Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Selection
2.2. Distribution Mapping
2.3. Assessment of Extinction Risk
- Lower estimate = % threatened extant species if all DD species are not threatened, i.e., (CR + EN + VU)/(total assessed—EX);
- Best estimate = % threatened extant species if DD species are equally threatened as data-sufficient species, i.e., (CR + EN + VU)/(total assessed—EX—DD);
- Upper estimate = % threatened extant species if all DD species are threatened, i.e., (CR + EN + VU + DD)/(total assessed—EX).
2.4. Classification of Threats
3. Results
3.1. Diversity and Distribution
3.2. Species Conservation Status
3.3. Major Threats
4. Discussion
4.1. Comparison with Other Freshwater Fish Assessments
4.2. Analysis of Major Threats
4.2.1. Pollution
4.2.2. Agriculture and Aquaculture
4.2.3. Biological Resource Use
4.2.4. Dams and Other Natural System Modifications Relating to Water Management/Use
4.2.5. Invasive Species
4.2.6. Residential and Commercial Development
4.2.7. Energy Production and Mining
4.2.8. Transportation and Service Corridors
4.2.9. Climate Change and Severe Weather
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Windevoxhel, N.J.; Rodríguez, J.J.; Lahmann, E.J. Situation of integrated coastal zone management in Central America: Experiences of the IUCN wetlands and coastal zone conservation program. Ocean. Coast. Manag. 1999, 42, 257–282. [Google Scholar] [CrossRef]
- Kok, K.; Veldkamp, A. Evaluating impact of spatial scales on land use pattern analysis in Central America. Agric. Ecosyst. Environ. 2001, 85, 205–221. [Google Scholar] [CrossRef]
- Blanco-Chao, R.; Pedoja, K.; Witt, C.; Martinod, J.; Husson, L.; Regard, V.; Audin, L.; Nexer, M.; Delcaillau, B.; Saillard, M.; et al. Chapter 10 The rock coast of South and Central America. Geol. Soc. London Mem. 2014, 40, 155–191. [Google Scholar] [CrossRef]
- Marshall, J.S. Geomorphology and physiographic provinces. In Central America: Geology, Resources and Hazards; Bundschuh, J., Alvarado, G.E., Eds.; Taylor & Francis: Leiden, The Netherlands, 2007; 1265p. [Google Scholar]
- Yáñez-Arancibia, A. Middle America, Coastal Ecology and Geomorphology. In Encyclopedia of Coastal Science; Encyclopedia of Earth Sciences Series; Finkl, C., Makowski, C., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Iturralde-Vinent, M.A. La Paleogeografía del Caribe y sus implicaciones para la biogeografía histórica. Rev. Jardín Botánico Nac. 2004, 25–26, 49–78. [Google Scholar]
- De la Rosa, C. Middle American streams and rivers. In River and Streamn Ecosystems of the World; Cushing, C.E., Cummins, K.W., Minshall, G.W., Eds.; University of California Press: Los Angeles, CA, USA, 2006. [Google Scholar]
- Bundschuh, J.; Winograd, M.; Day, M.; Alvadaro, G.E. Geographical, social, economic, and environmental framework and developments. In Central America: Geology, Resources and Hazards; Bundschuh, J., Alvarado, G.E., Eds.; Taylor & Francis: Leiden, The Netherlands, 2007; 1265p. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Linke, S.; Lehner, B.; Ouellet Dallaire, C.; Ariwi, J.; Grill, G.; Anand, M.; Beames, P.; Burchard-Levine, V.; Maxwell, S.; Moidu, H.; et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 2019, 6, 1–5. [Google Scholar] [CrossRef]
- Mendoza, A.M.; Bolívar-García, W.; Vázquez-Domínguez, E.; Ibáñez, R.; Olea, G.P. The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ 2019, 7, e6115. [Google Scholar] [CrossRef]
- Gutiérrez-García, T.A. Vásquez-Domínguez, E. Consensus between genes and stones in the biogeographic and evolutionary history of Central America. Quat. Res. 2013, 79, 311–324. [Google Scholar] [CrossRef]
- Jiménez, R.A. Biogeografía y evolución de la biodiversidad en Guatemala, ¿qué nos ha contado el ADN? Rev. Cien. 2021, 30, 37–47. [Google Scholar] [CrossRef]
- Kalkman, V.J.; Clausnitzer, V.; Dijkstra, K.D.; Orr, A.G.; Paulson, D.R.; Tol, J.V. Global diversity of dragonflies (Odonata) in freshwater. In Freshwater Animal Diversity Assessment; Springer: Dordrecht, The Netherlands, 2007; pp. 351–363. [Google Scholar]
- Cumberlidge, N.; Álvarez, F.; Villalobos, J.L. Results of the global conservation assessment of the freshwater crabs (Brachyura, Pseudothelphusidae and Trichodactylidae): The Neotropical region, with an update on diversity. ZooKeys 2014, 457, 133–157. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, S.M.; Lips, K.R.; Donnelly, M.A. Amphibian decline and conservation in Central America. Copeia 2016, 104, 351–379. [Google Scholar] [CrossRef]
- Tejeda-Mazariegos, J.C.; Mejía-Ortíz, L.M.; López-Mejía, M.; Crandall, K.A.; Pérez-Losada, M.; Frausto-Martínez, O. Freshwater Crustaceans Decadpos: An Important Resource of Guatemala. In Biological Resources of Water; Ray, S., Ed.; InTech Publisher: London, UK, 2018; pp. 169–179. [Google Scholar] [CrossRef]
- Echeverría Galindo, P.G.; Pérez, L.; Correa-Metrio, A.; Avendaño, C.E.; Moguel, B.; Brenner, M.; Cohuo, S.; Macario, L.; Caballero, M.; Schwalb, A. Tropical freshwater ostracodes as environmental indicators across an altitude gradient in Guatemala and Mexico. Rev. Biol. Trop. 2019, 67, 1037–1058. [Google Scholar] [CrossRef]
