Ecosystem Services in Southern Africa: Current and Emerging Trends—A Bibliometric Review
Abstract
:1. Introduction
- (1)
- What are the major methodologies used in ES assessment in southern Africa?
- (2)
- What trends are there in journal outputs on the subject, including the number of articles, which are the highly cited authors and journals, and how are ESs and human wellbeing categorized?
- (3)
- What are the overall current and emerging trends in ES assessment in southern Africa?
1.1. Data Acquisition and Methods
1.2. Bibliometric Analysis Methods
2. Results and Discussion
2.1. Distribution of ES Research in Africa
2.2. Cooperation amongst Countries with Southern Africa
2.3. Performance of Quantitative and Qualitative ESs Studies
2.4. Academic Cooperation and Institutions Performances
2.5. Author and Journal Performances
2.6. Perfomance of Funding Agencies
2.7. Major Research Methods in ESs Field
3. Current and Emerging Trends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M. A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Wangai, P.W.; Burkhard, B.; Müller, F. A Review of Studies on Ecosystem Services in Africa. Int. J. Sustain. Built Environ. 2016, 5, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Morcillo, M.; Plieninger, T.; Bieling, C. An Empirical Review of Cultural Ecosystem Service Indicators. Ecol. Indic. 2013, 29, 434–444. [Google Scholar] [CrossRef]
- Pauna, V.H.; Picone, F.; Le Guyader, G.; Buonocore, E.; Franzese, P.P. The Scientific Research on Ecosystem Services: A Bibliometric Analysis. Ecol. Quest. 2018, 29, 53–62. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O‘Neill, V.R.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Seppelt, R.; Dormann, C.F.; Eppink, F.V.; Lautenbach, S.; Schmidt, S. A Quantitative Review of Ecosystem Service Studies: Approaches, Shortcomings and the Road Ahead. J. Appl. Ecol. 2011, 48, 630–636. [Google Scholar] [CrossRef]
- Amberber, M.; Argaw, M.; Feyisa, G.L.; Degefa, S. Status, Approaches, and Challenges of Ecosystem Services Exploration in ETHIOPIA: A Systematic Review. Chin. J. Popul. Resour. Environ. 2020, 18, 201–213. [Google Scholar] [CrossRef]
- Hassan, A.; Nawchoo, I.A. Impact of Invasive Plants in Aquatic Ecosystems. In Bioremediation and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 55–73. [Google Scholar] [CrossRef]
- Mooney, H.A. Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; p. 36. [Google Scholar]
- Bürgi, M.; Östlund, L.; Mladenoff, D.J. Legacy Effects of Human Land Use: Ecosystems as Time-lagged Systems. Ecosystems 2017, 20, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Vol, E. Isotope Studies on the Nitrogen Chain Production and Mineral Cycling in Terrestrial Vegetation. Ecosyst. Funct. 1968, 219, 1188–1189. [Google Scholar]
- Hsieh, H.L.; Lin, H.J.; Shih, S.S.; Chen, C.P. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan. Int. J. Environ. Res. Public Health 2015, 12, 6542–6560. [Google Scholar] [CrossRef] [Green Version]
- Velez Torres, E.O. The paradigm “sustainable development” to “ecosystem goods and services”. ATENAS 2016, 4, 213–222. [Google Scholar]
- Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A GIS Application for Assessing, Mapping, and Quantifying the Social Values of Ecosystem Services. Appl. Geogr. 2011, 31, 748–760. [Google Scholar] [CrossRef]
- Lautenbach, S.; Volk, M.; Gruber, B.; Dormann, C.F. Quantifying Ecosystem Service Trade-offs. In Proceedings of the 5th International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 5–8 July 2010. [Google Scholar]
