Detection and Quantification of Forest-Agriculture Ecotones Caused by Returning Farmland to Forest Program Using Unmanned Aircraft Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In-Situ Data
2.3. Image Preprocessing and Photogrammetric Processing
2.4. Object-Based Image Classification (OBIC)
2.5. Canopy Height Modeling
2.6. Extraction and Classification of Forests–Ecotone–Abandoned Landscape
2.7. Quantifying the Landscape Containing Ecotones
2.8. Transect-Based Analysis
2.9. Accuracy Assessment for Ecotone Detection
3. Results
3.1. Canopy Height Estimate
3.2. Landscape Pattern with Small Biotopes
3.3. Ecotones Detection and Quantification
3.4. Transect-Based Analysis
4. Discussion
4.1. Mapping Landscape with Small Biotopes
4.2. Canopy Height Model
4.3. Extraction of Ecotones
4.4. Quantification of Ecotones
4.5. Transect-Based Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Explanation |
---|---|
CHM | Canopy Height Model |
DSM | Digital Surface Model |
DTM | Digital Terrain Model |
EBK | Empirical Bayesian kriging |
ESP | A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. |
GCP | Ground Control Point |
IV | Importance Value |
MRIS | Multiresolution image segmentation |
MSW | Moving split-window technique |
OBIC | Object-based image classification |
OM | Soil organic matter |
RF | Random Forest |
RFFP | Returning Farmland to Forest Program |
RGB or R, G, B | Red, Green, Blue band |
RTK | Real-time kinematic |
SLCP | Sloping Land Conversion Program |
UAS | Unmanned Aircraft System |
References
- Clements, F.E. Research Methods in Ecology; University Publishing Company: Lincoln, NE, USA, 1905. [Google Scholar]
- Delcourt, P.A.; Delcourt, H.R. Ecotone Dynamics in Space and Time. In Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows; Hansen, A.J., di Castri, F., Eds.; Springer: New York, NY, USA, 1992; pp. 19–54. ISBN 978-1-4612-2804-2. [Google Scholar]
- Rusek, J. Distribution and Dynamics of Soil Organisms across Ecotones. In Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows; Hansen, A.J., di Castri, F., Eds.; Springer: New York, NY, USA, 1992; pp. 196–214. ISBN 978-1-4612-2804-2. [Google Scholar]
- Fortin, M.-J.; Olson, R.J.; Ferson, S.; Iverson, L.; Hunsaker, C.; Edwards, G.; Levine, D.; Butera, K.; Klemas, V. Issues Related to the Detection of Boundaries. Landsc. Ecol. 2000, 15, 453–466. [Google Scholar] [CrossRef]
- Walker, S.; Wilson, J.B.; Steel, J.B.; Rapson, G.L.; Smith, B.; King, W.M.; Cottam, Y.H. Properties of Ecotones: Evidence from Five Ecotones Objectively Determined from a Coastal Vegetation Gradient. J. Veg. Sci. 2003, 14, 579–590. [Google Scholar] [CrossRef]
- Holland, M. SCOPE/MAB Technical Consultations on Landscape Boundaries. Report of a SCOPE/MAB Workshop on Ecotones. A new look at ecotones: Emerging international projects on landscape boundaries. Biol. Int. 1988, 17, 106. [Google Scholar]
- Hansen, A.J.; DiCastri, F. Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows; Springer: New York, NY, USA, 1992. [Google Scholar]
- Fortin, M.-J. Edge Detection Algorithms for Two-Dimensional Ecological Data. Ecology 1993, 75, 956–965. [Google Scholar] [CrossRef]
- Farina, A. Scaling Patterns and Processes across Landscapes. In Principles and Methods in Landscape Ecology; Farina, A., Ed.; Springer: Dordrecht, The Netherland, 1998; pp. 35–49. ISBN 978-94-015-8984-0. [Google Scholar]
