Turnover Drives High Benthic Macroinvertebrates’ Beta Diversity in a Tropical Karstic Lake District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Statistical Analysis
3. Results
3.1. Environmental and Morphometric Variables
3.2. Beta Diversity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D. Causes, consequences and ethics of biodiversity. Nature 2000, 405, 208–211. [Google Scholar] [CrossRef]
- Strayer, D.L. Challenges for freshwater invertebrate conservation. J. N. Am. Benthol. Soc. 2006, 25, 271–287. [Google Scholar] [CrossRef]
- Langer, T.A.; Murry, B.A.; Pangle, K.L.; Uzarski, D.G. Species turnover drives b-diversity patterns across multiple spatial and temporal scales in Great Lake Coastal Wetland Communities. Hydrobiologia 2016, 55–66. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Heino, J.; Tolonen, K.T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 2017, 62, 2431–2444. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 2005, 8, 1175–1182. [Google Scholar] [CrossRef]
- Heino, J. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecol. Evol. 2013, 3, 344–355. [Google Scholar] [CrossRef]
- Nunes, C.A.; Braga, R.F.; Figueira, J.E.C.; De Siqueira Neves, F.; Fernandes, G.W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 2016, 11, e0157442. [Google Scholar] [CrossRef]
- Qian, H.; Ricklefs, R.E.; White, P.S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 2005, 8, 15–22. [Google Scholar] [CrossRef]
- Gaston, K.J.; Blackburn, T.M. Pattern and Process in Macroecology; Blackwell Science: Oxford, UK, 2000; ISBN 9780470999592. [Google Scholar]
- Si, X.; Baselga, A.; Leprieur, F.; Song, X.; Ding, P. Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. J. Anim. Ecol. 2016, 85, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Declerck, S.A.J.; Coronel, J.S.; Legendre, P.; Brendonck, L. Scale dependency of processes structuring metacommunities of cladocerans in temporary pools of High-Andes wetlands. Ecography 2011, 34, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Izaguirre, I.; Saad, J.F.; Romina Schiaffino, M.; Vinocur, A.; Tell, G.; Sánchez, M.L.; Allende, L.; Sinistro, R. Drivers of phytoplankton diversity in patagonian and antarctic lakes across a latitudinal gradient (2150 km): The importance of spatial and environmental factors. Hydrobiologia 2015, 764, 157–170. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Heino, J.; Soininen, J. Are common species sufficient in describing turnover in aquatic metacommunities along environmental and spatial gradients? Limnol. Oceanogr. 2010, 55, 2397–2402. [Google Scholar] [CrossRef]
- Saito, V.S.; Soininen, J.; Fonseca-Gessner, A.A.; Siqueira, T. Dispersal traits drive the phylogenetic distance decay of similarity in Neotropical stream metacommunities. J. Biogeogr. 2015, 42, 2101–2111. [Google Scholar] [CrossRef]
- De Bie, T.; De Meester, L.; Brendonck, L.; Martens, K.; Goddeeris, B.; Ercken, D.; Hampel, H.; Denys, L.; Vanhecke, L.; Van der Gucht, K.; et al. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 2012, 15, 740–747. [Google Scholar] [CrossRef]
- Chase, J.M.; Leibold, M.A. Ecological Niches Linking Classical and Contemporary Approaches; The University of Chicago Press: Chicago, IL, USA; London, UK, 2003; ISBN 0226101797. [Google Scholar]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2001; ISBN 0691021295. [Google Scholar]
- Declerck, S.; Vandekerkhove, J.; Johansson, L.; Muylaert, K.; Conde-Porcuna, J.M.; Van Der Gucht, K.; Pérez-Martínez, C.; Lauridsen, T.; Schwenk, K.; Zwart, G.; et al. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 2005, 86, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Heino, J.; Melo, A.S.; Bini, L.M.; Altermatt, F.; Al-Shami, S.A.; Angeler, D.G.; Bonada, N.; Brand, C.; Callisto, M.; Cottenie, K.; et al. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol. Evol. 2015, 5, 1235–1248. [Google Scholar] [CrossRef] [Green Version]
- Heino, J. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol. Rev. 2013, 88, 166–178. [Google Scholar] [CrossRef]