- Boyero, L.; López-Rojo, N.; Tonin, A.M.; Pérez, J.; Correa-Araneda, F.; Pearson, R.G.; Bosch, J.; Albariño, R.J.; Anbalagan, S.; Barmuta, L.A.; et al. Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nat. Commun. 2021, 12, 3700. [Google Scholar] [CrossRef]
- Suárez-Atilano, B.; Suárez-Atilano, M.; Burbrink, F.; Vázquez-Domínguez, E. Phylogeographical structure within Boa constrictor imperator across the lowlands and mountains of Central America and Mexico. J. Biogeogr. 2014, 41, 2371–2384. [Google Scholar] [CrossRef]
- Miller, R.R. Geographical Distribution of Central American Freshwater Fishes. Copeia 1966, 1966, 773–802. [Google Scholar] [CrossRef]
- Myers, G.S. Derivation of the Freshwater Fish Fauna of Central America. Copeia 1966, 1966, 766–773. [Google Scholar] [CrossRef]
- Matamoros, W.A.; McMahan, C.D.; Chakrabarty, P.; Albert, J.S.; Schaefer, J.F. Derivation of the freshwater fish fauna of Central America revisited: Myers’s hypothesis in the twenty-first century. Cladistics 2015, 31, 177–188. [Google Scholar] [CrossRef]
- McMahan, C.D.; Ginger, L.; Cage, M.; David, K.T.; Chakrabarty, P.; Johnston, M.; Matamoros, W.A. Pleistocene to holocene expansion of the black belt cichlid in Central America, Vieja maculicauda (Teleoistei:Cichlidae). PLoS ONE 2017, 12, e0178439. [Google Scholar] [CrossRef] [Green Version]
- Elías, D.J.; McMahan, C.D.; Matamoros, W.A.; Gómez-González, A.E.; Piller, K.R.; Chakrabarty, P. Scale(s) matter: Deconstructing an area of endemism for Middle American freshwater fishes. J. Biogeogr. 2020, 47, 2483–2501. [Google Scholar] [CrossRef]
- Elías, D.J.; McMahan, C.D.; Piller, K.R. Molecular data elucidate cryptic diversity within the widespread Threadfin Shad (Dorosoma petenense: Clupeidae) across the Nearctic and Northern Neotropics. Hydrobiologia 2022, 849, 89–111. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Bacon, E.; Gannon, P.; Stephen, S.; Seyoum-Edjigu, E.; Schmidt, M.; Lang, B.; Sandwith, T.; Xin, J.; Arora, S.; Adham, K.N.; et al. Aichi Biodiversity Target 11 in the like-minded megadiverse countries. J. Nat. Conserv. 2019, 51, 125723. [Google Scholar] [CrossRef]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef]
- Román-Palacios, C.; Moraga-López, D.; Wiens, J.J. The origins of global biodiversity on land, sea and freshwater. Ecol. Lett. 2022, 25, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Acreman, M.; Hughes, K.A.; Arthington, A.H.; Tickner, D.; Dueñas, M.-A. Protected areas and freshwater biodiversity: A novel systematic review distils eight lessons for effective conservation. Conserv. Lett. 2019, 13, e12684. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Salafsky, N.; Salzer, D.; Stattersfield, A.J.; Hilton-Taylor, C.R.; Neugarten, R.; Butchart, S.H.; Collen, B.E.; Cox, N.; Master, L.L.; O’connor, S.H.; et al. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conserv. Biol. 2008, 22, 897–911. [Google Scholar] [CrossRef]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat, Cornol and Freyhof: Berlin, Germany, 2007; 646p. [Google Scholar]
- Darwall, W.R.T.; Smith, K.G.; Allen, D.J.; Holland, R.A.; Harrison, I.J.; Brooks, E.G.E. (Eds.) The Diversity of Life in African Freshwaters: Under Water, under Threat. An Analysis of the Status and Distribution of Freshwater Species throughout Mainland Africa; IUCN: Cambridge, UK; Gland, Switzerland, 2011; xiii+347pp+4pp cover. [Google Scholar]
- Contreras-MacBeath, T.; Hendrickson, D.A.; Arroyave, J.; Mercado Silva, N.; Köck, M.; Domínguez Domínguez, O.; Valdés González, A.; Espinosa Pérez, H.; Gómez Balandra, M.A.; Matamoros, W.; et al. The Status and Distribution of Freshwater Fishes in Mexico; Lyons, T.J., Máiz-Tomé, L., Tognelli, M., Daniels, A., Meredith, C., Bullock, R., Harrison, I., Eds.; IUCN: Cambridge, UK; ABQ BioPark: Albuquerque, NM, USA, 2020; 80p.
- Reis, R.E.; Kullander, S.O.; Ferraris, C.J. Check List of the Freshwater Fishes of South and Central America; Edipucrs: Porto Alegre, Brazil, 2003; 135p. [Google Scholar]
- Smith, S.A.; Bell, G.; Bermingham, E. Cross–Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages. Proc. R. Soc. B Boil. Sci. 2004, 271, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, W.A.; Kreiser, B.R.; Schaefer, J.F. A delineation of Nuclear Middle America biogeographical provinces based on river basin faunistic similarities. Rev. Fish Biol. Fish. 2011, 22, 351–365. [Google Scholar] [CrossRef]
- ArcGIS [software GIS], Versión 10.8; Environmental Systems Research Institute, Inc.: Redlands, CA, USA, 2019.
- Lehner, B.; Grill, G. Global River hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- International Union for the Conservation of Nature (IUCN). IUCN Red List Categories and Crite-Ria: Version 3.1, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2012; Available online: https://portals.iucn.org/library/node/10315 (accessed on 25 August 2022).
