The CRISPR/Cas Machinery Evolution and Gene Flow in the Hot Spring Cyanobacterium Thermostichus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Information and Cultivation
2.2. DNA Isolation and Sequencing
2.3. Phylogenetic Inference and Horizontal Gene Transfer Detection
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, B.J.; Huang, I.-T.; Hanage, W.P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Genet. 2021, 20, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.J.; Leducq, J.-B.; Mallet, J. What Is Speciation? PLoS Genet. 2016, 12, e1005860. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, B.J.; Polz, M.F. Microbial Speciation. Cold Spring Harb. Perspect. Biol. 2015, 7, a018143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogarten, J.P.; Townsend, J.P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Genet. 2005, 3, 679–687. [Google Scholar] [CrossRef]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Popa, O.; Hazkani-Covo, E.; Landan, G.; Martin, W.; Dagan, T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res. 2011, 21, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Feder, J.L.; Egan, S.P.; Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 2012, 28, 342–350. [Google Scholar] [CrossRef]
- Baas Becking, L.G.M. Geobiologie of Inleiding Tot De Milieukunde; W. P. van Stockum & Zoon: Hague, The Netherlands, 1934. [Google Scholar]
- Finlay, B.J. Global Dispersal of Free-Living Microbial Eukaryote Species. Science 2002, 296, 1061–1063. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, K.F.; Ferrero, A.P.; Duarte, L.; Turchetto-Zolet, A.C.; Crossetti, L.O. Comparative phylogeography of two free-living cosmopolitan cyanobacteria: Insights on biogeographic and latitudinal distribution. J. Biogeogr. 2020, 47, 1106–1118. [Google Scholar] [CrossRef]
- Reno, M.L.; Held, N.L.; Fields, C.J.; Burke, P.V.; Whitaker, R.J. Biogeography of the Sulfolobus islandicus pan-genome. Proc. Natl. Acad. Sci. USA 2009, 106, 8605–8610. [Google Scholar] [CrossRef] [Green Version]
- Dvořák, P.; Hašler, P.; Poulíčková, A. Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from Three Continents—A Spatial and Temporal Characterization. PLoS ONE 2012, 7, e40153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papke, R.T.; Ramsing, N.B.; Bateson, M.M.; Ward, D.M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 2003, 5, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.R.; Castenholz, R.W.; Pedersen, D. Phylogeography of the Thermophilic Cyanobacterium Mastigocladus laminosus. Appl. Environ. Microbiol. 2007, 73, 4751–4759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castenholz, R.W. Isolation and Cultivation of Thermophilic Cyanobacteria. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 1981; pp. 236–246. [Google Scholar]
- Ferris, M.J.; Ruff-Roberts, A.L.; Kopczynski, E.D.; Bateson, M.M.; Ward, D.M. Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl. Environ. Microbiol. 1996, 62, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Komárek, J.; Johansen, J.R.; Šmarda, J.; Strunecký, O. Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea 2020, 20, 171–191. [Google Scholar] [CrossRef]
- Shih, P.M.; Wu, D.; Latifi, A.; Axen, S.D.; Fewer, D.P.; Talla, E.; Calteau, A.; Cai, F.; de Marsac, N.T.; Rippka, R.; et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 1053–1058. [Google Scholar] [CrossRef] [Green Version]
- Dvořák, P.; Casamatta, D.A.; Poulíčková, A.; Hašler, P.; Ondřej, V.; Sanges, R. Synechococcus: 3 billion years of global dominance. Mol. Ecol. 2014, 23, 5538–5551. [Google Scholar] [CrossRef]
- Ionescu, D.; Hindiyeh, M.; Malkawi, H.; Oren, A. Biogeography of thermophilic cyanobacteria: Insights from the Zerka Ma’in hot springs (Jordan). FEMS Microbiol. Ecol. 2010, 72, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Bhaya, D.; Davison, M.; Barrangou, R. CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annu. Rev. Genet. 2011, 45, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Donohoue, P.D.; Barrangou, R.; May, A.P. Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Trends Biotechnol. 2018, 36, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Westra, E.R.; Dowling, A.J.; Broniewski, J.M.; van Houte, S. Evolution and Ecology of CRISPR. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 307–331. [Google Scholar] [CrossRef] [Green Version]
- Rho, M.; Wu, Y.-W.; Tang, H.; Doak, T.; Ye, Y. Diverse CRISPRs Evolving in Human Microbiomes. PLoS Genet. 2012, 8, e1002441. [Google Scholar] [CrossRef]
- Kunin, V.; He, S.; Warnecke, F.; Peterson, S.B.; Martin, H.G.; Haynes, M.; Ivanova, N.; Blackall, L.L.; Breitbart, M.; Rohwer, F.; et al. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res. 2007, 18, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marraffini, L.A.; Sontheimer, E.J. CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science 2008, 322, 1843–1845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef]
- Lukavský, J.; Furnadzhieva, S.; Pilarski, P. Cyanobacteria of the thermal spring at Pancharevo, Sofia, Bulgaria. Acta Bot. Croat. 2011, 70, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Strunecký, O.; Kopejtka, K.; Goecke, F.; Tomasch, J.; Lukavský, J.; Neori, A.; Kahl, S.; Pieper, D.H.; Pilarski, P.; Kaftan, D.; et al. High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles 2018, 23, 35–48. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-W.; Simmons, B.; Singer, S.W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2015, 32, 605–607. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Bouckaert, R.R.; Heled, J. DensiTree 2: Seeing Trees Through the Forest. bioRxiv 2014, 012401. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Boc, A.; Diallo, A.B.; Makarenkov, V. T-REX: A web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 2012, 40, W573–W579. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, B.J.; Friedman, J.; Cordero, O.X.; Preheim, S.P.; Timberlake, S.C.; Szabó, G.; Polz, M.F.; Alm, E.J. Population Genomics of Early Events in the Ecological Differentiation of Bacteria. Science 2012, 336, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Shih, P.M.; Hemp, J.; Ward, L.; Matzke, N.; Fischer, W.W. Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 2016, 15, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Magnabosco, C.; Moore, K.R.; Wolfe, J.M.; Fournier, G.P. Dating phototrophic microbial lineages with reticulate gene histories. Geobiology 2018, 16, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskella, B.; Brockhurst, M.A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Zhang, Y.; Liu, Z.; Dong, Z.; Xie, C.; Bravo, A.; Soberón, M.; Mahillon, J.; Sun, M.; Peng, D. The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. ISME J. 2020, 14, 1479–1493. [Google Scholar] [CrossRef]
- Heidelberg, J.; Nelson, W.; Schoenfeld, T.; Bhaya, D. Germ Warfare in a Microbial Mat Community: CRISPRs Provide Insights into the Co-Evolution of Host and Viral Genomes. PLoS ONE 2009, 4, e4169. [Google Scholar] [CrossRef] [Green Version]
- Lopatina, A.; Medvedeva, S.; Artamonova, D.; Kolesnik, M.; Sitnik, V.; Ispolatov, Y.; Severinov, K. Natural diversity of CRISPR spacers of Thermus: Evidence of local spacer acquisition and global spacer exchange. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180092. [Google Scholar] [CrossRef] [Green Version]
- Nowack, S.; Olsen, M.T.; Schaible, G.; Becraft, E.D.; Shen, G.; Klapper, I.; Bryant, D.A.; Ward, D.M. The molecular dimension of microbial species: 2. Synechococcus strains representative of putative ecotypes inhabiting different depths in the Mushroom Spring microbial mat exhibit different adaptive and acclimative responses to light. Front. Microbiol. 2015, 6, 626. [Google Scholar] [CrossRef] [Green Version]
- Becraft, E.D.; Wood, J.; Rusch, D.B.; Kühl, M.; Jensen, S.I.; Bryant, D.A.; Roberts, D.; Cohan, F.M.; Ward, D.M. The molecular dimension of microbial species: 1. Ecological distinctions among, and homogeneity within, putative ecotypes of Synechococcus inhabiting the cyanobacterial mat of Mushroom Spring, Yellowstone National Park. Front. Microbiol. 2015, 6, 590. [Google Scholar] [CrossRef] [Green Version]
- Olsen, M.T.; Nowack, S.; Wood, J.; Becraft, E.D.; LaButti, K.; Lipzen, A.; Martin, J.; Schackwitz, W.S.; Rusch, D.B.; Cohan, F.M.; et al. The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated putative ecotypes in the Mushroom Spring microbial mat. Front. Microbiol. 2015, 6, 604. [Google Scholar] [CrossRef]
- Allewalt, J.P.; Bateson, M.M.; Revsbech, N.P.; Slack, K.; Ward, D.M. Effect of Temperature and Light on Growth of and Photosynthesis by Synechococcus Isolates Typical of Those Predominating in the Octopus Spring Microbial Mat Community of Yellowstone National Park. Appl. Environ. Microbiol. 2006, 72, 544–550. [Google Scholar] [CrossRef] [Green Version]
Strain | CRISPR Arrays | CRISPR Spacers | CRISPR Genes |
---|---|---|---|
Synechoccus sp. Rupite Bulgaria | 6 | 390 | 16 |
Synechocccus sp. JA-3-3Ab | 7 | 88 | 14 |
Synechocccus sp. JA-2-3B′a(2-13) | 7 | 124 | 2 |
Synechocccus sp. 60AY4M2 | 5 | 33 | 6 |
Synechocccus sp. 63AY4M1 | 4 | 21 | 6 |
Synechocccus sp. 63AY4M2 | 8 | 45 | 5 |
Synechocccus sp. 65AY6A5 | 9 | 56 | 6 |
Synechocccus sp. 65AY6Li | 11 | 72 | 13 |
Synechocccus sp. 65AY640 | 7 | 34 | 6 |
Synechocccus sp. PCC7336 | 8 | 286 | 12 |
Rupite Bulgaria | JA-3-3Ab | JA-2-3B′a(2-13) | 60AY4M2 | 63AY4M1 | 63AY4M2 | 65AY6A5 | 65AY6Li | |
---|---|---|---|---|---|---|---|---|
Rupite Bulgaria | ||||||||
JA-3-3Ab | 0 | |||||||
JA-2-3B′a(2-13) | 0 | 1 | ||||||
60AY4M2 | 0 | 0 | 0 | |||||
63AY4M1 | 0 | 0 | 0 | 10 | ||||
63AY4M2 | 0 | 0 | 0 | 8 | 13 | |||
65AY6A5 | 0 | 0 | 0 | 14 | 8 | 13 | ||
65AY6Li | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
65AY640 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahodářová, E.; Poulíčková, A.; Dvořák, P. The CRISPR/Cas Machinery Evolution and Gene Flow in the Hot Spring Cyanobacterium Thermostichus. Diversity 2022, 14, 502. https://doi.org/10.3390/d14070502
Jahodářová E, Poulíčková A, Dvořák P. The CRISPR/Cas Machinery Evolution and Gene Flow in the Hot Spring Cyanobacterium Thermostichus. Diversity. 2022; 14(7):502. https://doi.org/10.3390/d14070502
Chicago/Turabian StyleJahodářová, Eva, Aloisie Poulíčková, and Petr Dvořák. 2022. "The CRISPR/Cas Machinery Evolution and Gene Flow in the Hot Spring Cyanobacterium Thermostichus" Diversity 14, no. 7: 502. https://doi.org/10.3390/d14070502
APA StyleJahodářová, E., Poulíčková, A., & Dvořák, P. (2022). The CRISPR/Cas Machinery Evolution and Gene Flow in the Hot Spring Cyanobacterium Thermostichus. Diversity, 14(7), 502. https://doi.org/10.3390/d14070502