- Jackson, D.A.; Peres-Neto, P.R.; Olden, J.D. What controls who is where in freshwater fish communities—The roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 2001, 58, 157–170. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A.; Peres-Neto, P.R. Spatial isolation and fish communities in drainage lakes. Oecologia 2001, 127, 572–585. [Google Scholar] [CrossRef] [PubMed]
- Capers, R.S.; Selsky, R.; Bugbee, G.J. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw. Biol. 2010, 55, 952–966. [Google Scholar] [CrossRef]
- Alahuhta, J.; Heino, J. Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 2013, 40, 1572–1582. [Google Scholar] [CrossRef]
- Ricklefs, R.E. Community Diversity: Relative Roles of Local and Regional Processes. Science 1987, 235, 167–171. [Google Scholar] [CrossRef]
- Fernández, R.; Alcocer, J.; Oseguera, L.A. Regional pelagic rotifer biodiversity in a tropical Karst Lake District. Diversity 2020, 12, 454. [Google Scholar] [CrossRef]
- Fernández, R.; Oseguera, L.A.; Alcocer, J. Zooplankton biodiversity in tropical karst lakes of southeast Mexico, Chiapas. Rev. Mex. Biodivers. 2020, 91. [Google Scholar] [CrossRef]
- Sosa-Aranda, I.; Zambrano, L. Relationship between turbidity and the benthic community in the preserved Montebello Lakes in Chiapas, Mexico. Mar. Freshw. Res. 2020, 71, 824–831. [Google Scholar] [CrossRef]
- Palacios-Vargas, J.G.; Cortés-Guzmán, D.; Alcocer, J. Springtails (Collembola, Hexapoda) from Montebello Lakes, Chiapas, Mexico. Inl. Waters 2018, 8. [Google Scholar] [CrossRef]
- Cortés-Guzmán, D.; Alcocer, J.; Oseguera, L.A. Benthic macroinvertebrate communities of three tropical, warm monomictic Mexican lakes. Limnologica 2021, 89. [Google Scholar] [CrossRef]
- Cortés-Guzmán, D.; Alcocer, J.; Oseguera, L.A. Benthic macroinvertebrate community diversity of Montebello Lakes, Chiapas. Rev. Mex. Biodivers. 2019, 90. [Google Scholar] [CrossRef]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lydeard, C.; Cowie, R.H.; Ponder, W.F.; Bogan, A.E.; Bouchet, P.; Clark, S.A.; Cummings, K.S.; Frest, T.J.; Gargominy, O.; Herbert, D.G.; et al. The global decline of nonmarine mollusks. Bioscience 2004, 54, 321–330. [Google Scholar] [CrossRef]
- Lewis, D.B.; Magnuson, J.J. Landscape spatial patterns in freshwater snail assemblages across Northern Highland catchments. Freshw. Biol. 2000, 43, 409–420. [Google Scholar] [CrossRef]
- Heino, J.; Louhi, P.; Muotka, T. Identifying the scales of variability in stream macroinvertebrate abundance, functional composition and assemblage structure. Freshw. Biol. 2004, 49, 1230–1239. [Google Scholar] [CrossRef]
- CONANP. Programa de Conservación y Manejo Parque Nacional Lagunas de Montebello; SEMARNAT y CONANP: Ciudad de México, Mexico, 2007; ISBN 9789688178485. [Google Scholar]
- Calderón, I.D.; Escolero Fuentes, O.; Muñoz Salinas, E.; Castillo Rodríguez, M.; Silva Romo, G. Cartografía geomorfológica a escala 1:50000 del Parque Nacional Lagunas de Montebello, Chiapas (México). Boletín Soc. Geológica Mex. 2014, 66, 263–277. [Google Scholar] [CrossRef]
- Alcocer, J.; Oseguera, L.A.; Sánchez, G.; González, C.G.; Martínez, J.R.; González, R. Bathymetric and morphometric surveys of the Montebello Lakes, Chiapas. J. Limnol. 2016, 75, 56–65. [Google Scholar] [CrossRef] [Green Version]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2004; ISBN 9703210104. [Google Scholar]
- Ramírez-Marcial, N.; González-Espinosa, M.; Camacho-Cruz, A.; Ortiz-Aguilar, D. Forest restoration in Lagunas de Montebello National park, Chiapas, Mexico. Ecol. Restor. 2010, 28, 354–360. [Google Scholar] [CrossRef]
- Carlson, M.C. Floral Elements of the Pine-Oak-Liquidambar Forest of Montebello, Chiapas, Mexico. Bull. Torrey Bot. Club 1954, 81, 387–399. [Google Scholar] [CrossRef]
- Flores-Villela, O.; Gerez, P. Biodiversidad y Conservación en México: Vertebrados, Vegetación y uso del Suelo; CONABIO/UNAM: Ciudad de México, Mexico, 1994; ISBN 968-36-3992-5. [Google Scholar]
- Ávila García, D. Conservación de los Lagos de Montebello. Un Esfuerzo Entre Sociedad, Gobierno y Academia; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2017; ISBN 9786073019286. [Google Scholar]
- Arar, E.J.; Collins, G.B. Method 445.0: In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence; Environmental Protection Agency: Washington, DC, USA, 1997.
- Wiederholm, T. Chironomidae of Holarctic region: Keys and diagnoses. Part 1. Larvae Entomol. Scand. Suppl. 1983, 19, 1–457. [Google Scholar]
- Brinkhurst, R.O.; Marchese, M.R. Guía Para la Identificación de Oligoquetos Acuáticos Continentales de Sud y Centroamérica; Clímax: Santa Fé, Argentina, 1989; p. 180. ISBN 950-9267-07-4. [Google Scholar]
- Epler, J.H. Identification manual for the larval Chironomidae (Diptera) of Florida. In Identification Manual for the Larval Chironomidae (Diptera) of Florida; Bureau of Surface Water Management, Florida Department of Environmental Protection: Tallahassee, FL, USA, 1995. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. An Introduction to the Aquatic Insects of North America, 4th ed.; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2008. [Google Scholar]
- Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 2012, 21, 1223–1232. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Clarke, K.R.; Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 1993, 92, 205–219. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Bini, L.; Landeiro, V.; Padial, A.; Siqueira, T.; Heino, J.; De Goia, U.F.; Federal, U.; Grosso, D.M.; De Ecologia, D.; Paulista, U.E.; et al. Nutrient enrichment is related to two facets of beta diversity of stream invertebrates across the continental US. Ecology 2014, 95, 1569–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heino, J.; Melo, A.S.; Siqueira, T.; Soininen, J.; Valanko, S.; Bini, L.M. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 2015, 60, 845–869. [Google Scholar] [CrossRef]
- Soininen, J.; Korhonen, J.J.; Karhu, J.; Vetterli, A. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnol. Oceanogr. 2011, 56, 508–520. [Google Scholar] [CrossRef]
- Soininen, J.; McDonald, R.; Hillebrand, H. The distance decay of similarity in ecological communities. Ecography (Cop.) 2007, 30, 3–12. [Google Scholar] [CrossRef]
- Mykrä, H.; Heino, J.; Muotka, T. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob. Ecol. Biogeogr. 2007, 16, 149–159. [Google Scholar] [CrossRef]
- Astorga, A.; Oksanen, J.; Luoto, M.; Soininen, J.; Virtanen, R.; Muotka, T. Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules? Glob. Ecol. Biogeogr. 2012, 21, 365–375. [Google Scholar] [CrossRef]
- Hepp, L.U.; Melo, A.S. Dissimilarity of stream insect assemblages: Effects of multiple scales and spatial distances. Hydrobiologia 2013, 703, 239–246. [Google Scholar] [CrossRef]
- Warfe, D.M.; Pettit, N.E.; Magierowski, R.H.; Pusey, B.J.; Davies, P.M.; Douglas, M.M.; Bunn, S.E. Hydrological connectivity structures concordant plant and animal assemblages according to niche rather than dispersal processes. Freshw. Biol. 2013, 58, 292–305. [Google Scholar] [CrossRef]