- Thorson, T.B. Observations on the reproduction of the sawfish, Pristis perotteti, in Lake Nicaragua, with recommendations for its conservation. In Investigations of the Ichthyofauna of Nicaraguan Lakes; Thorson, T.B., Ed.; University of Nebraska−Lincoln: Lincoln, NE, USA, 1976; pp. 641–650. [Google Scholar]
- Poulakis, G.; Grubbs, R. Biology and ecology of sawfishes: Global status of research and future outlook. Endanger. Species Res. 2019, 39, 77–90. [Google Scholar] [CrossRef]
- Collin, R. Ecological Monitoring and Biodiversity Surveys at the Smithsonian Tropical Research Institute s Bocas Del Toro Research Station. Caribb. J. Sci. 2005, 41, 367–373. [Google Scholar]
- Seemann, J.; González, C.T.; Carballo-Bolaños, R.; Berry, K.; Heiss, G.A.; Struck, U.; Leinfelder, R.R. Assessing the ecological effects of human impacts on coral reefs in Bocas del Toro, Panama. Environ. Monit. Assess. 2013, 186, 1747–1763. [Google Scholar] [CrossRef]
- Bedarf, A.T.; McKaye, K.R.; Berghe, E.P.V.D.; Perez, L.J.; Secor, D.H. Initial Six-year Expansion of an Introduced Piscivorous Fish in a Tropical Central American Lake. Biol. Invasions 2001, 3, 391–404. [Google Scholar] [CrossRef]
- Lehtonen, T.K.; McCrary, J.K.; Meyer, A. Introduced Predator Elicits Deficient Brood Defence Behaviour in a Crater Lake Fish. PLoS ONE 2012, 7, e30064. [Google Scholar] [CrossRef]
- Robledo, J.; Vanegas, E.; García, N. Aplicación del Sistema Holandés para la evaluación de la calidad del agua. Caso de estudio Lago de Izabal, Guatemala. Rev. Ing. Agrícola 2014, 4, 15–21. [Google Scholar]
- Suman, D.O. Socioenvironmental impacts of Panama’s trans-isthmian oil pipeline. Environ. Impact Assess. Rev. 1987, 7, 227–246. [Google Scholar] [CrossRef]
- Medina, M. Solid Wastes, Poverty, and the Environment in Developing Country Cities: Challenges and Opportunities; The United Nations University World Institute for Development Economics Research: Helsinki, Finland, 2011. [Google Scholar]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. Review of current trends, advances and analytical challenges for microplastics contamination in Latin America. Environ. Pollut. 2020, 267, 115463. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Hernández, B.E.; Santos-Ruiz, F.M.; Muñoz-Wug, M.A.; Pérez-Sabino, J.F. Microplastics in Nile tilapia (Oreochromis niloticus) from Lake Amatitlán. Rev. Ambiente Água 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Ortíz, C.H.; Xajil-Sabán, M.; Blanda, E.; Delvalle-Borrero, D. Ocurrencia de microplásticos en el tracto digestivo de peces de la Reserva Natural de Usos Múltiples Monterrico, Guatemala. Ecosistemas 2021, 30, 2188. [Google Scholar]
- Portillo-Quintero, C.; Smith, V. Emerging trends of tropical dry forests loss in North & Central America during 2001–2013: The role of contextual and underlying drivers. Appl. Geogr. 2018, 94, 58–70. [Google Scholar] [CrossRef]
- Furumo, P.R.; Aide, T.M. Characterizing commercial oil palm expansion in Latin America: Land use change and trade. Environ. Res. Lett. 2017, 12, 024008. [Google Scholar] [CrossRef]
- Mendoza, J. Palm Oil Industry Latin America. 2020. Retrieved 27 January 2021. Available online: https://www.statista.com/topics/4967/palm-oil-industry-latin-america/ (accessed on 25 August 2022).
- Krishnaswamy, J.; Kelkar, N.; Birkel, C. Positive and neutral effects of forest cover on dry-season stream flow in Costa Rica identified from Bayesian regression models with informative prior distributions. Hydrol. Process. 2018, 32, 3604–3614. [Google Scholar] [CrossRef]
- Ilha, P.; Schiesari, L.C.; Yanagawa, F.I.; Jankowski, K.; Navas, C.A. Deforestation and stream warming affect body size of Amazonian fishes. PLoS ONE 2018, 13, e0196560. [Google Scholar] [CrossRef]
- Anderson, E.P.; Pringle, C.M.; Rojas, M. Transforming tropical rivers: An environmental perspective on hydropower development in Costa Rica. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 679–693. [Google Scholar] [CrossRef]
- Strayer, D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010, 55, 152–174. [Google Scholar] [CrossRef]
- Powers, J.E.; Bowes, A.L. Elimination of fish in the Giant Grebe Refuge, Lake Atitlan, Guatemala, using the fish toxicant, antimycin. Trans. Am. Fish. Soc. 1967, 96, 210–213. [Google Scholar] [CrossRef]
- Zaret, T.M.; Paine, R.T. Species Introduction in a Tropical Lake: A newly introduced piscivore can produce population changes in a wide range of trophic levels. Science 1973, 182, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Canonico, G.C.; Arthington, A.; McCrary, J.K.; Thieme, M.L. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 463–483. [Google Scholar] [CrossRef]
- Juarez-Sanchez, D.; Blake, J.G.; Hellgren, E.C. Variation in Neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species. PLoS ONE 2019, 14, e0217727. [Google Scholar] [CrossRef] [PubMed]
- Elías, D.J.; Fuentes-Montejo, C.E.; Quintana, Y.; Barrientos, C.A. Non-native freshwater fishes in Guatemala, northern Central America: Introduction sources, distribution, history, and conservation consequences. Neotropical Biol. Conserv. 2022, 17, 59–85. [Google Scholar] [CrossRef]
- IANAS. Water Quality in the Americas: Risks and Opportunities; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019. [Google Scholar]
- Red List. The IUCN Red List of Threatened SpeciesTM (2000–2021; Version 2021-3). 2022. Available online: https://www.iucnredlist.org/ (accessed on 28 April 2022).
- Eschmeyer, W. Catalog of Fishes. California Academy of Sciences. 2022. Available online: https://www.calacademy.org/scientists/projects/eschmeyers-catalog-of-fishes (accessed on 30 April 2022).
- Lees, C.; Gibson, C.; Jaafar, Z.; Ng, H.H.; Tan, H.H.; Chua, K.W.J.; Thornton, S.A.; Van Veen, F.J.F. (Eds.) Assessing to Plan: Next Steps towards Conservation Action for Threatened Freshwater Fishes of the Sunda Region; IUCN Conservation Planning Specialist Group: Apple Valley, MN, USA, 2020. [Google Scholar]
- Dunn, E.H.; Hussell, D.J.; Welsh, D.A. Priority-setting tool applied to Canada’s landbirds based on concern and responsibility for species. Conserv. Biol. 1999, 13, 1404–1415. [Google Scholar] [CrossRef]
- Briggs, V.S.; Mazzotti, F.J.; Harvey, R.G.; Barnes, T.K.; Manzanero, R.; Meerman, J.C.; Walker, P.; Walker, Z. Conceptual Ecological Model of the Chiquibul/Maya Mountain Massif, Belize. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 317–340. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Vammen, K.; Vaux, H. A General Overview of Water Quality in the Americas. In Water Quality in the Americas: Risks and Opportunities; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019. [Google Scholar]
- Castillo, L.E.; de la Cruz, E.; Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. Int. J. 1997, 16, 41–51. [Google Scholar] [CrossRef]
- Rejmánková, E.; Komárek, J.; Dix, M.; Komárková, J.; Girón, N. Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologica 2011, 41, 296–302. [Google Scholar] [CrossRef]
- Komárek, J.; Zapomělová, E.; Šmarda, J.; Kopecký, J.; Rejmánková, E.; Woodhouse, J.; Neilan, B.A.; Komarkova, J. Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov. Fottea 2013, 13, 39–52. [Google Scholar] [CrossRef]
- Romero-Oliva, C.S.; Contardo-Jara, V.; Block, T.; Pflugmacher, S. Accumulation of microcystin congeners in different aquatic plants and crops–A case study from lake Amatitlán, Guatemala. Ecotoxicol. Environ. Saf. 2014, 102, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Quinteros, E.; Ribó, A.; Mejía, R.; López, A.; Belteton, W.; Comandari, A.; Orantes, C.M.; Pleites, E.B.; Hernández, C.E.; López, D.L. Heavy metals and pesticide exposure from agricultural activities and former agrochemical factory in a Salvadoran rural community. Environ. Sci. Pollut. Res. 2016, 24, 1662–1676. [Google Scholar] [CrossRef] [PubMed]
- Mena, Z.E.; Amaya-Grande, L.; Salguero, M.E.; Peñate, Y. Informe de calidad de agua de los ríos de El Salvador. Ministerio de Medio Ambiente y Recursos Naturales. 2020. Available online: https://cidoc.marn.gob.sv/documentos/informe-de-calidad-de-agua-de-los-rios-de-el-salvador-ano-2020/ (accessed on 25 August 2022).
- Kammerbauer, J.; Moncada, J. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras. Environ. Pollut. 1998, 103, 171–181. [Google Scholar] [CrossRef]
- Tovar, C.; Mihara, M.; Okazawa, H. Input of Pollutants by the Tributaries of Lake Yojoa, Honduras. Int. J. Environ. Rural. Dev. 2012, 3, 1. [Google Scholar]
- Bower, K.M. Water supply and sanitation of Costa Rica. Environ. Earth Sci. 2013, 71, 107–123. [Google Scholar] [CrossRef]
- Fournier, M.L.; Echeverría-Sáenz, S.; Mena, F.; Arias-Andrés, M.; de la Cruz, E.; Ruepert, C. Risk assessment of agriculture impact on the Frío River watershed and Caño Negro Ramsar wetland, Costa Rica. Environ. Sci. Pollut. Res. 2018, 25, 13347–13359. [Google Scholar] [CrossRef]
- Ortez, L.; Rovira, M.D.; Moran, L. Distribución espacio-temporal de cianobacterias planctónicas y factores ambientales asociados a sus proliferaciones en el embalse Cerrón Grande, El Salvador. Rev. De Biol. Trop. 2022, 70, 250–262. [Google Scholar]
- Rosenmeier, M.F.; Brenner, M.; Kenney, W.F.; Whitmore, T.J.; Taylor, C.M. Recent eutrophication in the southern basin of Lake Petén Itzá, Guatemala: Human impact on a large tropical lake. Hydrobiologia 2004, 511, 161–172. [Google Scholar] [CrossRef]
- Hervas, A.; Isakson, S.R. Commercial agriculture for food security? The case of oil palm development in northern Guatemala. Food Secur. 2020, 12, 517–535. [Google Scholar] [CrossRef]
- Mena-Rivera, L.; Quirós-Vega, J. Assessment of drinking water suitability in low income rural areas: A case study in Sixaola, Costa Rica. J. Water Health 2018, 16, 403–413. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Morra, M.J. An ecological risk assessment of pesticides and fish kills in the Sixaola watershed, Costa Rica. Environ. Sci. Pollut. Res. 2016, 23, 5983–5991. [Google Scholar] [CrossRef] [PubMed]
- Basterrechea, M.; Dix, M.; van Tuylen, S.; Méndez, A.; Díaz, L.; Mayorga, P. and Gil, N. Water Quality in Guatemala. In Water Quality in the Americas: Risks and Opportunities; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019; pp. 268–385. [Google Scholar]
- Blair, M.A.; Ortiz, P.; Argueta, M.; Romero, L. Water Quality in Honduras. In Water Quality in the Americas: Risks and Opportunities; IANAS, Ed.; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019; pp. 386–407. [Google Scholar]
- Fábrega, J.R.; Flores, E.; Zárate, M.; Morán, M.; Delvalle, D.; Ying, A.; Diéguez, M.; Deago, E.; Broce, K. Water Quality in Panama. In Water Quality in the Americas: Risks and Opportunities; IANAS, Ed.; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019; pp. 487–515. [Google Scholar]
- Hidalgo, H.G.; Springer, M.; Astorga, Y.; Gómez, E.; Vargas, I.; Meléndez, E. Water Quality in Costa Rica. In Water Quality in the Americas: Risks and Opportunities; IANAS, Ed.; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019; pp. 228–254. [Google Scholar]
- Quiñónez Basagoitia, J.C. Water Quality in the Americas: El Salvador. In Water Quality in the Americas: Risks and Opportunities; IANAS, Ed.; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019; pp. 326–354. [Google Scholar]
- Vammen, K.; Peña, E.; García, I.; Sandoval, E.; Jiménez, M.; Cornejo, I.A.; Salvatierra, T.; Zamorio, M.J.; Wheelock, C.; Baltodano, A.; et al. The Challenges of Protecting Water Quality in Nicaragua. In Water Quality in the Americas: Risks and Opportunities; IANAS, Ed.; The Inter-American Network of Academies of Sciences (IANAS-IAP): Calle Cipreses, Mexico City, Mexico, 2019; pp. 454–486. [Google Scholar]
- Brungs, W.A.; McCormick, J.H.; Neiheisel, T.W.; Spehar, R.L.; Stephan, C.E.; Stokes, G.N. Effects of pollution on freshwater fish. J. Water Pollut. Control Fed. 1977, 1425–1493. [Google Scholar]
- Austin, B. The effects of pollution on fish health. J. Appl. Microbiol. 1998, 85, 234S–242S. [Google Scholar] [CrossRef] [PubMed]
- Jacquin, L.; Petitjean, Q.; Côte, J.; Laffaille, P.; Jean, S. Effects of pollution on fish behavior, personality, and cognition: Some research perspectives. Front. Ecol. Evol. 2020, 8, 86. [Google Scholar] [CrossRef]
- Gandar, A.; Laffaille, P.; Canlet, C.; Tremblay-Franco, M.; Gautier, R.; Perrault, A.; Gress, L.; Mormède, P.; Tapie, N.; Budzinski, H.; et al. Adaptive response under multiple stress exposure in fish: From the molecular to individual level. Chemosphere 2017, 188, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyons, T.J.; McMahan, C.; Elias, D. Rocio spinosissima. The IUCN Red List of Threatened Species 2020, e.T161824030A161824589. Available online: https://www.iucnredlist.org/species/161824030/161824589 (accessed on 9 August 2021).
- Mingorría, S.; Gamboa, G.; Martín-López, B.; Corbera, E. The oil palm boom: Socio-economic implications for Q’eqchi’households in the Polochic valley, Guatemala. Environ. Dev. Sustain. 2014, 16, 841–871. [Google Scholar] [CrossRef]
- Aguirre Cordón, M.R.; Vanegas Chacón, E.A.; García Álvarez, N. Aplicación del índice de calidad del agua (ICA). Caso de estudio: Lago de Izabal, Guatemala. Rev. Cienc. Técnicas Agropecu. 2016, 25, 39–43. [Google Scholar]
- McCrary, J.K.; Murphy, B.R.; Stauffer, J.R.; Hendrix, S.S. Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural waters. Environ. Biol. Fishes 2007, 78, 107–114. [Google Scholar] [CrossRef]
- Esselman, P.C.; Schmitter-Soto, J.J.; Allan, J.D. Spatiotemporal dynamics of the spread of African tilapias (Pisces: Oreochromis spp.) into rivers of northeastern Mesoamerica. Biol. Invasions 2013, 15, 1471–1491. [Google Scholar] [CrossRef]
- González, R.G. Catálogo de los Peces Exóticos de las Aguas Dulces Panameñas; Productive Bussiness Publishing Panama: Panama, 2016. [Google Scholar]
- Krishnaswamy, J.; Richter, D.D.; Halpin, P.N.; Hofmockel, M.S. Spatial patterns of suspended sediment yields in a humid tropical watershed in Costa Rica. Hydrol. Process. 2001, 15, 2237–2257. [Google Scholar] [CrossRef]
- Redo, D.J.; Grau, H.R.; Aide, T.M.; Clark, M.L. Asymmetric Forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. USA 2012, 109, 8839–8844. [Google Scholar] [CrossRef] [PubMed]
- Bray, D.B. Forest cover dynamics and forest transitions in Mexico and Central America: Towards a “great restoration”? In Reforesting Landscapes; Springer: Dordrecht, The Netherlands, 2009; pp. 85–120. [Google Scholar]
- Rivera, S.; Ferreira, O.I.; Martínez de Anguita, P.; Espinal, F.M. Soil and economic loss evaluation on small hillside farms in the central mountains of Honduras. J. Sustain. For. 2011, 30, 57–78. [Google Scholar] [CrossRef]
- Beggs, E.; Moore, E. The Social Landscape of African Oil Palm Production in the Osa and Golfito Region, Costa Rica; INOGO, Stanford Woods Institute for the Environment: San José, CA, USA, 2013. [Google Scholar]
- Hunt, C.; Menke, C.; Durham, W. Sustainable Development Centered on Human Well-Being in Osa and Golfito, Costa Rica: A Social Diagnostic Analysis; INOGO, Standord Woods Institute for the Environment: Standord, CA, USA, 2013. [Google Scholar]
- Umaña-Villalobos, G.; Springer, M. Variación ambiental en el río Grande de Térraba y algunos de sus afluentes, Pacífico sur de Costa Rica. Rev. Biol. Trop. 2006, 54, 265–272. [Google Scholar]
- Cedeño Montoya, B.; López Ramírez, A.; Villalobos Portilla, E.; Hernández Ulate, A. Axis modifiers of biophysical conditions in the Térraba River Basin. Rev. Geográfica América Cent. 2012, 48, 95–116. [Google Scholar]
- González, R.; Lyons, T.J. Priapichthys puetzi. The IUCN Red List of Threatened Species 2020, E.T164692174A164692491. Available online: https://www.iucnredlist.org/species/164692174/164692491 (accessed on 12 July 2021).
- Ramos-Barahona, J.E.; Salazar-Colocho, A.E. Estudio de sitios de anidación, distribución, áreas de importancia para cría/reproducción/alimentación, conectividad de los hábitats que se conservan, condiciones de conectividad y la presencia de ecosistemas que pueden garantizar su sobrevivencia de las especies pez machorra (Atractosteus tropicus), caiman (Caiman crocodilus), cocodrilo (Crocodylus acutus), iguana verde (Iguana iguana), y nutria (Lontra longicaudis), en el ANP Santa Rita - Zanjón El Chino. Asociación de Desarrollo Comunal Nueva Esperanza, Fondo Iniciativa para las Américas El Salvador, Ministerio de Medio Ambiente y Recursos Naturales, 2017. [Google Scholar]
- Portocarrero, A.H. Fishery Ecology of the Freshwater Fishes in the Lake Nicaragua. Reproduction and management of Brycon guatemalensis. Doctoral Dissertation, Universidade de Vigo, Pontevedra, Spain, 2013. [Google Scholar]
- Quintana, Y.; Barrientos, C. La Pesca en Río Dulce. Documento Técnico de Proyecto Especies Pesqueras de Importancia Comercial en el Parque Nacional Río Dulce: Valoración Económica y Estrategias Para su Manejo; CONAP-ONCA: Guatemala, 2011. [Google Scholar]
- Barrientos, C.; Quintana, Y.; Elías, D.J.; Rodiles-Hernández, R. Peces nativos y pesca artesanal en la cuenca Usumacinta, Guatemala. Rev. Mex. Biodivers. 2018, 89, 118–130. [Google Scholar] [CrossRef]
- Quintana, Y.; Barrientos, C.A.; Allen, M. Evaluation of an Artisanal Freshwater Fishery in Guatemala Finds Underfished Conditions. N. Am. J. Fish. Manag. 2021, 41, 1731–1743. [Google Scholar] [CrossRef]
- Allan, J.D.; Abell, R.; Hogan, Z.E.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. BioScience 2005, 55, 1041–1051. [Google Scholar] [CrossRef]
- FAO. FAO Yearbook. Fishery and Aquaculture Statistics 2017/FAO Annuaire. Statistiques des Pêches et de l’aquaculture 2017/FAO Anuario. Estadísticas de Pesca y Acuicultura 2017; FAO: Rome, Italy, 2019. [Google Scholar]
- Kyne, P.M.; Carlson, J.K.; Ebert, D.A.; Fordham, S.V.; Bizzarro, J.J.; Graham, R.T.; Kulka, D.W.; Tewes, E.E.; Harrison, L.R.; Dulvy, N.K. (Eds.) The Conservation Status of North American, Central American, and Caribbean Chondrichthyans; IUCN Species Survival Commission Shark Specialist Group: Vancouver, BC, Canada, 2012. [Google Scholar]
- Martin, R.A. Conservation of freshwater and euryhaline elasmobranchs: A review. JMBA-J. Mar. Biol. Assoc. UK 2005, 85, 1049–1074. [Google Scholar] [CrossRef]
- Simpfendorfer, C.A. Predicting population recovery rates for endangered western Atlantic sawfishes using demographic analysis. Environ. Biol. Fishes 2000, 58, 371–377. [Google Scholar] [CrossRef]
- Thorson, T.B. The impact of commercial exploitation on sawfish and shark populations in Lake Nicaragua. Fisheries 1982, 7, 2–10. [Google Scholar] [CrossRef]
- SCIJ. Establece Período de Veda Para la Pesca Deportiva y Turística del pez Bobo Joturus Picharde Poey 1860 en la Cuenca del Río Pacuare Durante el mes de Octubre de Todos los Años. Sistema Costarricense de Informaciín Jurídica. 2015. Available online: http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=80058&nValor3=101492&strTipM=TC (accessed on 12 June 2022).
- World Commission on Dams. Dams and Development. A New Framework for Decision-Making. The Report of the World Commission on Dams; Electronic document; World Commission on Dams: Cape Town, South Africa, 2000. [Google Scholar]
- von Süßwasserfischen, B.; Wissensnotstand, D.; Stiassny, M.L. Conservation of freshwater fish biodiversity: The knowledge impediment. Verh. Der Ges. Für Ichthyol. 2002, 3, 7–18. [Google Scholar]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.P. Desarrollo Hidroeléctrico y Servicios Ecosistémicos en Centroamérica; Nota Técnica # IDB-TN-518; Banco Interamericano de Desarrollo (BID); Unidad de Salvaguardias Ambientales: Washington, DC, USA, 2013; 44p. [Google Scholar]
- Velázquez-Quesada, S.I.; Deniau, Y.; Pérez-Macías, L.F.; Zazueta, I.A.M. Visualizador cartográfico y construcción de bases de información sobre infraestructura eléctrica en Centroamérica. Terra Digit. 2019, 3. [Google Scholar] [CrossRef]
- Thattai, D.; Kjerfve, B.; Heyman, W.D. Hydrometeorology and variability of water discharge and sediment load in the inner Gulf of Honduras, western Caribbean. J. Hydrometeorol. 2003, 4, 985–995. [Google Scholar] [CrossRef]
- Carrasco, J.C.; Lyons, T.J. Chortiheros Wesseli. The IUCN Red List of Threatened Species 2020, e.T150123724A152306171. Available online: https://www.iucnredlist.org/species/150123724/152306171 (accessed on 9 August 2021).
- Anderson, E.P.; Pringle, C.M.; Freeman, M.C. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 408–417. [Google Scholar] [CrossRef]
- Anderson, E.P.; Freeman, M.C.; Pringle, C.M. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages. River Res. Appl. 2006, 22, 397–411. [Google Scholar] [CrossRef]
- Geocomunes. Expansión de Proyectos Eléctricos en Centroamérica. El Desarrollo de un Sistema Eléctrico Regional Fuera del Control de los Pueblos. Available online: http://geocomunes.org/Visualizadores/Centroamerica/ (accessed on 12 July 2021).
- Invasive Species Specialist Group ISSG. The Global Invasive Species Database. Version 2015.1. 2015. Available online: http://www.iucngisd.org/gisd/ (accessed on 13 January 2022).
- INPESCA. Revisión preliminar para la identificación de la especie de pez exótico reportado recientemente en el lago Cocibolca de Nicaragua. Febrero 2008. [Google Scholar]
- Hernández Fernandez, .G.M.; Corea Alvarado, J.T. Distribución y Abundancia de Peces de la Familia Loricariidae (Pleco) y su Relación con los Peces de la Familia Ciclhidae (Cíclidos) en la Lsla de Ometepe, Febrero-Agosto 2012. Tesis de Licenciatura Biología, Facultad de Ciencias y Tecnología, Departamento de Biología, Universidad Nacional Autónoma de Nicaragua- León, León, Spain, 2012; 111p. [Google Scholar]
- Matamoros, W.A.; McMahan, C.D.; Mejia, C.R.; House, P.H.; Armbruster, J.W.; Chakrabarty, P. First record of the non-native suckermouth armored catfish Hypostomus cf. niceforoi (Fowler 1943) (Siluriformes: Loricariidae) from Central America. Occas. Pap. Mus. Nat. Sci. La. State Univ. 2016, 1, 1. [Google Scholar] [CrossRef]
- Sharpe, D.M.; De León, L.F.; González, R.; Torchin, M.E. Tropical fish community does not recover 45 years after predator introduction. Ecology 2017, 98, 412–424. [Google Scholar] [CrossRef]
- Elías, D.J.; Mochel, S.F.; Chakrabarty, P.; Mcmahan, C.D. First Record Of The Non-Native Pacu, Piaractus Brachypomus, in Lago Petén-Itzá, Guatemala, Central America. Occas. Pap. Mus. Nat. Sci. La. State Univ. 2018, 1, 1. [Google Scholar] [CrossRef]
- Angulo, A. New records and range extensions to the Costa Rican freshwater fish fauna, with an updated checklist. Zootaxa 2021, 5083, 1–72. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, W.A.; Schaefer, J.F.; Kreiser, B.R. Annotated checklist of the freshwater fishes of continental and insular Honduras. Zootaxa 2009, 2307, 1–38. [Google Scholar] [CrossRef]
- McMahan, C.D.; Matamoros, W.A.; Calderón, F.S.; Henríquez, W.Y.; Recinos, H.M.; Chakrabarty, P.; Barraza, E.; Herrera, N. Checklist of the inland fishes of El Salvador. Zootaxa 2013, 3608, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Kumschick, S.; Bacher, S.; Evans, T.; Markova, Z.; Pergl, J.; Pyšek, P.; Vaes-Petignat, S.; van der Veer, G.; Vilà, M.; Nentwig, W. Comparing impacts of alien plants and animals in Europe using a standard scoring system. J. Appl. Ecol. 2015, 52, 552–561. [Google Scholar] [CrossRef]
- Winfield, I.J.; Hollingworth, C. Nonindigenous Fishes Introduced into Inland Waters of the United States; Special Publication 27; American Fisheries Society: Bethesda, MA, USA, 2001; pp. 172–173. [Google Scholar]
- McKaye, K.R.; Ryan, J.D.; Stauffer, J.R., Jr.; Perez, L.J.; Vega, G.I.; van den Berghe, E.P. African tilapia in Lake Nicaragua. BioScience 1995, 1, 406–411. [Google Scholar] [CrossRef]
- Schmitter-Soto, J.J.; Quintana, R.; Valdéz-Moreno, M.E.; Herrera-Pavón, R.L.; Esselman, P.C. Armoured catfish (Pterygoplichthys pardalis) in the Hondo River basin, Mexico-Belize. Mesoamericana 2015, 19, 9–19. [Google Scholar]
- Lardizabal, C.C.; Benitez, E.M.; Matamoros, W.A. Record of the Non-native Suckermouth armored catfish hybrid Pterygoplichthys pardalis (Castelnau, 1985) x Pterygoplichtys disjunctivus (Weber, 1991) (Siluriformes: Loricariidae) in Honduras. Zootaxa 2020, 4778, zootaxa-4778. [Google Scholar] [CrossRef] [PubMed]
- Angulo, A.; Garita-Alvarado, C.A.; Bussing, W.A.; López, M.I. Annotated checklist of the freshwater fishes of continental and insular Costa Rica: Additions and nomenclatural revisions. Check List 2013, 9, 987–1019. [Google Scholar] [CrossRef]
- Ariano-Sánchez, D.; Gelera, R.; Rivera, C.; Bolaños, A.; Juárez, D. Primera documentación de pez diablo (loricariidae, Pterygoplichthys sp.) en la laguna luchuí, Parque National laguna luchuá, Guatemala. Rev. 34 Univ. Val. Guatem. 2017, 89. [Google Scholar]
- Gaitán, C.A.; Fuentes-Montejo, C.E.; García, M.J.; Romero-Guevara, J.C. An update of the invasive Pterygoplichthys Gill, 1858 (Actinopterygii, Loricariidae) in Guatemala: New records and notes on its interactions with the local fauna. Neotrop. Biol. Conserv. 2020, 15, 285. [Google Scholar] [CrossRef]
- Capps, K.A.; Flecker, A.S. High impact of low-trophic-position invaders: Nonnative grazers alter the quality and quantity of basal food resources. Freshw. Sci. 2015, 34, 784–796. [Google Scholar] [CrossRef]
- Capps, K.A.; Nico, L.G.; Mendoza-Carranza, M.; Arévalo-Frías, W.; Ropicki, A.J.; Heilpern, S.A.; Rodiles-Hernández, R. Salinity tolerance of non-native suckermouth armoured catfish (Loricariidae: Pterygoplichthys) in south-eastern Mexico: Implications for invasion and dispersal. Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 528–540. [Google Scholar] [CrossRef]
- Castellanos-Mejía, M.C.; Herrera, J.; Noguera-Urbano, E.A.; Parra, E.; Jiménez-Segura, L.F. Potential distribution in Colombia of the introduced fish Pangasianodon hypophthalmus (Siluriformes: Pangasiidae) and implications for endangered native fish. Rev. Biol. Trop. 2021, 69, 573–587. [Google Scholar] [CrossRef]
- Valverde, M.P.; Sharpe, D.M.; Torchin, M.E.; Buck, D.G.; Chapman, L.J. Trophic shifts in a native predator following the introduction of a top predator in a tropical lake. Biol. Invasions 2020, 22, 643–661. [Google Scholar] [CrossRef]
- Cruz, G.A. Historia del Micropterus salmoides (Black Bass) en Honduras. CEIBA 1979, 23, 29–33. [Google Scholar]
- Castellanos-Galindo, G.A.; Robertson, D.R.; Pacheco-Chaves, B.; Angulo, A.; Chong-Montenegro, C. Atlantic Tarpon in the Tropical Eastern Pacific 80 years after it first crossed the Panama Canal. Rev. Fish Biol. Fish. 2019, 29, 401–416. [Google Scholar] [CrossRef]
- Barry, D.; Hermán, R.; Artiga, R.; Molina, H. Capitulo: 4 El desafío del agua en Centroamérica; Informe Estado de la Región; PEN: San José, CA, USA, 1999; 26p. [Google Scholar]
- Van Tassell, J. Gobulus birdsongi. The IUCN Red List of Threatened Species 2010, e.T183832A8185022. Available online: https://www.iucnredlist.org/species/183832/8185022 (accessed on 12 July 2021).
- Nolasco, S. Impactos de la Minería Metálica en Centroamérica; Centro de Investigaciones Sobre Inversión y Comercio (CEICOM), Conflictos Mineros: Toulouse, France.
- Ugarte, O.M. Regional status of soil pollution: Central America, Mexico, and the Caribbean. In Proceedings of the Global Symposium on Soil Pollution, Rome, Italy, 2–4 May 2018; pp. 14–16. [Google Scholar]
- Runk, J.V. Indigenous land and environmental conflicts in Panama: Neoliberal multiculturalism, changing legislation, and human rights. J. Lat. Am. Geogr. 2012, 1, 21–47. [Google Scholar] [CrossRef]
- Briceño, J.; Martínez, V. Ictiofauna nativa del Lago Bayano. In Ecosistema del Lago Bayano: Un Embalse Tropical; Candanedo, C., D’croz, L., Eds.; Publicación Técnica del IRHE. Instituto de Recursos Hidráulicos y Electrificación: Panamá, 1983; pp. 27–31. [Google Scholar]
- Huete-Pérez, J.A.; Tundisi, J.G.; Alvarez, P.J.J. Will Nicaragua’s interoceanic canal result in an environmental catastrophe for Central America? Environ. Sci. Technol. 2013, 47, 13217–13219. [Google Scholar] [CrossRef]
- Huete-Perez, J.A.; Meyer, A.; Alvarez, P.J. Rethink the Nicaragua canal. Science 2015, 347, 355. [Google Scholar] [CrossRef]
- Huete-Pérez, J.A.; Ortega-Hegg, M.; Urquhart, G.R.; Covich, A.P.; Vammen, K.; Rittmann, B.E.; Miranda, J.C.; Espinoza-Corriols, S.; Acevedo, A.; Acosta, M.L.; et al. Critical uncertainties and gaps in the environmental-and social-impact assessment of the proposed interoceanic canal through Nicaragua. BioScience 2016, 66, 632–645. [Google Scholar] [CrossRef]
- Härer, A.; Torres-Dowdall, J.; Meyer, A. The imperiled fish fauna in the Nicaragua Canal zone. Conserv. Biol. 2017, 31, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Heino, J.; Virkkala, R.; Toivonen, H. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biol. Rev. 2009, 84, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Sala, O.E.; Stuart Chapin, F.I.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [Google Scholar] [CrossRef]
- McMahan, C.D.; Fuentes-Montejo, C.E.; Ginger, L.; Carrasco, J.C.; Chakrabarty, P.; Matamoros, W.A. Climate change models predict decreases in the range of a microendemic freshwater fish in Honduras. Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef]
- Angulo, A.; Lyons, T.J. Poeciliopsis santaelena. The IUCN Red List of Threatened Species 2020, e.T168627060A170647203. Available online: https://www.iucnredlist.org/species/168627060/170647203 (accessed on 13 July 2022).
IUCN Red List Category | Number of Species | Number of Endemic Species |
---|---|---|
Critically Endangered | 15 | 12 |
Endangered | 29 | 16 |
Vulnerable | 47 | 28 |
Near Threatened | 24 | 6 |
Least Concern | 409 | 15 |
Data Deficient | 78 | 20 |
Extinct | 0 | 0 |
Extinct in the wild | 0 | 0 |
Not evaluated | 20 | 6 |
Total species assessed | 602 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-MacBeath, T.; Ardón, D.A.; Quintana, Y.; Angulo, A.; Lyons, T.; