Variation in Fish Abundance, Diversity and Assemblage Structure in Seagrass Meadows across the Atlanto-Mediterranean Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental (Ocean Climate) and Habitat Descriptors
2.3. Fish Assemblages
2.4. Diversity Indices
2.5. Statistical Analyses
3. Results
3.1. Environmental (Ocean Climate and Habitat) Descriptors
3.2. Fish Assemblages: Differences among Regions
3.3. Fish Assemblages: “Model Selection” to Assess the Importance of Predictors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Espino, F.; Brito, A.; Haroun, R.; Tuya, F. Macroecological analysis of the fish fauna inhabiting Cymodocea nodosa seagrass meadows. J. Fish Biol. 2015, 87, 1000–1018. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Mizutani, A.; Nanjo, K.; Tsutsumi, K.; Kohno, H. Fish assemblage structure response to seagrass bed degradation due to overgrazing by the green sea turtle Chelonia mydas at Iriomote Island, southern Japan. Ichthyol. Res. 2020, 68, 111–125. [Google Scholar] [CrossRef]
- Luo, Z.; Tang, S.; Li, C.; Fang, H.; Hu, H.; Yang, J.; Ding, J.; Jiang, Z. Environmental effects on vertebrate species richness: Testing the energy, environmental stability and habitat heterogeneity hypotheses. PLoS ONE 2012, 7, e35514. [Google Scholar] [CrossRef]
- Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.T.; Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 2007, 315, 1574–1576. [Google Scholar] [CrossRef] [PubMed]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef]
- Turner, M.G.; Calder, W.J.; Cumming, G.; Hughes, T.P.; Jentsch, A.; LaDeau, S.; Lenton, T.M.; Shuman, B.; Turetsky, M.R.; Ratajczak, Z.; et al. Climate change, ecosystems and abrupt change: Science priorities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190105. [Google Scholar] [CrossRef]
- Sanders, H.L. Marine benthic diversity: A comparative study. Am. Nat. 1968, 102, 243–282. [Google Scholar] [CrossRef]
- Klopfer, P.H. Environmental determinants of faunal diversity. Am. Nat. 1959, 873, 337–342. [Google Scholar] [CrossRef]
- Klopfer, P.H.; MacArthur, R.H. Niche size and faunal diversity. Am. Nat. 1960, 94, 293–300. [Google Scholar] [CrossRef]
- Cavieres, L.; Arroyo, M.T.K.; Peñaloza, A.; Molina-Montenegro, M.; Torres, C. Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes. J. Veg. Sci. 2002, 13, 547–554. [Google Scholar] [CrossRef]
- Wilson, J.B. The ‘Intermediate disturbance hypothesis’ of species coexistence is based on patch dynamics. N. Z. J. Ecol. 1994, 18, 176–181. [Google Scholar]
- Libralato, S.; Agnetta, D. From ecological trade-offs to resilience: Insights from exploited marine ecosystems. Curr. Opin. Syst. Biol. 2019, 13, 136–141. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forest and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Alsaffar, Z.; Pearman, J.K.; Curdia, J.; Ellis, J.; Calleja, M.L.; Ruiz-Compean, P.; Roth, F.; Villalobos, R.; Jones, B.H.; Moran, X.A.G.; et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. 2020, 10, 13550. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 2002, 5, 402–411. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef]
- Cadotte, M.; Albert, C.H.; Walker, S.C. The ecology of differences: Assessing community assembly with trait and evolutionary distances. Ecol. Lett. 2013, 16, 1234–1244. [Google Scholar] [CrossRef]
- Rao, R. Diversity and dissimilarity coefficients: A unified approach. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- Violle, C.; Thuiller, W.; Mouquet, N.; Munoz, F.; Kraft, N.J.; Cadotte, M.W.; Livingstone, S.W.; Mouillot, D. Functional rarity: The ecology of outliers. Trends Ecol. Evol. 2017, 32, 356–367. [Google Scholar] [CrossRef]
- Bosch, N.E.; Gonçalves, J.M.S.; Erzini, K.; Tuya, F. “How” and “what” matters: Sampling method affects biodiversity estimates of reef fishes. Ecol. Evol. 2017, 7, 4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadotte, M.W. The new diversity: Management gains through insights into the functional diversity of communities. J. Appl. Ecol. 2011, 48, 1067–1069. [Google Scholar] [CrossRef]
- Camara, E.M.; de Azevedo, M.C.C.; Franco, T.P.; Araújo, F.G. Hierarchical partitioning of fish diversity and scale-dependent environmental effects in tropical coastal ecosystems. Mar. Environ. Res. 2019, 148, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Carmona, C.P.; de Bello, F.; Mason, N.W.H.; Lepš, J. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 2016, 31, 382–394. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Lefcheck, J.S.; Byrnes, J.E.; Cardinale, B.J.; Duffy, J.E.; Griffin, J.N. Marine biodiversity and ecosystem functioning: What’s known and what’s next? Oikos 2015, 124, 252–265. [Google Scholar] [CrossRef]
- Tuya, F.; Herrero-Barrencua, A.; Bosch, N.E.; Abreu, A.D.; Haroun, R. Reef fish at a remote tropical island (Principe Island, Gulf of Guinea): Disentangling taxonomic, functional and phylogenetic diversity patterns with depth. Mar. Freshw. Res. 2018, 69, 395–402. [Google Scholar] [CrossRef]
- Wright, J.P.; Jones, C.G.; Boeken, B.; Shachak, M. Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J. Ecol. 2006, 94, 815–824. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P. Testing the species traits-environment relationships: The fourth-corner problem revisited. Ecology 2008, 89, 3400–3412. [Google Scholar] [CrossRef]
- Lilley, R.J.; Unsworth, R.K.F. Atlantic Cod (Gadus morhua) benefits from the availability of seagrass (Zostera marina) nursery habitat. Glob. Ecol. Conserv. 2014, 2, 367–377. [Google Scholar] [CrossRef]
- Sherwood, E.T.; Greening, H.S.; Johansson, J.O.R.; Kaufman, K.; Raulerson, G.E. Tampa Bay (Florida, USA): Documenting seagrass recovery since the 1980′s and reviewing the benefits. Southeast. Geogr. 2017, 57, 294–319. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marbà, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Ricart, A.M.; York, P.H.; Rasheed, M.A.; Pérez, M.; Romero, J.; Bryant, C.V.; Macreadie, P.I. Variability of sedimentary organic carbon in patchy seagrass landscapes. Mar. Pollut. Bull. 2015, 100, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Bañolas, G.; Fernández, S.; Espino, F.; Haroun, R.; Tuya, F. Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean. Coast. Manag. 2020, 187, 105112. [Google Scholar] [CrossRef]
- Bertelli, C.M.; Unsworth, R.K.F. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 2014, 83, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Horinouchi, M.; Nakai, T.; Sano, M. Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol. Res. 2003, 50, 15–22. [Google Scholar] [CrossRef]
- Coll, M.; Schmidt, A.; Romanuk, T.; Lotze, H.K. Food-web structure of seagrass communities across different spatial scales and human impacts. PLoS ONE 2011, 6, e22591. [Google Scholar] [CrossRef]
- Espino, F.; Tuya, F.; Brito, A.; Haroun, R. Variabilidad espacial en la estructura de la ictiofauna asociada a praderas de Cymodocea nodosa en las Islas Canarias, Atlántico nororiental subtropical. Rev. Biol. Mar. Oceanogr. 2011, 46, 391–403. [Google Scholar] [CrossRef]
- Espino, F.; Tuya, F.; Brito, A.; Haroun, R. Ictiofauna asociada a las praderas de cymodocea nodosa en las islas canarias (Atlántico centro oriental): Estructura de la comunidad y función de “guardería”. Cienc. Mar. 2011, 37, 157–174. [Google Scholar] [CrossRef]
- Hayes, M.A.; McClure, E.C.; York, P.H.; Jinks, K.I.; Rasheed, M.A.; Sheaves, M.; Connolly, R.M. The differential importance of deep and shallow seagrass to nekton assemblages of the great barrier reef. Diversity 2020, 12, 292. [Google Scholar] [CrossRef]
- Pollard, D.A. A review of ecological studies on seagrass-fish communities, with particular reference to recent studies in australia. Aquat. Bot. 1984, 18, 3–42. [Google Scholar] [CrossRef]
- Heck Hay, K.; Hays, G.; Orth, R. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser. 2003, 253, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Blaber, S.J.M.; Brewer, D.T.; Salini, J.P. Fish communities and the nursery role of the shallow inshore waters of a tropical bay in the gulf of Carpentaria, Australia. Estuarine, Coast. Shelf Sci. 1995, 40, 177–193. [Google Scholar] [CrossRef]
- Gullström, M.; de la Torre Castro, M.; Bandeira, S.O.; Björk, M.; Dahlberg, M.; Kautsky, N.; Rönnbäck, P.; Öhman, M.C. Seagrass ecosystems in the western seagrass ecosystems in the western Indian ocean. AMBIO J. Hum. Environ. 2002, 31, 588–596. [Google Scholar] [CrossRef]
- Hyndes, G.A.; Kendrick, A.J.; MacArthur, L.D.; Stewart, E. Differences in the species- and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Mar. Biol. 2003, 142, 1195–1206. [Google Scholar] [CrossRef]
- Adams, S.M. Feeding ecology of eelgrass fish communities. Trans. Am. Fish Soc. 1976, 105, 514–519. [Google Scholar] [CrossRef]
- Beu, J.D.; Westoby, M. Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia 1986, 68, 205–209. [Google Scholar]
- Connolly, R.M. Removal of seagrass canopy: Effects prey on small fish and their prey. J. Exp. Mar. Biol. Ecol. 1994, 184, 99–110. [Google Scholar] [CrossRef]
- Hughes, T.P.; Bellwood, D.R.; Connolly, S.R. Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecol. Lett. 2002, 5, 775–784. [Google Scholar] [CrossRef]
- Tuya, F.; Martín, J.A.; Luque, A. Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote, Canary Islands, eastern Atlantic). Cienc. Mar. 2006, 32, 695–704. [Google Scholar] [CrossRef]
- Hemingson, C.R.; Bellwood, D.R. Biogeographic patterns in major marine realms: Function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 2018, 41, 174–182. [Google Scholar] [CrossRef]
- Masucci, A.; Arnaud-Haond, S.; Eguíluz, V.M.; Hernández-García, E.; Serrão, E.A. Genetic flow directionality and geographical segregation in a cymodocea nodosa genetic diversity network. EPJ Data Sci. 2012, 1, 11. [Google Scholar] [CrossRef]
- Tuya, F.; Fernández-Torquemada, Y.; Zarcero, J.; Del Pilar-Ruso, Y.; Csenteri, I.; Espino, F.; Manent, P.; Curbelo, L.; Antich, A.; De La Ossa, J.A.; et al. Biogeographical scenarios modulate seagrass resistance to small-scale perturbations. J. Ecol. 2019, 107, 1263–1275. [Google Scholar] [CrossRef] [Green Version]
- Máñez-Crespo, J.; Tuya, F.; Fernández-Torquemada, Y.; Royo, L.; del Pilar-Ruso, Y.; Espino, F.; Manent, P.; Antich, L.; Castejón-Silvo, I.; Curbelo, L.; et al. Seagrass Cymodocea nodosa across biogeographical regions and times: Differences in abundance, meadow structure and sexual reproduction. Mar. Environ. Res. 2020, 162, 105159. [Google Scholar] [CrossRef]
- Biggs, C.R.; Yeager, L.A.; Bolser, D.G.; Bonsell, C.; Dichiera, A.M.; Hou, Z.; Keyser, S.R.; Khursigara, A.J.; Lu, K.; Muth, A.F.; et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 2020, 11, e03184. [Google Scholar] [CrossRef]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 2007, 57, 573–583. [Google Scholar] [CrossRef]
- Tuya, F.; Fernández-Torquemada, Y.; del Pilar-Ruso, Y.; Espino, F.; Manent, P.; Curbelo, L.; Otero-Ferrer, F.; de la Ossa, J.A.; Royo, L.; Antich, L.; et al. Partitioning resilience of a marine foundation species into resistance and recovery trajectories. Oecologia 2021, 196, 515–527. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 2009, 387, 27–37. [Google Scholar] [CrossRef]
- Tuya, F.; Boyra, A.; Sanchez-Jerez, P.; Haroun, R.J. Multivariate analysis of the bentho-demersal ichthyofauna along soft bottoms of the Eastern Atlantic: Comparison between unvegetated substrates, seagrass meadows and sandy bottoms beneath sea-cage fish farms. Mar. Biol. 2005, 147, 1229–1237. [Google Scholar] [CrossRef]
- Bosch, N.E.; Wernberg, T.; Langlois, T.J.; Smale, D.A.; Moore, P.J.; Franco, J.N.; Thiriet, P.; Feunteun, E.; Ribeiro, C.; Neves, P.; et al. Niche and neutral assembly mechanisms contribute to latitudinal diversity gradients in reef fishes. J. Biogeogr. 2021, 48, 2683–2698. [Google Scholar] [CrossRef]
- Stuart-Smith, R.D.; Bates, A.E.; Lefcheck, J.; Duffy, J.E.; Baker, S.C.; Thomson, R.J.; Stuart-Smith, J.F.; Hill, N.A.; Kininmonth, S.J.; Airoldi, L.; et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 2013, 501, 539–542. [Google Scholar] [CrossRef]
- Mouillot, D.; Villéger, S.; Parravicini, V.; Kulbicki, M.; Arias-González, J.E.; Bender, M.; Chabanet, P.; Floeter, S.R.; Friedlander, A.; Vigliola, L.; et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. USA 2014, 111, 13757–13762. [Google Scholar] [CrossRef] [PubMed]
- Villéger, S.; Brosse, S.; Mouchet, M.; Mouillot, D.; Vanni, M.J. Functional ecology of fish: Current approaches and future challenges. Aquat. Sci. 2017, 79, 783–801. [Google Scholar] [CrossRef]
- Tramer, E.J. Bird species diversity: Components of Shannon’s formula. Ecology 1969, 50, 927–929. [Google Scholar] [CrossRef]
- Guisande, C.; Heine, J.; García-Roselló, E.; González-Dacosta, J.; Vilas, L.G.; Perez-Schofield, B.J.G. An algorithm for comparing species diversity between assemblages. Ecol. Indic. 2017, 81, 41–46. [Google Scholar] [CrossRef]
- Margalef, R. Ecología, Biogeografía y Evolución. Rev. Univ. Madr. 1959, 8, 221–273. Available online: http://hdl.handle.net/10261/165713 (accessed on 27 September 2022).
- Pielou, E.C. Shannon’s formula as a measure of specific diversity: Its use and misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 1995, 35, 523–531. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. Visualization of a correlation matrix. Statistician 2017, 56, 316–324. [Google Scholar]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef]
- Bolker, B.M. Ecological Models and Data in R; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Miles, J. Tolerance and variance inflation factor. In Wiley StatsRef: Statistics Reference Online; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- Oksanen, J.; Kindt, R.; Legendre, P.; Ohara, B.; Henry, M.; Maintainer, H.S. The vegan package title community ecology package. Community Ecol. Package 2007, 10, 631–637. [Google Scholar]
- Bartoń, K. Multi-Model Inference; R package 1.43.15; 2019. Available online: https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed on 27 September 2022).
- Wang, Y.A.; Wright, S.T. mvabund-an R package for model-based analysis of multivariate abundance data. In Methods in Ecology and Evolution; British Ecological Society: London, UK, 2018. [Google Scholar]
- Gower, J.C. A general coefficient of similarity and some of its properties. Biometrics 1971, 27, 857. [Google Scholar] [CrossRef]
- Maire, E.; Grenouillet, G.; Brosse, S.; Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 2015, 24, 728–740. [Google Scholar] [CrossRef]
- Magneville, C.; Loiseau, N.; Albouy, C.; Casajus, N.; Claverie, T.; Escalas, A.; Leprieur, F.; Maire, E.; Mouillot, D.; Villéger, S. mFD: An R package to compute and illustrate the multiple facets of functional diversity. Ecography 2022, 2022. [Google Scholar] [CrossRef]
- Gouveia, S.F.; Hortal, J.; Cassemiro, F.A.S.; Rangel, T.F.; Diniz-Filho, J.A.F. Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography 2013, 36, 104–113. [Google Scholar] [CrossRef]
- Tittensor, D.P.; Mora, C.; Jetz, W.; Lotze, H.K.; Ricard, D.; Berghe, E.V.; Worm, B. Global patterns and predictors of marine biodiversity across taxa. Nature 2010, 466, 1098–1101. [Google Scholar] [CrossRef]
- Edgar, G.J.; Alexander, T.J.; Lefcheck, J.S.; Bates, A.E.; Kininmonth, S.J.; Thomson, R.J.; Duffy, J.E.; Costello, M.J.; Stuart-Smith, R.D. Abundance and Local-Scale Processes Contribute to Multi-Phyla Gradients in Global Marine Diversity. Available online: http://advances.sciencemag.org/ (accessed on 27 September 2017).
- Mittelbach, G.G.; Schemske, D.W.; Cornell, H.V.; Allen, A.P.; Brown, J.M.; Bush, M.B.; Harrison, S.P.; Hurlbert, A.H.; Knowlton, N.; Lessios, H.A.; et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007, 10, 315–331. [Google Scholar] [CrossRef]
- Gilby, B.; Olds, A.; Connolly, R.; Maxwell, P.; Henderson, C.; Schlacher, T. Seagrass meadows shape fish assemblages across estuarine seascapes. Mar. Ecol. Prog. Ser. 2018, 588, 179–189. [Google Scholar] [CrossRef]
- Connolly, R.; Hindell, J.; Gorman, D. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Mar. Ecol. Prog. Ser. 2005, 286, 69–79. [Google Scholar] [CrossRef]
- Unsworth, R.K.F.; Nordlund, L.M.; Cullen-Unsworth, L.C. Seagrass meadows support global fisheries production. Conserv. Lett. 2019, 12, e12566. [Google Scholar] [CrossRef]
- Nordlund, L.M.; Jackson, E.L.; Nakaoka, M.; Samper-Villarreal, J.; Beca-Carretero, P.; Creed, J.C. Seagrass ecosystem services—What’s next? Mar. Pollut. Bull. 2018, 134, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Verweij, M.C.; Nagelkerken, I.; Hans, I.; Ruseler, S.M.; Mason, P.R.D. Seagrass nurseries contribute to coral reef fish populations. Limnol. Oceanogr. 2008, 53, 1540–1547. [Google Scholar] [CrossRef]
- MacArthur, L.D.; Hyndes, G.A. Differential use of seagrass assemblages by a suite of odacid species. Estuar. Coast. Shelf Sci. 2001, 52, 79–90. [Google Scholar] [CrossRef]
- Gullström, M.; Bodin, M.; Nilsson, P.G.; Öhman, M.C. Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Mar. Ecol. Prog. Ser. 2008, 363, 241–255. [Google Scholar] [CrossRef]
- Jenkins, G.P.; Sutherland, C.R. The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: Colonisation and turnover rate of fishes associated with artificial macrophyte beds of varying physical structure. J. Exp. Mar. Biol. Ecol. 1997, 218, 103–125. [Google Scholar] [CrossRef]
- Barot, S.; Gignoux, J. Mechanisms promoting plant coexistence: Can all the proposed processes be reconciled? Oikos 2018, 106, 185–192. [Google Scholar] [CrossRef]
- Pacala, S.W.; Tilman, D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am. Nat. 1994, 143, 222–257. [Google Scholar] [CrossRef]
- Chesson, P.; Pacala, S.; Neuhauser, C. Environmental niches and ecosystem functioning. In The Functional Consequences of Biodiversity; Princeton University Press: Princeton, NJ, USA, 2001; pp. 213–245. [Google Scholar]
- Tredennick, A.T.; Adler, P.B.; Adler, F.R. The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence. Ecol. Lett. 2017, 20, 958–968. [Google Scholar] [CrossRef]
- Bosch, N.E.; McLean, M.; Zarco-Perello, S.; Bennett, S.; Stuart-Smith, R.D.; Vergés, A.; Pessarrodona, A.; Tuya, F.; Langlois, T.; Spencer, C.; et al. Persistent thermally driven shift in the functional trait structure of herbivorous fishes: Evidence of top-down control on the rebound potential of temperate seaweed forests? Glob. Chang. Biol 2022, 28, 2296–2311. [Google Scholar] [CrossRef]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef]
- Brown, J.H. Why are there so many species in the tropics? J. Biogeogr. 2014, 41, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Marco-Méndez, C.; Ferrero-Vicente, L.M.; Prado, P.; Heck, K.L.; Cebrián, J.; Sánchez-Lizaso, J.L. Epiphyte presence and seagrass species identity influence rates of herbivory in Mediterranean seagrass meadows. Estuar. Coast. Shelf Sci. 2015, 154, 94–101. [Google Scholar] [CrossRef]
- Marco-Méndez, C.; Ferrero-Vicente, L.M.; Prado, P.; Sánchez-Lizaso, J.L. Epiphytes and nutrient contents influence Sarpa salpa herbivory on Caulerpa spp vs. seagrass species in Mediterranean meadows. Estuar. Coast. Shelf Sci. 2017, 184, 54–66. [Google Scholar] [CrossRef]
- Kalogirou, S.; Corsini-Foka, M.; Sioulas, A.; Wennhage, H.; Pihl, L. Diversity, structure and function of fish assemblages associated with Posidonia oceanica beds in an area of the eastern Mediterranean Sea and the role of non-indigenous species. J. Fish Biol. 2010, 77, 2338–2357. [Google Scholar] [CrossRef]
- Tuya, F.; Png-Gonzalez, L.; Riera, R.; Haroun, R.; Espino, F. Ecological structure and function differs between habitats dominated by seagrasses and green seaweeds. Mar. Environ. Res. 2014, 98, 1–13. [Google Scholar] [CrossRef]
- Brito, M.C.; Martin, D.; Núñez, J. Polychaetes associated to a Cymodocea nodosa meadow in the Canary Islands: Assemblage structure, temporal variability and vertical distribution compared to other Mediterranean seagrass meadows. Mar. Biol. 2005, 146, 467–481. [Google Scholar] [CrossRef]
- Stott, P. How climate chanfe affects extreme weather events. Clim. Chang. 2016, 352, 2158–2164. [Google Scholar]
- Tuya, F.; Asensio, M.; Bosch, N.E.; García, A.; Navarro, A. Partitioning multiple diversity dimensions of nearshore fish assemblages within a coastal seascape. Hydrobiologia 2019, 834, 87–102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Máñez-Crespo, J.; Tomas, F.; Fernández-Torquemada, Y.; Royo, L.; Espino, F.; Antich, L.; Bosch, N.E.; Castejón, I.; Hernan, G.; Marco-Méndez, C.; et al. Variation in Fish Abundance, Diversity and Assemblage Structure in Seagrass Meadows across the Atlanto-Mediterranean Province. Diversity 2022, 14, 808. https://doi.org/10.3390/d14100808
Máñez-Crespo J, Tomas F, Fernández-Torquemada Y, Royo L, Espino F, Antich L, Bosch NE, Castejón I, Hernan G, Marco-Méndez C, et al. Variation in Fish Abundance, Diversity and Assemblage Structure in Seagrass Meadows across the Atlanto-Mediterranean Province. Diversity. 2022; 14(10):808. https://doi.org/10.3390/d14100808
Chicago/Turabian StyleMáñez-Crespo, Julia, Fiona Tomas, Yolanda Fernández-Torquemada, Laura Royo, Fernando Espino, Laura Antich, Néstor E. Bosch, Inés Castejón, Gema Hernan, Candela Marco-Méndez, and et al. 2022. "Variation in Fish Abundance, Diversity and Assemblage Structure in Seagrass Meadows across the Atlanto-Mediterranean Province" Diversity 14, no. 10: 808. https://doi.org/10.3390/d14100808
APA StyleMáñez-Crespo, J., Tomas, F., Fernández-Torquemada, Y., Royo, L., Espino, F., Antich, L., Bosch, N. E., Castejón, I., Hernan, G., Marco-Méndez, C., Mateo-Ramírez, Á., Pereda-Briones, L., Del Pilar-Ruso, Y., Terrados, J., & Tuya, F. (2022). Variation in Fish Abundance, Diversity and Assemblage Structure in Seagrass Meadows across the Atlanto-Mediterranean Province. Diversity, 14(10), 808. https://doi.org/10.3390/d14100808