- Andrew, M.E.; Wulder, M.A.; Coops, N.C.; Baillargeon, G. Beta-diversity gradients of butterflies along productivity axes. Glob. Ecol. Biogeogr. 2012, 21, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Dobrovolski, R.; Melo, A.S.; Cassemiro, F.A.S.; Diniz-Filho, J.A.F. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2012, 21, 191–197. [Google Scholar] [CrossRef]
- Keil, P.; Schweiger, O.; Kühn, I.; Kunin, W.E.; Kuussaari, M.; Settele, J.; Henle, K.; Brotons, L.; Pe’er, G.; Lengyel, S.; et al. Patterns of beta diversity in Europe: The role of climate, land cover and distance across scales. J. Biogeogr. 2012, 39, 1473–1486. [Google Scholar] [CrossRef]
- Rádková, V.; Syrovátka, V.; Bojková, J.; Schenková, J.; Křoupalová, V.; Horsák, M. The importance of species replacement and richness differences in small-scale diversity patterns of aquatic macroinvertebrates in spring fens. Limnologica 2014, 47, 52–61. [Google Scholar] [CrossRef]
- Beisner, B.E.; Peres-Neto, P.R.; Lindström, E.S.; Barnett, A.; Longhi, M.L. The Role of Environmental and Spatial Processes in Structuring Lake Communities from Bacteria to Fish. Ecology 2006, 87, 2985–2991. [Google Scholar] [CrossRef]
- Heino, J. A macroecological perspective of diversity patterns in the freshwater realm. Freshw. Biol. 2011, 56, 1703–1722. [Google Scholar] [CrossRef]
- Nabout, J.C.; Siqueira, T.; Bini, L.M.; de S. Nogueira, I. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 2009, 35, 720–726. [Google Scholar] [CrossRef]
- Landeiro, V.L.; Bini, L.M.; Melo, A.S.; Pes, A.M.O.; Magnusson, W.E. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw. Biol. 2012, 57, 1554–1564. [Google Scholar] [CrossRef]
- Grönroos, M.; Heino, J.; Siqueira, T.; Landeiro, V.L.; Kotanen, J.; Bini, L.M. Metacommunity structuring in stream networks: Roles of dispersal mode, distance type, and regional environmental context. Ecol. Evol. 2013, 3, 4473–4487. [Google Scholar] [CrossRef]
- Göthe, E.; Angeler, D.G.; Sandin, L. Metacommunity structure in a small boreal stream network. J. Anim. Ecol. 2013, 82, 449–458. [Google Scholar] [CrossRef]
- Brodersen, K.P.; Pedersen, O.; Lindegaard, C.; Hamburger, K. Chironomids (Diptera) and oxy-regulatory capacity: An experimental approach to paleolimnological interpretation. Limnol. Oceanogr. 2004, 49, 1549–1559. [Google Scholar] [CrossRef]
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.C.; Liu, X.; Liu, Y.; Wang, H. Contrasting patterns of macroinvertebrates inshore vs. offshore in a plateau eutrophic lake: Implications for lake management. Limnologica 2018, 70, 10–19. [Google Scholar] [CrossRef]
- Heino, J.; Mykrä, H. Control of stream insect assemblages: Roles of spatial configuration and local environmental factors. Ecol. Entomol. 2008, 33, 614–622. [Google Scholar] [CrossRef]