- Yarrow, M.M.; Marín, V.H. Toward Conceptual Cohesiveness: A Historical Analysis of the Theory and Utility of Ecological Boundaries and Transition Zones. Ecosystems 2007, 10, 462–476. [Google Scholar] [CrossRef]
- Hufkens, K.; Scheunders, P.; Ceulemans, R. Ecotones in Vegetation Ecology: Methodologies and Definitions Revisited. Ecol. Res. 2009, 24, 977–986. [Google Scholar] [CrossRef]
- Kark, S. Effects of Ecotones on Biodiversity. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017; p. B9780128096338022000. ISBN 978-0-12-809633-8. [Google Scholar]
- Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J. A Classification of Ecological Boundaries. BioScience 2003, 53, 723. [Google Scholar] [CrossRef] [Green Version]
- Peters, D.P.C.; Gosz, J.R.; Pockman, W.T.; Small, E.E.; Parmenter, R.R.; Collins, S.L.; Muldavin, E. Integrating Patch and Boundary Dynamics to Understand and Predict Biotic Transitions at Multiple Scales. Landsc. Ecol. 2006, 21, 19–33. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and Socioeconomic Effects of China’s Policies for Ecosystem Services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zinda, J.A.; Li, W. Forest Transitions in Chinese Villages: Explaining Community-Level Variation under the Returning Forest to Farmland Program. Land Use Policy 2017, 64, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Sun, C.; Ou, X. Mountain vegetation spatial pattern changes affected by slope land conversation program (SLCP). J. Mt. Sci. 2009, 27, 513–523. [Google Scholar]
- Su, W.; Yue, Y.; Yu, X. Community structure and population spatial pattern of natural Pinus tabulae form. J. Northeast. For. Univ. 2009, 37, 18–20. [Google Scholar]
- Liu, J.; Gao, J.; Lv, S.-H.; Han, Y.; Nie, Y. Shifting Farming–Pastoral Ecotone in China under Climate and Land Use Changes. J. Arid. Environ. 2011, 75, 298–308. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L. Modeling the Effects of the Sloping Land Conversion Program on Terrestrial Ecosystem Carbon Dynamics in the Loess Plateau: A Case Study with Ansai County, Shaanxi Province, China. Ecol. Model. 2014, 288, 47–54. [Google Scholar] [CrossRef]
- Li, Y.; Viña, A.; Yang, W.; Chen, X.; Zhang, J.; Ouyang, Z.; Liang, Z.; Liu, J. Effects of Conservation Policies on Forest Cover Change in Giant Panda Habitat Regions, China. Land Use Policy 2013, 33, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Marter-Kenyon, J.; López-Carr, D.; Liang, X. Land Cover and Landscape Changes in Shaanxi Province during China’s Grain for Green Program (2000–2010). Environ. Monit Assess 2015, 187, 644. [Google Scholar] [CrossRef]
- Van Den Hoek, J.; Ozdogan, M.; Burnicki, A.; Zhu, A.-X. Evaluating Forest Policy Implementation Effectiveness with a Cross-Scale Remote Sensing Analysis in a Priority Conservation Area of Southwest China. Appl. Geogr. 2014, 47, 177–189. [Google Scholar] [CrossRef]
- Xiong, D.; Ou, X.; Huang, W.; Wang, T.; Yang, J.; Guo, J.; Zhang, Z. Measurement of ecotone width between agro-forest ecosystems based on soil nutrients. Ecol. Sci. 2014, 33, 597–602. [Google Scholar]
- Liu, X.; Zhang, Z.; Sun, Z.; Ou, X.; Zhang, Y.; Mao, Y. Impacts of Different Disturbances on Vegetation Restoration on the Abandoned Farmland. Ecol. Environ. Sci. 2013, 22, 983–990. [Google Scholar]
- Erdős, L. The Moving Split Window (MSW) Analysis in Vegetation Science—An Overview. Appl. Ecol. Environ. Res. 2014, 12, 787–805. [Google Scholar] [CrossRef]
- Zalatnai, M.; KÖRmÖCzi, L.; Toth, T. Soil-Plant Interrelations and Vegetation Boundaries along an Elevation Gradient in a Hungarian Sodic Grassland. Cereal Res. Commun. 2008, 36, 231–234. [Google Scholar]
- Hill, R.; Granica, K.; Smith, G.; Schardt, M. Representation of an Alpine Treeline Ecotone in SPOT 5 HRG Data. Remote Sens. Environ. 2007, 110, 458–467. [Google Scholar] [CrossRef]
- Ørka, H.O.; Wulder, M.A.; Gobakken, T.; Næsset, E. Subalpine Zone Delineation Using LiDAR and Landsat Imagery. Remote Sens. Environ. 2012, 119, 11–20. [Google Scholar] [CrossRef]
- Aplin, P. Remote Sensing: Ecology. Prog. Phys. Geogr. Earth Environ. 2005, 29, 104–113. [Google Scholar] [CrossRef]
- Rocchini, D.; Boyd, D.S.; Féret, J.; Foody, G.M.; He, K.S.; Lausch, A.; Nagendra, H.; Wegmann, M.; Pettorelli, N. Satellite Remote Sensing to Monitor Species Diversity: Potential and Pitfalls. Remote Sens. Ecol. Conserv. 2016, 2, 25–36. [Google Scholar] [CrossRef]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. UAV Photogrammetry for Mapping and 3D Modeling: Current Status and Future Perspectives. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2011, 38, C22. [Google Scholar] [CrossRef] [Green Version]
- Rosnell, T.; Honkavaara, E. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera. Sensors 2012, 12, 453–480. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree Height Quantification Using Very High Resolution Imagery Acquired from an Unmanned Aerial Vehicle (UAV) and Automatic 3D Photo-Reconstruction Methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Peña, J.M. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE 2015, 10, e0130479. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Tilly, N.; Aasen, H.; Bareth, G. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass. Remote Sens. 2015, 7, 11449–11480. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Walz, U. Extraction of Small Biotopes and Ecotones from Multi-Temporal RapidEye Data and a High-Resolution Normalized Digital Surface Model. Int. J. Remote Sens. 2014, 35, 7245–7262. [Google Scholar] [CrossRef]
- Parrott, L.; Proulx, R.; Thibert-Plante, X. Three-Dimensional Metrics for the Analysis of Spatiotemporal Data in Ecology. Ecol. Inform. 2008, 3, 343–353. [Google Scholar] [CrossRef]
- Zhu, F.; An, S.; Guan, B.; Liu, Y.; Zhou, C.; Wang, Z. A Review of Ecotone: Concepts, Attributes, Theories and Research Advances. Acta Ecol. Sin. 2007, 27, 3032–3042. [Google Scholar]
- Nie, W. The Dynamics of the Ecotone between Abandonded Agricultural Land and Forest Caused by the Returing Farmland to Forest Program. Master’s Thesis, Yunnan University, Kunming, China, 2017. [Google Scholar]
- Bongiovanni, G.; Cinque, L.; Levialdi, S.; Rosenfeld, A. Image Segmentation by a Multiresolution Approach. Pattern Recognit. 1993, 26, 1845–1854. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of Savanna Tree Species, in the Greater Kruger National Park Region, by Integrating Hyperspectral and LiDAR Data in a Random Forest Data Mining Environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Vosselman, G. Slope Based Filtering of Laser Altimetry Data. IAPRS 2000, 33, 935–942. [Google Scholar]
- Lee, S.; Wolberg, G.; Shin, S.Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Trans. Visual. Comput. Graphics 1997, 3, 228–244. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Walz, U. Enhanced Analysis of Landscape Structure: Inclusion of Transition Zones and Small-Scale Landscape Elements. Ecol. Indic. 2013, 31, 15–24. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.D.; O’Neill, R.; Jones, K.B.; Smith, E. Global-Scale Patterns of Forest Fragmentation. Conserv. Ecol. 2000, 4, art3. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An Open-source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Loke, L.H.L.; Chisholm, R.A.; Todd, P.A. Effects of Habitat Area and Spatial Configuration on Biodiversity in an Experimental Intertidal Community. Ecology 2019, 100, e02757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umaña, M.N.; Mi, X.; Cao, M.; Enquist, B.J.; Hao, Z.; Howe, R.; Iida, Y.; Johnson, D.; Lin, L.; Liu, X.; et al. The Role of Functional Uniqueness and Spatial Aggregation in Explaining Rarity in Trees. Glob. Ecol. Biogeogr. 2017, 26, 777–786. [Google Scholar] [CrossRef]
- Nams, V.O. Shape of Patch Edges Affects Edge Permeability for Meadow Voles. Ecol. Appl. 2012, 22, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, J.A.; Cornelius, J.M. Locating Discontinuities along Ecological Gradients. Ecology 1987, 68, 448–450. [Google Scholar] [CrossRef]
- Brunt, J.W.; Conley, W. Behavior of a Multivariate Algorithm for Ecological Edge Detection. Ecol. Model. 1990, 49, 179–203. [Google Scholar] [CrossRef]
- Wang, T.; Ou, X.; Zhang, Z.; Liu, X.; Wang, L.; Sun, Z.; He, B.; Li, F. Measurement of ecotone width between agro-ecosystem and forest ecosystem caused by Grain for Green Program. J. Yunnan Univ. 2012, 34, 604–612. [Google Scholar]
- Halder, A.; Ghosh, A.; Ghosh, S. Aggregation Pheromone Density Based Pattern Classification. Fundam. Inform. 2009, 92, 345–362. [Google Scholar] [CrossRef]
- Pickett, S.T.; White, P.S. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Orlando, Fla, 1985; ISBN 978-0-12-554520-4. [Google Scholar]
- Naiman, R.J.; Décamps, H. The Ecology and Management of Aquatic-Terrestrial Ecotones; Man and the biosphere series; Unesco; Parthenon Pub. Group: Park Ridge, NJ, USA, 1990; ISBN 978-0-929858-25-8. [Google Scholar]
- Xiong, D. The Characteristics of Plant Community in Abandonded Agricultural Land and the Changes of the Ecotone between Agro-Forest Ecosystems with Temporal Changes. Master’s Thesis, Yunnan University, Kunming, China, 2013. [Google Scholar]
- Lin, Y.; Yao, S. Impact of the Sloping Land Conversion Program on Rural Household Income: An Integrated Estimation. Land Use Policy 2014, 40, 56–63. [Google Scholar] [CrossRef]
- He, J.; Sikor, T. Notions of Justice in Payments for Ecosystem Services: Insights from China’s Sloping Land Conversion Program in Yunnan Province. Land Use Policy 2015, 43, 207–216. [Google Scholar] [CrossRef]
- Arnot, C.; Fisher, P.F.; Wadsworth, R.; Wellens, J. Landscape Metrics with Ecotones: Pattern under Uncertainty. Landsc. Ecol. 2004, 19, 181–195. [Google Scholar] [CrossRef]
- Frazier, A.E.; Wang, L. Modeling Landscape Structure Response across a Gradient of Land Cover Intensity. Landsc. Ecol. 2013, 28, 233–246. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The Use of Terrestrial LiDAR Technology in Forest Science: Application Fields, Benefits and Challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. The ATL08 Land and Vegetation Product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
Accuracy Index | Forest | Abandoned Land | Bare Land | Single Tree | Tree Line | Shadow |
---|---|---|---|---|---|---|
Precision (%) | 97.00 | 87.00 | 96.00 | 99.00 | 97.00 | 96.00 |
Recall (%) | 94.00 | 90.00 | 95.00 | 98.00 | 97.00 | 97.00 |
F1 (%) | 95.00 | 88.00 | 95.00 | 98.00 | 97.00 | 96.00 |
Overall accuracy (%) | 95.00 |
Landscape Metrics | Forest | Bare Land | Abandoned Land | Ecotones | Tree Line | Single Tree |
---|---|---|---|---|---|---|
Total Area (m2) | 1196.90 | 49.30 | 288.90 | 391.90 | 0.01 | 2.50 |
Percentage of Landscape (%) | 61.74 | 2.54 | 14.90 | 20.22 | 0.47 | 0.13 |
Total Edge (m) | 1100.90 | 2203.10 | 1537.70 | 1631.70 | 125.00 | 27.20 |
Shape Index | 1.55 | 2.39 | 2.27 | 1.82 | 3.27 | 1.30 |
Accuracy Index | Transect 1 | Transect 2 | Transect 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IV | PH | OM | UAS | IV | PH | OM | UAS | IV | PH | OM | UAS | |
Width (m) | 57.50 | 30.00 | 57.50 | 55.20 | 37.50 | 30.00 | 30.00 | 39.72 | 37.50 | 42.50 | 30.00 | 35.43 |
TP (m) | 40.79 | 28.30 | 40.79 | 32.05 | 24.55 | 24.55 | 28.15 | 27.08 | 23.35 | |||
FN (m) | 16.71 | 1.70 | 16.71 | 5.45 | 5.45 | 5.45 | 9.35 | 15.42 | 6.65 | |||
FP (m) | 14.41 | 26.89 | 14.41 | 7.68 | 15.18 | 15.18 | 7.29 | 8.35 | 12.08 | |||
Precision (%) | 73.90 | 51.28 | 73.90 | 80.68 | 61.80 | 61.80 | 79.44 | 76.44 | 65.89 | |||
Recall (%) | 70.94 | 94.34 | 70.94 | 85.46 | 81.82 | 81.82 | 75.05 | 63.73 | 77.82 | |||
F1(%) | 72.39 | 66.44 | 72.39 | 83.00 | 70.41 | 70.41 | 77.18 | 69.51 | 71.36 | |||
Overall accuracy (%) | 70.41 | 74.61 | 72.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Sun, H.; Cracknell, A.P.; Deng, Y.; Li, Q.; Lin, L.; Xu, Q.; Ma, Y.; Wang, W.; Zhang, Z. Detection and Quantification of Forest-Agriculture Ecotones Caused by Returning Farmland to Forest Program Using Unmanned Aircraft Imagery. Diversity 2022, 14, 406. https://doi.org/10.3390/d14050406
Wang B, Sun H, Cracknell AP, Deng Y, Li Q, Lin L, Xu Q, Ma Y, Wang W, Zhang Z. Detection and Quantification of Forest-Agriculture Ecotones Caused by Returning Farmland to Forest Program Using Unmanned Aircraft Imagery. Diversity. 2022; 14(5):406. https://doi.org/10.3390/d14050406
Chicago/Turabian StyleWang, Bin, Hu Sun, Arthur P. Cracknell, Yun Deng, Qiang Li, Luxiang Lin, Qian Xu, Yuxin Ma, Wenli Wang, and Zhiming Zhang. 2022. "Detection and Quantification of Forest-Agriculture Ecotones Caused by Returning Farmland to Forest Program Using Unmanned Aircraft Imagery" Diversity 14, no. 5: 406. https://doi.org/10.3390/d14050406
APA StyleWang, B., Sun, H., Cracknell, A. P., Deng, Y., Li, Q., Lin, L., Xu, Q., Ma, Y., Wang, W., & Zhang, Z. (2022). Detection and Quantification of Forest-Agriculture Ecotones Caused by Returning Farmland to Forest Program Using Unmanned Aircraft Imagery. Diversity, 14(5), 406. https://doi.org/10.3390/d14050406