XXI Century—Problems, Methods, Solutions”, St. Petersburg, Russia, 20–25 October 2008. [Google Scholar]
  172. Fain, A.; Munting, A.J.; Lukoschus, F.S. Les Myocoptidae parasites des rongeurs en Hollande et en Belgique. Acta Zool. Pathol. Antverp. 1970, 50, 67–172. [Google Scholar]
  173. Dubinin, W.B. Superfamily Listrophoroidea (Megn. et Trt.). Fur mites (Sarcoptes pilicoles Megn. et Trt. 1884). In Acari of Rodents of the Fauna USSR; Pavlovsky, E.N., Ed.; Academy of Science of USSR: Moscow-Leningrad, Russia, 1955; pp. 124–141. [Google Scholar]
  174. Bochkov, A.V. Myocoptid mites (Acariformes: Myocoptidae) of the fauna of the former USSR. Zootaxa 2016, 4193, 451–485. [Google Scholar] [CrossRef]
  175. Vesmanis, I.E.; Lukoschus, F.S. Radfordia (Graphiurobia) gliricola sp. n. from Glis glis (Acari: Prostigmata: Myobiidae). Int. J. Acar. 1978, 4, 85–90. [Google Scholar] [CrossRef]
  176. Bochkov, A.V. Mites of the subgenus Graphiurobia of the genus Radfordia (Myobiidae) of the fauna of Russia and surrounding states. Parazitologiia 1994, 28, 421–428. [Google Scholar]
  177. Kepka, O. Die Trombiculinae (Acari, Trombiculidae) in Osteireich. Zeitsch. Parasitenk. 1964, 23, 548–642. [Google Scholar]
  178. Schluger, E.G.; Vysotskaya, S.O. On the fauna of chigger-mites (Acariformes, Trombiculidae) from Transcarpathian region. Parazitologiia 1970, 4, 153–164. [Google Scholar]
  179. Bobrovsky, V.N.; Kudryashova, N.I. Fauna and ecology of red velvet mites (Acariformes: Trombiculidae) in Moldova. Parasit. Anim. Plant. 1966, 2, 162–167. [Google Scholar]
  180. Kirillova, N.Y. Exchange of ectoparasites between small mammals in the Samarskaya Luka. In Ecological Papers: Proceedings of the Young Scientists of the Volga Region; Saxonov, S.V., Ed.; Institute of the Ecology of the Volga River Basin Publisher: Togliatti, Russia, 2007; pp. 102–106. [Google Scholar]
  181. Medvedev, S.G.; Tretyakov, K.A. Fleas of small mammals in St. Petersburg. Parazitologiia 2014, 48, 302–314. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Number of species of parasites, bacteria and viruses found in Glis glis reflect different research efforts in various European countries.
Figure 1. Number of species of parasites, bacteria and viruses found in Glis glis reflect different research efforts in various European countries.
Diversity 14 00562 g001
Table 1. Viruses of Glis glis in Western Palaearctic.
Table 1. Viruses of Glis glis in Western Palaearctic.
SpeciesDistributionHost RangeMedical & Veterinary SignificanceCountryReferences
Family Picornoviridae
Encephalocarditis virus (EMCV)
Esmall rodentscause myocarditis, diabetes mellitus, reproductive disorders and nervous system damageItaly[62,63]
family Polyomaviridae
Polyomavirus
EGlis glisGermany[64]
Family Bunyaviridae
Hantaan orthohantavirus (HTNV)
Esmall rodentsmain causative agent of Korean hemorrhagic fever in humansSlovenia[65]
Dobrava-Belgrade orthohantavirus (DOBV)EApodemus micecause hemorrhagic fever with renal syndromeSerbia[66]
Note: E—Europe.
Table 2. Protozoa of Glis glis in Western Palaearctic.
Table 2. Protozoa of Glis glis in Western Palaearctic.
SpeciesDistributionHost RangeMedical & Veterinary
Significance
CountryReferences
Family Borreliaceae
Borrelia afzelii Canica et al. 1994
Erodents,causative agent of Lime disease (LD)Croatia[70]
dormiceGermany[71,72,73,74]
Borrelia garinii Baranton et al., 1992Ebirdscausative agent of LDGermany[72]
Borrelia bavariensis Margos et al., 2009Erodents, dormicecausative agent of LDGermany[72]
Borrelia miyamotoi Fukunaga et al., 1995EdormiceGermany[72]
Family Rickettsiaceae
Rickettsia typhi (Wolbach and Todd, 1920)
Crodentscausative agent of murine typhus, an endemic human typhusSlovenia[75]
Family Yersiniaceae
Yersinia pestis (Lehmann and Neumann, 1896)
Cwild and domestic animals (mainly rodents)plague pathogenEurope[54]
Family Eimeriidae
Eimeria gliris Musaev and Veysov, 1961
EGlis glisAzerbaijan[76]
Family Francisellaceae
Francisella tularensis (McCoy and Chapin 1912)
Hrodents, humanspathogen of gram-negative coccobacillus, causative agent of tularemiaSwitzerland[77]
Note: E—Europe, C—Cosmopolitan, H—Holarctic.
Table 3. Helminths of Glis glis in Western Palaearctic.
Table 3. Helminths of Glis glis in Western Palaearctic.
SpeciesDistributionHost RangeMedical & Veterinary
Significance
CountryReferences
Family Dicrocoeliidae
Dicrocoelium dendriticum (Rudolphi, 1819)
Cmammals (mainly ungulates)causative agent of dicroceliosis of livestockBelarus[81]
Lyperosomum armenicum (Stcherbakova, 1942)EGlis glisArmenia[82]
Belarus[36,81,83]
Family Brachylaimidae
Brachylaima recurva (Dujardin, 1845)
Psmall rodentsRussia[84]
Family Plagiorchiidae
Plagiorchis elegans (Rudolphi, 1802)
Hbirds, small mammals, reptilesBelarus[36,81]
Family Lecithodendriidae
Lecithodendrium semen (Kirschenblatt, 1941)
EGlis glisBelarus[36,81,85]
Family Diplostomidae
Alaria alata (Goeze, 1782), msc.
Camphibians, reptiles, small mammalscausative agent of alariasis of farmed fur animals Belarus[86]
Family Hymenolepididae
Armadolepis myoxi (sensu stricto) (Rudolphi, 1819) (syn.: Hymenolepis sulcata (von Linstow, 1879))
EGlis glisSwitzerland[87] reported as H. sulcata
Slovakia[88,89,90,91,92] reported as H. sulcata
Croatia[93] reported as H. sulcata, [94]
Hungary[95] reported as H. sulcata
Spain[96,97] reported as H. sulcata
Germany[98,99] reported as H. sulcata
Armadolepis longisoma Makarikov, Stakheev and Tkach, 2018EGlis glisRussia[100] reported as Armadolepis sp. 1, [60,101]
Armadolepis genovi Makarikov and Georgiev, 2020EGlis glisBulgaria[35] reported as H. myoxi, [61]
Armadolepis sp.EGlis glisRussia[84] reported as H. myoxi
Hymenolepididae sp.EMoldova[34,102] reported as Hymenolepis horrida (Linstow, 1901)
Belarus[36] reported as H. horrida and Rodentolepis straminea (Goeze, 1782)
Azerbaijan[103] reported as Hymenolepis diminuta (Rudolphi, 1819)
Ukraine[104] reported as R. straminea
Slovakia[91] reported as Rodentolepis sp.
Family Mesocestoididae
Mesocestoides lineatus (Goeze, 1782), tetrathyridia
Preptiles, small mammalscause mesocestidosis in humans, carnivoresItaly[105]
Family Capillariidae
Pterothominx sadovskoi (Morozov, 1956) (syn.: Thominx sadovskoi Morozov, 1956; Armocapillaria sadovskoi (Morozov, 1956))
Psmall rodentsBelarus[36,81,83]
Family Heligmonellidae
Paraheligmonina gracilis (Leuckart, 1842) (syn.: Heligmosomum gracile (Leuckart, 1842); Longistriata schulzi Schachnasarova, 1949; Longistriata elpatievskii Schachnasarova, 1949)
WPGlis glisRussia[84,100,101]
Belarus[36,81,83,86]
Germany[106,107]
Bulgaria[35]
Ukraine[104,108,109]
Azerbaijan[103,110]
Armenia[111,112]
Croatia[93,94]
Spain[96]
Italy, France[107]
Slovakia[88,89]
Family Rictulariidae
Rictularia cristata (Frölich, 1802)
Esmall rodentsCentral Europe[113,114,115]
Rictularia amurensis Schulz, 1927Psmall rodentsBelarus[36,81]
Note: E—Europe, C—Cosmopolitan, H—Holarctic, P—Palaearctic, WP—Western Palaearctic.
Table 4. Ectoparasites of Glis glis in the Western Palaearctic.
Table 4. Ectoparasites of Glis glis in the Western Palaearctic.