- Erös, T.; Sály, P.; Takács, P.; Specziár, A.; Bíró, P. Temporal variability in the spatial and environmental determinants of functional metacommunity organization—Stream fish in a human-modified landscape. Freshw. Biol. 2012, 57, 1914–1928. [Google Scholar] [CrossRef]
- Gilinsky, E. The Role of Fish Predation and Spatial Heterogeneity in Determining Benthic Community Structure. Ecology 1984, 65, 455–468. [Google Scholar] [CrossRef]
- Diehl, S. Fish Predation and Benthic Community Structure: The Role of Omnivory and Habitat Complexity. Ecology 1992, 73, 1646–1661. [Google Scholar] [CrossRef]
Lake | LMAX | bMAX | A | ZMAX | ZMEAN | d | |
---|---|---|---|---|---|---|---|
(m) | (m) | (m2) | (m) | (m) | (km) | ||
Balantetic | BL | 814 | 232 | 135,636 | 3 | 2 | 12.5 |
San Lorenzo | SL | 3091 | 1290 | 1,813,415 | 67 | 12 | 10.9 |
Bosque Azul | BA | 1322 | 822 | 524,558 | 58 | 20 | 7.4 |
La Encantada | EC | 385 | 306 | 82,004 | 89 | 29 | 6.6 |
Esmeralda | ES | 140 | 113 | 11,241 | 7 | 4 | 6.4 |
Ensueño | EN | 220 | 191 | 27,048 | 35 | 22 | 6.2 |
Agua Tinta | AT | 210 | 196 | 29,661 | 24 | 15 | 6.2 |
Cinco Lagos | CL | 817 | 595 | 236,574 | 162 | 43 | 3.5 |
Pojoj | PO | 1057 | 736 | 436,879 | 198 | 35 | 3 |
Kichail | KI | 582 | 445 | 124,865 | 22 | 10 | 2.7 |
Patianu | PA | 262 | 184 | 34,004 | 26 | 11 | 1.9 |
Dos Lagos | DL | 336 | 234 | 52,454 | 42 | 25 | 4.5 |
Tziscao | TZ | 3201 | 1481 | 3,065,515 | 86 | 29 | 0 |
Lake | Water Physicochemical Parameters | ||||
---|---|---|---|---|---|
T (°C) | DO (mg L−1) | pH | K25 (µS cm−1) | Chl-a (µg L−1) | |
BL | 20.7–22.3 | 4.4–18.1 | 7.6–8.8 | 474–945 | 42.1–148.4 |
SL | 17.3–19.5 | 0.0–0.1 | 7.2–7.9 | 682–756 | 23.0–49.8 |
BA | 17.3–17.6 | 0.0–0.0 | 7.2–7.3 | 540–578 | 11.1–29.1 |
EC | 17.9–18.1 | 0.0–0.4 | 7.1–7.8 | 431–475 | 8.2–38.9 |
ES | 19.0–23.4 | 5.5–6.4 | 7.7–8.2 | 341–374 | 0.8–1.1 |
EN | 18.9–19.9 | 0.1–7.3 | 7.4–8.2 | 258–276 | 0.4–0.5 |
AT | 20.9–21.4 | 1.9–2.2 | 7.3–7.4 | 321–345 | 0.1–0.8 |
CL | 18.3–18.4 | 1.5–6.1 | 7.2–8.3 | 212–221 | 0.2–0.3 |
PO | 18.3 | 0.1 | 7.1 | 275 | 0.9 |
KI | 17.4 | 6.7 | 8.2 | 284 | 0.8 |
PA | 17.3–18.0 | 0.0–3.8 | 7.1–8.0 | 277–284 | 0.5–0.9 |
DL | 18.5–18.6 | 0.0–0.1 | 7.1–7.2 | 1424–1437 | 0.8–1.2 |
TZ | 18.0–18.1 | 0.9–7.2 | 7.3–8.2 | 245–280 | 0.4–0.5 |
Lake | Sediment Parameters | ||||
Sand (%) | Silt (%) | Clay (%) | CO32− (%) | OM (%) | |
BL | 0 | 66 | 34 | 34 | 21 |
SL | 0 | 49 | 51 | 34 | 23 |
BA | 12–21 | 70–79 | 8–9 | 48–68 | 22–26 |
EC | 20 | 74 | 6 | 66 | 29 |
ES | 5–37 | 49–80 | 13–14 | 9–61 | 16–51 |
EN | 13–21 | 57–69 | 18–21 | 22–26 | 20–21 |
AT | 26–32 | 62–70 | 4–6 | 47–65 | 21–30 |
CL | 68–90 | 9–31 | 0.5–1 | 74–80 | 42–86 |
PO | 71 | 28 | 1 | 63 | 20 |
KI | 57 | 43 | 1 | 10 | 54 |
PA | 0–2 | 64–70 | 28–36 | 11–17 | 19–23 |
DL | 41–52 | 46–56 | 2–3 | 40–45 | 35–41 |
TZ | 5–8 | 77–80 | 12–18 | 40–81 | 21–23 |
Taxa | Season | Contribution to Dissimilarity (%) | Cumulative Contribution (%) | Lakes |
---|---|---|---|---|
Procladius sp. | Stratification | 3.18 | 3.18 | AT, EN, TZ |
Amphipoda genus 1 | 2.47 | 5.65 | EN, TZ | |
Ballistura libra | 2.47 | 8.13 | BA, TZ | |
Harnischia sp. | 2.47 | 10.60 | DL, ES | |
Homochaeta sp. | 2.47 | 13.07 | BA, TZ | |
Chironomidae genus 1 | 2.47 | 15.55 | DL, EN | |
Polypedilum sp. | 2.47 | 18.02 | DL, EN | |
Probezzia sp. | 2.47 | 20.49 | DL, EN | |
Chaoborus sp. | 2.47 | 22.97 | PO, TZ | |
Lepidocyrtus lanuginosus | 2.47 | 25.44 | BA, TZ | |
Sminthurides sp. | Mixing | 3.40 | 3.40 | BL, CL, DL, EN, KI, PA |
Microchironomus sp. | 3.31 | 6.71 | BL, DL, EN, PA, TZ | |
Homochaeta sp. | 3.02 | 9.74 | CL, DL, EC, TZ | |
Rheotanytarsus sp. | 3.02 | 12.76 | DL, EC, EN, TZ | |
Chaoborus sp. | 2.55 | 15.31 | BL, EN, TZ | |
Procladius sp. | 2.55 | 17.86 | DL, EN, TZ | |
Limnodrilus sp. | 2.55 | 20.42 | BL, DL, TZ | |
Naididae genus 1 | 2.55 | 22.97 | DL, EN, TZ | |
Koenikea sp. | 2.55 | 25.52 | EN, ES, KI, | |
Polypedilum sp. | 2.55 | 28.07 | DL, ES, SL |
Season | Beta Diversity Index | Physicochemical Variables | Mantel Test | Morphometric Variables | Mantel Test |
---|---|---|---|---|---|
Stratification | βSOR | Chlorophyll-a, organic matter content (0.1727) | −0.26 (0.90) | Distance (0.4149) | −0.27 (0.94) |
βSIM | Chlorophyll-a, organic matter content (0.1407) | 0.10 (0.46) | Distance (0.4065) | −0.19 (0.85) | |
βSNE | Chlorophyll-a, organic matter content (0.1888) | 0.05 (0.39) | Distance (0.4027) | 0.06 (0.36) | |
Mixing | βSOR | Temperature, clay percentage (0.4033) | 0.24 (0.07) | Distance, area (0.3861) | −0.09 (0.66) |
βSIM | Temperature, clay percentage (0.4240) | −0.34 (0.91) | Distance, area (0.3774) | 0.09 (0.36) | |
βSNE | Temperature, clay percentage (0.3942) | −0.03 (0.57) | Distance, area (0.3851) | 0.07 (0.30) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés-Guzmán, D.; Alcocer, J. Turnover Drives High Benthic Macroinvertebrates’ Beta Diversity in a Tropical Karstic Lake District. Diversity 2022, 14, 259. https://doi.org/10.3390/d14040259
Cortés-Guzmán D, Alcocer J. Turnover Drives High Benthic Macroinvertebrates’ Beta Diversity in a Tropical Karstic Lake District. Diversity. 2022; 14(4):259. https://doi.org/10.3390/d14040259
Chicago/Turabian StyleCortés-Guzmán, Daniela, and Javier Alcocer. 2022. "Turnover Drives High Benthic Macroinvertebrates’ Beta Diversity in a Tropical Karstic Lake District" Diversity 14, no. 4: 259. https://doi.org/10.3390/d14040259
APA StyleCortés-Guzmán, D., & Alcocer, J. (2022). Turnover Drives High Benthic Macroinvertebrates’ Beta Diversity in a Tropical Karstic Lake District. Diversity, 14(4), 259. https://doi.org/10.3390/d14040259