- Plieninger, T.; Dijks, S.; Oteros-Rozas, E.; Bieling, C. Assessing, Mapping, and Quantifying Cultural Ecosystem Services at Community Level. Land Use Policy 2013, 33, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Kragt, M.E.; Robertson, M.J. Quantifying Ecosystem Services Trade-offs from Agricultural Practices. Ecol. Econ. 2014, 102, 147–157. [Google Scholar] [CrossRef]
- Ericksen, P.; De Leeuw, J.; Said, M.; Silvestri, S.; Zaibet, L. Mapping Ecosystem Services in the Ewaso Ng’iro Catchment. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and Classifying Ecosystem Services for Decision Making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Weinzierl, T.; Wehberg, J.; Böhner, J.; Conrad, O. Spatial Assessment of Land Degradation Risk for the Okavango River Catchment, Southern Africa. Land Degrad. Dev. 2016, 27, 281–294. [Google Scholar] [CrossRef]
- Haase, D.; Schwarz, N.; Strohbach, M.; Kroll, F.; Seppelt, R. Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions: An Integrated Multiscale Framework Applied to the Leipzig-halle Region, Germany. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Xie, H.; Murayama, Y.; Ranagalage, M. Bibliometric Analysis of Highly Cited Articles on Ecosystem Services. PLoS ONE 2019, 14, e0210707. [Google Scholar] [CrossRef]
- Farella, G.; Menegon, S.; Fadini, A.; Depellegrin, D.; Manea, E.; Perini, L.; Barbanti, A. Incorporating Ecosystem Services Conservation into a Scenario-based MSP Framework: An Adriatic Case Study. Ocean Coast. Manag. 2020, 193, 105230. [Google Scholar] [CrossRef]
- Milcu, A.I.; Hanspach, J.; Abson, D.; Fischer, J. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research. Ecol. Soc. 2013, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Riggio, J.; Baillie, J.E.M.; Brumby, S.; Ellies, E.; Kennedy, C.M.; Oakleaf, J.R.; Tait, A.; Tepe, T.; Theobald, D.M.; Venter, O.; et al. Global Human Influence Maps Reveal Clear Opportunities in Conserving Earth’s Remaining Intact Terrestrial Ecosystems. Glob. Chang. Biol. 2020, 26, 4344–4356. [Google Scholar] [CrossRef]
- Usman, O.; Rafindadi, A.A.; Sarkodie, S.A. Conflicts and Ecological Footprint in MENA Countries: Implications for Sustainable Terrestrial Ecosystem. Environ. Sci. Pollut. Res. 2021, 28, 59988–59999. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Berger, C.; Mudau, T.E.; Heckel, K.; Truckenbrodt, J.; Onyango Odipo, V.; Smit, I.P.J.; Schmullius, C. Surface Moisture and Vegetation Cover Analysis for Drought Monitoring in the Southern Kruger National Park Using Sentinel-1, Sentinel-2, and Landsat-8. Remote Sens. 2018, 10, 1482. [Google Scholar] [CrossRef] [Green Version]
- Egoh, B.N.; O‘Farrell, P.J.; Charef, A.; Gurney, L.J.; Koellner, T.; Abi, H.N.; Egoh, M.; Willemen, L. An African Account of Ecosystem Service Provision: Use, Threats and Policy Options for Sustainable Livelihoods. Ecosyst. Serv. 2012, 2, 71–81. [Google Scholar] [CrossRef]
- Strozzi, F.; Colicchia, C.; Creazza, A.; Noè, C. Literature Review on the ‘Smart Factory’ Concept Using Bibliometric Tools. Int. J. Prod. Res. 2017, 55, 6572–6591. [Google Scholar] [CrossRef]
- Musakwa, W.; Gumbo, T.; Paradza, G.; Mpofu, E.; Nyathi, N.A.; Selamolela, N.B. Partnerships and Stakeholder Participation in the Management of National Parks: Experiences of the Gonarezhou National Park in Zimbabwe. Land 2020, 9, 399. [Google Scholar] [CrossRef]
- Davids, R.; Rouget, M.; Boon, R.; Roberts, D. Identifying Ecosystem Service Hotspots for Environmental Management in Durban, South Africa. Bothalia-Afr. Biodivers. Conserv. 2016, 46, a2118. [Google Scholar] [CrossRef]
- Abson, D.J.; Dougill, A.J.; Stringer, L.C. Spatial Mapping of Socio-Ecological Vulnerability to Environmental Change in Southern Africa; Sustainability Research Institute, School of Earth and Environment, The University of Leeds: Leeds, UK, 2012. [Google Scholar]
- Reyers, B.; O’Farrell, P.J.; Cowling, R.M.; Egoh, B.N.; le Maitre, D.C.; Vlok, J.H.J. Ecosystem Services, Land-cover Change, and Stakeholders: Finding a Sustainable Foothold for a Semiarid Biodiversity Hotspot. Ecol. Soc. 2009, 14, 38. [Google Scholar] [CrossRef] [Green Version]
- Nyathi, N.A.; Zhao, W.; Musakwa, W. Land Use Land Cover Changes and Their Impacts on Ecosystem Services in the Nzhelele River Catchment, South Africa. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 809–816. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q.; Cui, F. Scientific Research on Ecosystem Services and Human Well-being: A Bibliometric Analysis. Ecol. Indic. 2021, 125, 107449. [Google Scholar] [CrossRef]
- Wisely, S.M.; Alexander, K.; Mahlaba, T.; Cassidy, L. Linking Ecosystem Services to Livelihoods in Southern Africa. Ecosyst. Serv. 2018, 30, 339–341. [Google Scholar] [CrossRef]
- Dickinson, D.C.; Hobbs, R.J. Cultural Ecosystem Services: Characteristics, Challenges and Lessons for Urban Green Space Research. Ecosyst. Serv. 2017, 25, 179–194. [Google Scholar] [CrossRef]
- Delzeit, R.; Heimann, T.; Schuenemann, F.; Söder, M.; Zabel, F.; Hosseini, M. Scenarios for an Impact Assessment of Global Bioeconomy Strategies: Results from a Co-design Process. Res. Glob. 2021, 3, 100060. [Google Scholar] [CrossRef]
- Kandel, P.; Chettri, N.; Chaudhary, S.; Sharma, P.; Uddin, K. Ecosystem Services Research Trends in the Water Tower of Asia: A Bibliometric Analysis from the Hindu Kush Himalaya. Ecol. Indic. 2021, 121, 107152. [Google Scholar] [CrossRef]
- VanderWilde, C.P.; Newell, J.P. Ecosystem Services and Life Cycle Assessment: A Bibliometric Review. Resour. Conserv. Recycl. 2021, 169, 105461. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Min, M. Mapping for Terrestrial Ecosystem Services: A Review. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2019), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Wilkin, D.C. Spatial Patterns of Human Ecosystem Productivity in South West Africa (Namibia). Geoforum 1989, 20, 329–337. [Google Scholar] [CrossRef]
- Fjeldså, J. Geographical Patterns for Relict and Young Species of Birds in Africa and South America and Implications for Conservation Priorities. Biodivers. Conserv. 1994, 3, 207–226. [Google Scholar] [CrossRef]
- Cochran, F.; Daniel, J.; Jackson, L.; Neale, A. Earth Observation-Based Ecosystem Services Indicators for National and Subnational Reporting of the Sustainable Development Goals. Remote Sens. Environ. 2020, 244, 111796. [Google Scholar] [CrossRef]
- Bridges, E.M.; Catizzone, M. Soil Science in a Holistic Framework: Discussion of an Improved Integrated Approach. Geoderma. 1996, 71, 275–287. [Google Scholar] [CrossRef]
- Theophilus Shasha, Z.; Geng, Y.; Sun, H.; Musakwa, W.; Sun, L. Past, Current, and Future Perspectives on Eco-tourism: A Bibliometric Review between 2001 and 2018. Environ. Sci. Pollu. Res. 2020, 27, 23514–23528. [Google Scholar] [CrossRef] [PubMed]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D.; et al. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef] [PubMed]
- Cowling, R.M.; Egoh, B.; Knight, A.T.; O‘Farrell, P.J.; Reyers, B.; Rouget, M.; Roux, D.J.; Welz, A.; Wilhelm-Rechman, A. An operational model for mainstreaming ecosystem services for implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9483–9488. Available online: https://www.pnas.org/content/105/28/9483 (accessed on 22 February 2022). [CrossRef] [PubMed] [Green Version]
- Van Jaarsveld, A.S.; Biggs, R.; Scholes, R.J.; Bohensky, E.; Reyers, B.; Lynam, T.; Musvoto, C.; Fabricius, C. Measuring conditions and trends in ecosystem services at multiple scales: The Southern African Millennium Ecosystem Assessment (SAfMA) experience. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 425–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, Y.H.; Stow, D.; Chen, H.L.; Lewison, R.; An, L.; Shi, L. Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve using google earth engine. Remote Sens. 2018, 10, 927. [Google Scholar] [CrossRef] [Green Version]
- Zabala, A.; Sullivan, C.A. Multilevel Assessment of a Large-scale Programme for Poverty Alleviation and Wetland Conservation: Lessons from South Africa. J. Environ. Plan. Manag. 2018, 61, 493–514. [Google Scholar] [CrossRef]
- Shrestha, M.; Acharya, S.C. Assessment of Historical and Future Land-use–land-cover Changes and Their Impact on Valuation of Ecosystem Services in Kathmandu Valley, Nepal. Land Degrad. Dev. 2021, 32, 3731–3742. [Google Scholar] [CrossRef]
- Vihervaara, P.; Rönkä, M.; Walls, M. Trends in Ecosystem Service Research: Early Steps and Current Drivers. Ambio 2010, 39, 314–324. [Google Scholar] [CrossRef]
- Ignatieva, M.; Eriksson, F.; Eriksson, T.; Kätterer, T.; Tidåker, P.; Wissman, J.; Ahrné, K.; Bengtsson, J.; Hedblom, M. Pros and Cons of Transdisciplinary Research: A Case Study of Swedish Lawns and Their Sustainable Alternatives. Urban For. Urban Green 2020, 56, 126799. [Google Scholar] [CrossRef]
- Cho, M.A.; Ramoelo, A.; Dziba, L. Response of Land Surface Phenology to Variation in Tree Cover during Green-Up and Senescence Periods in the Semi-Arid Savanna of Southern Africa. Remote Sens. 2017, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Mugo, R.; Waswa, R.; Nyaga, J.W.; Ndubi, A.; Adams, E.C.; Flores-Anderson, A.I. Quantifying Land Use Land Cover Changes in the Lake Victoria Basin Using Satellite Remote Sensing: The Trends and Drivers between 1985 and 2014. Remote Sens. 2020, 12, 2829. [Google Scholar] [CrossRef]
- Abd Elbasit, M.A.M.; Knight, J.; Liu, G.; Abu-Zreig, M.M.; Hasaan, R. Valuation of Ecosystem Services in South Africa, 2001–2019. Sustainability 2021, 13, 11262. [Google Scholar] [CrossRef]
- Ayanu, Y.Z.; Conrad, C.; Nauss, T.; Wegmann, M.; Koellner, T. Quantifying and Mapping Ecosystem Services Supplies and Demands: A Review of Remote Sensing Applications. Environ. Sci. Technol. 2012, 46, 8529–8541. [Google Scholar] [CrossRef]
- Choruma, D.; Balkovic, J.; Odume, O.N. Calibration and Validation of the EPIC Model for Maize Production in the Eastern Cape, South Africa. Agronomy 2019, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Romeu-Dalmau, C.; Gasparatos, A.; von Maltitz, G.; Graham, A.; Almagro-Garcia, J.; Wilebore, B.; Willis, K.J. Impacts of Land Use Change Due to Biofuel Crops on climate Regulation Services: Five case Studies in Malawi, Mozambique and Swaziland. Biomass Bioenergy 2018, 114, 30–40. [Google Scholar] [CrossRef]
- Musakwa, W.; Wang, S.; Wei, F.; Malapane, O.L.; Thomas, M.M.; Mavengahama, S.; Zeng, H.; Wu, B.; Zhao, W.; Nyathi, N.A.; et al. Survey of Community Livelihoods and Landscape Change along the Nzhelele and Levuvhu River Catchments in Limpopo Province, South Africa. Land 2020, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Arbieu, U.; Grünewald, C.; Martín-López, B.; Schleuning, M.; Böhning-Gaese, K. Large Mammal Diversity Matters for Wildlife Tourism in Southern African Protected Areas: Insights for Management. Ecosyst. Serv. 2018, 31, 481–490. [Google Scholar] [CrossRef]
- Masunungure, C.; Shackleton, S.E. Exploring Long-term Livelihood and Landscape Change in Two Semi-arid Sites in Southern Africa: Drivers and Consequences for Social-ecological Vulnerability. Land 2018, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Gandiwa, E.; Heitkönig, I.M.A.; Lokhorst, A.M.; Prins, H.H.T.; Leeuwis, C. CAMPFIRE and Human-wildlife Conflicts in Local Communities Bordering Northern Gonarezhou National Park, Zimbabwe. Ecol. Soc. 2013, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Musesengwa, R.; Chimbari, M.J. Community Engagement Practices in Southern Africa: Review and Thematic Synthesis of Studies Done in Botswana, Zimbabwe and South Africa. Acta Trop. 2017, 175, 20–30. [Google Scholar] [CrossRef]
- Landmann, T.; Schramm, M.; Colditz, R.R.; Dietz, A.; Dech, S. Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables. Remote Sens. 2010, 2, 1751–1766. [Google Scholar] [CrossRef] [Green Version]
- Aldous, A.; Schill, S.; Raber, G.; Paiz, M.C.; Mambela, E.; Stevart, T. Mapping Complex Coastal wetland Mosaics in Gabon for Informed Ecosystem Management: Use of object-based Classification. Remote Sens. Ecol. Conserv. 2021, 7, 64–79. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hashim, M. Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 15–29. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Mayr, M.J.; Vanselow, K.A.; Samimi, C. Fire Regimes at the Arid Fringe: A 16-year Remote Sensing Perspective (2000–2016) on the Controls of Fire Activity in Namibia from Spatial Predictive Models. Ecol. Indic. 2018, 91, 324–337. [Google Scholar] [CrossRef]
- Abutaleb, K.; Newete, S.W.; Mangwanya, S.; Adam, E.; Byrne, M.J. Mapping Eucalypts Trees Using High Resolution Multispectral Images: A Study Comparing WorldView 2 vs. SPOT 7. Egypt. J. Remote Sens. Space Sci. 2021, 24, 333–342. [Google Scholar] [CrossRef]
- Palmer, A.R.; Samuels, I.; Cupido, C.; Finca, A.; Kangombe, W.F.; Yunusa, I.A.; Vetter, S.; Mapaure, I. Aboveground Biomass Production of a Semi-arid Southern African Savanna: Towards a New Model. Afr. J. Range Forage Sci. 2016, 33, 43–51. [Google Scholar] [CrossRef]
- Favretto, N.; Stringer, L.C.; Dougill, A.J.; Dallimer, M.; Perkins, J.S.; Reed, M.S.; Atlhopheng, J.R.; Mulale, K. Multi-Criteria Decision Analysis to Identify Dryland Ecosystem Service Trade-offs under Different Rangeland Land Uses. Ecosyst. Serv. 2016, 17, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Musakwa, W.; Wang, S. Landscape Change and Its Drivers: A Southern African Perspective. Curr. Opin. Environ. Sustain. 2018, 33, 80–86. [Google Scholar] [CrossRef]
- Linol, B.; Miller, W.; Rensburg, C.; Schoeman, R.; Bezuidenhout, L.; Genin, F.; Morkel, B.; Dhliwayo, N.; Jeppesen, K.; Dlakavu, S.; et al. Earth Stewardship Science-transdisciplinary Contributions to Quantifying Natural and Cultural Heritage of Southernmost Africa. Remote Sens. 2020, 12, 420. [Google Scholar] [CrossRef] [Green Version]
- Sitas, N.; Reyers, B.; Cundill, G.; Prozesky, H.E.; Nel, J.L.; Esler, K.J. Fostering Collaboration for Knowledge and Action in Disaster Management in South Africa. Curr. Opin. Environ. Sustain. 2016, 19, 94–102. [Google Scholar] [CrossRef]
- Ndebele-Murisa, M.R.; Mubaya, C.P.; Pretorius, L.; Mamombe, R.; Iipinge, K.; Nchito, W.; Mfune, J.K.; Siame, G.; Mwalukanga, B. City to City Learning and Knowledge Exchange for Climate Resilience in Southern Africa. PLoS ONE 2020, 15, e0227915. [Google Scholar] [CrossRef] [PubMed]
Term | Description |
---|---|
Items | Objects of interest (e.g., publications, researchers, keywords and authors) |
Link | Connection or relation between two items (e.g., co-occurrence of keywords) |
Link strength | Attribute of each link, expressed by a positive numerical value. In the case of co-authorship links, the higher the value, the higher the number of publications the two researchers have co-authored |
Network | Set of items connected by their links |
Cluster | Sets of items included in a map, that is, one item with other items |
Weight attribute: number of links | The number of links of an item with other items |
Weight attribute: total link strength | The cumulative strength of the links of an item with other items |
Country | Occurrences | Links | Total Link Strength |
---|---|---|---|
South Africa | 195 | 42 | 373 |
UK | 72 | 30 | 263 |
USA | 101 | 31 | 169 |
Australia | 41 | 22 | 106 |
Germany | 58 | 24 | 56 |
Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|
Biodiversity | 10 | 30 | 50 |
Ecosystem Services | 10 | 25 | 49 |
Conservation | 7 | 19 | 29 |
Vulnerability | 5 | 19 | 28 |
Participatory GIS | 4 | 16 | 24 |
Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|
Ecosystem Services | 26 | 81 | 152 |
Biodiversity | 14 | 51 | 86 |
Livelihoods | 12 | 52 | 82 |
Conservation | 15 | 48 | 77 |
Climate Change | 12 | 46 | 70 |
Publishers | Record Count | % | IF (2021) |
---|---|---|---|
Elsevier | 25 | 36.7 | 8.5 |
Springer Nature | 9 | 13.2 | 4.5 |
Wiley | 8 | 11.7 | 6.6 |
MDPI | 7 | 10.2 | 3.2 |
Taylor and Francis | 5 | 7.3 | 4.8 |
Frontiers Media Sa | 4 | 5.8 | 2.4 |
Nature Portfolio | 2 | 2.9 | 3.4 |
Pensoft Publishers | 2 | 2.9 | 2.7 |
Resilience Alliance | 2 | 2.9 | 4.1 |
PY* | NTC* | Article Title | AN* | Publisher City | Publisher |
---|---|---|---|---|---|
2016 | 465 | The broad footprint of climate change from genes to biomes to people | Scheffers, Brett R. et al. | Washington | Amer Assoc Advancement Science SCIENCE |
2008 | 432 | An operational model for mainstreaming ecosystem services for implementation | Cowling, Richard M. et al. | Washington | Natl Acad Sciences |
2005 | 139 | Measuring conditions and trends in ecosystem services at multiple scales: the Southern African Millennium Ecosystem Assessment (SAfMA) experience | van Jaarsveld, A.S. et al. | London | Royal Soc |
2002 | 139 | Rainwater management for increased productivity among small-holder farmers in drought prone environments | Rockstrom, J. et al. | Oxford | Pergamon-Elsevier Science Ltd. |
2005 | 119 | Changes in nature’s balance sheet: Model-based estimates of future worldwide ecosystem services | Alcamo, J. et al. | Wolfville | Resilience Alliance |
2011 | 108 | Scientific concepts for an integrated analysis of desertification | Reynolds, J.F. et al. | Hoboken | WILEY |
2016 | 98 | Green Revolution in Sub-Saharan Africa: Implications of Imposed Innovation for the Wellbeing of Rural Smallholders | Dawson, Neil et al. | Oxford | Pergamon-Elsevier Science Ltd. |
2006 | 75 | Future ecosystem services in a Southern African river basin: a scenario planning approach to uncertainty | Bohensky, Erin L et al. | Hoboken | WILEY |
2007 | 71 | Coping strategies in livestock-dependent households in east and southern Africa: A synthesis of four case studies | Thornton, Philip K. et al. | New York | Springer/Plenum Publishers |
2015 | 69 | Biofuels in sub-Saharan Africa: Drivers, impacts and priority policy areas | Gasparatos, A. et al. | Oxford | Pergamon-Elsevier Science Ltd. |
Method | Definition | Advantage | Disadvantage | Methods | Used by |
---|---|---|---|---|---|
Qualitative | Qualitative research is considered to be particularly suitable for exploratory research (e.g., during the pilot stage of a research project, for example). It is primarily used to discover and gain an in-depth understanding of individual experiences, thoughts, opinions, and trends, and to dig deeper into the problem at hand | A big advantage of qualitative research is the ability to deeply probe and obtain rich descriptive data about social phenomena through structured interviews, cultural immersion, case studies, and observation, for instance. | Qualitative studies often take more time to complete due to the pain staking nature of gathering and analyzing field notes, transcribing interviews, identifying themes and studying photographs, for example. Studies are not easily replicable or generalizable to the wider population. Conscious or unconscious bias can influence the researcher’s conclusions. Since it lacks rigorous scientific controls and numerical data, qualitative findings may be dismissed by some researchers as anecdotal information. | 1. Case Study Method 2. Questionnaires 3. Focus Groups 4. Interviews 5. Stakeholder Engagement | 1. (Choruma and Odume [59]; Romeu-Dalmau et al. [60]) 2. (Musakwa et al. [61]; Arbieu et al. [62]) 3. (Zabala and Sullivan [51]; Shrestha et al. [52]; Masunungure and Shackleton [63]) 4. (Gandiwa et al. [64]) 5. (Musakwa et al. [30]; (Musesengwa et al. [65]) |
Quantitative | Quantitative research is concerned with numbers. It is used to quantify opinions, attitudes, behaviors, and other defined variables, with the goal to support or refute hypotheses about a specific phenomenon, and potentially contextualize the results from the study sample in a wider population (or specific groups). | A big advantage of this approach is that the results are authoritative, reliable and generalizable to a larger population. Quantitative research is advantageous for studies that involve numbers, such as measuring achievement gaps between different groups of students, or assessing the effectiveness of a new blood pressure medication. | Survey instruments are vulnerable to errors such as mistakes in measurement and flawed sampling techniques. Another disadvantage is that quantitative research involves numbers, but some topics are too difficult to quantify in numbers. Datasets may be difficult to obtain timeously for analysis. | 1. Mapping 2. Remote Sensing and GIS 3. Participatory GIS 4. Land-Use based | 1. (Mugo et al. [56]; Landman et al. [66] and Aldous et al. [67]) 2. (Cho et al. [55]; Mugo et al. [56] and Weinzierl et al. [20]; Hossain & Hassim, [68]) 3. (Zhu et al. [69]; Mayr et al. [70] and Urban et al. [27]) 4. (Abutaleb et al. [71]; and Palmer et al. [72]) |
Transdisciplinary | Transdisciplinary is “integrative research concepts” which engages academic researchers from different disciplines and stakeholders (non-academic participants). | The pros of the transdisciplinary approach are its ability to incorporate results of natural and social studies into landscape design, the ability to involve stakeholders in different project activities and to disseminate the research results in practice. | The complexity and diversity of research methods require time to adjust to and understand the problem, to learn the essentials of other disciplines, to digest the data, to try different types of analyses, to discuss results and to arrive at conclusions. | 1. Multi-Criteria Decision Analysis 2. Mixed Methods | 1. (Favretto et al. [73]; Arbieu et al. [62]; Musakwa and Wang [74]) 2. (Linol et al. [75]; Sitas et al. [76]; Ndebele-Murisa et al. [77]) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyathi, N.A.; Musakwa, W.; Delzeit, R.; Kuhn, N.J. Ecosystem Services in Southern Africa: Current and Emerging Trends—A Bibliometric Review. Diversity 2022, 14, 359. https://doi.org/10.3390/d14050359
Nyathi NA, Musakwa W, Delzeit R, Kuhn NJ. Ecosystem Services in Southern Africa: Current and Emerging Trends—A Bibliometric Review. Diversity. 2022; 14(5):359. https://doi.org/10.3390/d14050359
Chicago/Turabian StyleNyathi, Nesisa Analisa, Walter Musakwa, Ruth Delzeit, and Nikolaus J. Kuhn. 2022. "Ecosystem Services in Southern Africa: Current and Emerging Trends—A Bibliometric Review" Diversity 14, no. 5: 359. https://doi.org/10.3390/d14050359
APA StyleNyathi, N. A., Musakwa, W., Delzeit, R., & Kuhn, N. J. (2022). Ecosystem Services in Southern Africa: Current and Emerging Trends—A Bibliometric Review. Diversity, 14(5), 359. https://doi.org/10.3390/d14050359