SpeciesDistributionHost RangeMedical & Veterinary
Significance
CountryReferences
Family Hoplopleuridae
Schizophthirus gliris Blagoveshtchensky, 1965
EGlis glisPoland, Bulgaria, North Makedonia[128,129]
Schizophthirus pleurophaeus (Burmeister 1839)WPdormiceWest Europe, Belarus[128,129]
Hungary[130]
Family Cimicidae
Oeciacus hirundinis (Lamarck, 1816)
Pbirds (mainly swallows)Slovenia[131]
Slovakia[132]
Family Pulicidae
Pulex irritans Linnaeus, 1758
Cmammals (including humans), birdsvector of plague bacteria Yersinia pestis;
intermediate host of the cucumber tapeworm Dipylidium caninum (Linnaeus, 1758), which cause helminthiasis in dogs and cats
Slovenia[133,134]
Family Ceratophyllidae
Amalareus penicilliger (Grube, 1851)
Pforest rodentsUkraine[135]
Leptopsylla taschenbergi (Wagner, 1898) Pforest rodents, insectivoresArmenia[136]
Russia[137]
Leptopsylla segnis (Schönherr, 1811) Chouse mice, ratsvector of plague and tularemiaCroatia[133,134]
Leptopsylla sciurobia (Wagner, 1934) Psquirrels, dormice, Apodemus miceSerbia[133,134]
Peromyscopsylla bidentata (Kolenati, 1863) Pforest rodentsUkraine[135,138]
Ceratophyllus sciurorum (Schrank, 1803)Psquirrels, dormicevector of tularemiaRussia[13,15,51,84,137,139,140,141,142]
Italy[105,143,144]
Germany[106,145,146]
Lithuania[147]
Serbia, Croatia,
Montenegro,
Slovenia, North
Macedonia
[75,133,134]
Bosnia and
Herzegovina
[75,133,134,148]
Ukraine[135,149]
Armenia[136,150]
Belarus[127,151]
Moldova[34,102]
Hungary[152]
Poland[153]
Bulgaria[154]
Ceratophyllus sciurorum sciurorum (Schrank, 1803) Psquirrels, dormiceSlovenia[75]
Germany[155]
Ceratophyllus rusticus Wagner, 1903 EbirdsSlovenia[133,134]
Ceratophyllus carniolicus Brelih and Trilar, 2001EGlis glisSlovenia[156]
Ceratophyllus hirundinis (Curtis, 1826)PbirdsSlovenia[133,134]
Ceratophyllus gallinae (Schrank, 1803)CbirdsSlovenia[134]
Germany[155]
Lithuania[147]
Ceratophyllus borealis Rothschild, 1907P, GbirdsRussia[84]
Ceratophyllus (Monopsyllus) sp.ESlovenia[134]
Dasypsyllus gallinulae gallinulae (Dale, 1878)CbirdsSlovenia[134]
Megabothris turbidus (Rothschild, 1909)Pforest rodentsvector of viral hemorrhagic fever and tularemiaUkraine[135,138,149]
Germany[155]
Russia[13,140]
Lithuania[147]
Megabothris walkeri (Rothschild, 1902)Pforest rodentsvector of tularemiaRussia[13,140]
Myoxopsylla jordani Ioff and Argyropoulo, 1934E, IdormiceArmenia[150]
Russia[51,84,141,142]
Georgia[157]
Myoxopsylla laverani (Rothschild, 1911)WPdormiceGermany[145,146,155]
France[158]
Nosopsyllus consimilis (Wagner, 1898)Pforest rodentsvector of plague and tularemiaArmenia[136]
Russia[13,140]
Nosopsyllus fasciatus (Bosc d’Antic, 1800) Chouse mice, ratsvector of the rat tapeworm H. diminutaSerbia[148]
Orchopeas howardi (Baker, 1895) (syn.: Orchopeas wickhami (Baker, 1895))NSciurus carolinensis Gmelin, 1788UK[159]
Family Ctenophthalmidae
Ctenophthalmus wagneri Tiflov, 1927
Pvolesvector of tularemiaRussia[13,140]
Ctenophthalmus monticola (Kohaut, 1904)EinsectivoresSerbia[133,134]
Ctenophthalmus agyrtes (Heller, 1896)EApodemus micevector of tularemiaUkraine[135,138]
Germany[155]
Ctenophthalmus agyrtes ohridanus Wagner, 1939Esmall mammalsCroatia[133,134]
Ctenophthalmus agyrtes wagnerianus Peus, 1950Esmall mammalsSlovenia[133,134]
Ctenophthalmus proximus (Wagner, 1903)Esmall mammalsRussia[137]
Ctenophthalmus assimilis (Taschenberg, 1880)PvolesUkraine[135]
Ctenophthalmus congener Rothschild, 1907WPsmall mammalsSlovenia[133,134]
Ctenophthalmus nifetodes Wagner, 1933EDinaromys bogdanovi (V. and E. Martino, 1922)Bosnia &
Herzegovina,
Montenegro
[133,134,160]
Ctenophthalmus nifetodes brelihi Rosicky and Carnelutti, 1959EDinaromys bogdanoviSlovenia[133,134,160,161]
Ctenophthalmus nifetodes tvrtkovici Brelih, 1986EDinaromys bogdanoviCroatia[133,134,160]
Palaeopsylla soricis (Dale, 1878)Pinsectivoresvector and reservoir of tularemiaGermany
Russia
[155]
[13,140]
Doratopsylla dasycnema dasycnema (Rothschild, 1897)Pinsectivoresformer Yugoslavia[162]
Germany[155]
Family Hystrichopsyllidae
Hystrichopsylla talpae (Curtis 1826)
PTalpa europaeavector and reservoir of tick-borne encephalitisLithuania[147]
Russia[13,140]
Hystrichopsylla orientalis Smit, 1956 Esmall rodents, insectivoresLithuania[163]
Hystrichopsylla orientalis orientalis Smit, 1956Esmall rodents, insectivoresBosnia &
Herzegovina
[133,134]
Family Ischnopsyllidae
Ischnopsyllus intermedius (Rothschild, 1898)
EbatsGermany[155]
Family Laelapidae
Androlaelaps casalis (Berlese, 1887) (syn.: Haemolaelaps casalis (Berlese, 1887)
Cbirdscause human dermatitisMoldova[34,102]
Ukraine[138]
Belarus[151]
Laelaps agilis C.L. Koch, 1836 Pforest mice, insectivores, carnivoresvector of plague, tularemia, hemorrhagic fever with renal syndrome (HFRS), tick-borne encephalitis, leptospirosis, brucellosisSlovakia[164]
Eulaelaps stabularis (C.L. Koch, 1836)Csmall mammals, birdsvector of tularemia, Q fever, tick-borne encephalitis, brucellosis, leptospirosisSlovakia[164]
Myonyssus gigas (Oudemans, 1912)Prodents, insectivores, carnivoresSlovakia[164]
Haemogamasus horridus Michael, 1892WProdents, insectivores, carnivoresSlovakia[164]
Haemogamasus nidi Michael, 1892Hrodents, insectivores, carnivoresvector of tularemiaSlovakia[164]
Haemogamasus pontiger (Berlese, 1904)Crodents, insectivores, carnivoresSlovakia[164]
Family Hirstionyssidae
Hirstionyssus sciurinus (Hirst, 1921)
PSciurus vulgaris, Glis glisvector of tularemia, tick-borne encephalitis, brucellosis, leptospirosisRussia[13,140]
Slovakia[164]
Hirstionyssus gliricolus Masan and Ambros, 2010 EGlis glisSlovakia[164]
Hirstionyssus paulisimilis Masan and Fenda, 2010 EGlis glisSlovakia[164]
Hirstionyssus sunci Wang, 1962Psmall rodents, insectivorescause human dermatitisSlovakia[164]
Family Glycyphagidae
Labidophorus talpae Kramer, 1877
EmolesEurope[27]
Family Ixodidae
Ixodes (Ixodes) ricinus (Linnaeus, 1758)
Pmammals, birdsvector of louping-ill virus of sheep, Lyme disease, ehrlichiosis (tick-borne fever) of cattle; transmits Babesia spp., which causes Redwater fever in cattle and sheepRussia[84]
Moldova[34]
Ukraine[138,149]
Germany[71,73,165,166]
Belarus[151]
Ixodes (Ixodes) acuminatus Neumann, 1901 (syn. I. redikorzevi Olenev, 1927)Prodents, insectivores, carnivoresvector of LD, tularemia, Q feverEurope[29]
Ixodes (Ixodes) laguri Olenev, 1929 (syn.: I. laguri colchicus Pomerantzev, 1948)Psmall rodents, hedgehogs, small carnivoresvector of plague and tularemiaRussia[25,28,84]
Ixodes (Exopalpiger) trianguliceps Birula, 1895 Prodents, insectivores, carnivoresvector of LDUkraine[138,149]
Germany[166]
Family Amblyommidae
Dermacentor marginatus (Sulzer, 1776)
Pmammals, insectivores, small carnivoresvector of tick-borne Russian spring–summer encephalitis (TBRSSE), North Asian tick typhusCroatia[167]
Family Bdellidae
Bdella muscorum Ewing, 1909
Hsmall mammalsBulgaria[168]
Cyta latirostris (Hermann, 1804)Csmall mammalsBulgaria[168]
Cyta coerulipes (Duges, 1834)Csmall mammalsBulgaria[168]
Family Myocoptidae
Gliricoptes glirinus (Canestrini, 1895) (syn.: Myocoptes glirinus Can. 1895)
WPGlis glisGermany[146,169]
Italy[170,171]
France[170,171]
Belgium[172]
Armenia[171,173]
Russia[174]
UK[169]
Family Myobiidae
Radfordia (Graphiurobia) gliricola Vesmanis and Lukoschus, 1978
WPGlis glisGermany[175]
Russia[176]
Family Trombiculidae
Ascoschoengastia latyshevi (Schluger, 1955)
Prodents, insectivores, birdsEurope[33]
Leptotrombidium europaeum (Daniel and Brelih, 1959) (syn.: Leptotrombidium intermedia europaea Daniel and Brelih, 1959Prodents, insectivoresvector of rickettsiosis tsutsugamushiformer Czechoslovakia, former Yugoslavia, Bulgaria, Albania, Spain[177]
Leptotrombidium sylvaticum Hushcha and Schluger, 1967Prodents, insectivoresvector of rickettsiosis tsutsugamushiUkraine[149,178]
Miyatrombicula muris (Oudemans, 1910)Erodents, insectivoresCentral and South Europe, Russia[33]
Neotrombicula vernalis (Willmann, 1942)WProdents, insectivoresvector of rickettsiosis tsutsugamushiAustria[177]
Neotrombicula austriaca Kepka, 1964Erodents, insectivoresvector of rickettsiosis tsutsugamushiBulgaria, Moldova[33]
Neotrombicula inopinata (Oudemans, 1909) (syn.: N. germanica Willmann, 1952; N. autumnalis germanica (Willmann, 1952)WProdents, insectivores, birdsvector of rickettsiosis tsutsugamushi, cause human trombiculiasis Germany[33,146]
Ukraine[33,178]
Neotrombicula japonica (Tanaka, Kaiwa, Teramura & Kagaya, 1930) (syn.: Trombicula dubinini Schluger, 1955)Prodents, insectivoresvector of rickettsiosis tsutsugamushiUkraine[33,149]
Neotrombicula nagayoi Sasa, Hayashi, Sato, Miura and Asahima, 1950Prodentsvector of rickettsiosis tsutsugamushiMoldova[34,179]
Neotrombicula vulgaris (Schluger, 1955)Erodentsvector of rickettsiosis tsutsugamushiUkraine[149]
Hirsutiella zachvatkini (Schluger, 1948) (syn.: Trombicula zachvatkini Schluger, 1948; Neotrombicula zachvatkini)Prodentsvector of diseases causes by Rickettsia spp.Moldova[34,102]
Ukraine[33,149,178]
Russia[13,140]
Schoutedenichia sp.PMoldova[34]
Note: E—Europe, C—Cosmopolitan, H—Holarctic, P—Palaearctic, WP—Western Palaearctic, G—Greenland, I—Iran, N—Nearctic.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kirillov, A.A.; Kirillova, N.Y.; Ruchin, A.B. Parasites, Bacteria and Viruses of the Edible Dormouse Glis glis (Rodentia: Gliridae) in the Western Palaearctic. Diversity 2022, 14, 562. https://doi.org/10.3390/d14070562

AMA Style

Kirillov AA, Kirillova NY, Ruchin AB. Parasites, Bacteria and Viruses of the Edible Dormouse Glis glis (Rodentia: Gliridae) in the Western Palaearctic. Diversity. 2022; 14(7):562. https://doi.org/10.3390/d14070562

Chicago/Turabian Style

Kirillov, Alexander A., Nadezhda Yu. Kirillova, and Alexander B. Ruchin. 2022. "Parasites, Bacteria and Viruses of the Edible Dormouse Glis glis (Rodentia: Gliridae) in the Western Palaearctic" Diversity 14, no. 7: 562. https://doi.org/10.3390/d14070562

APA Style

Kirillov, A. A., Kirillova, N. Y., & Ruchin, A. B. (2022). Parasites, Bacteria and Viruses of the Edible Dormouse Glis glis (Rodentia: Gliridae) in the Western Palaearctic. Diversity, 14(7), 562. https://doi.org/10.3390/d14070562

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop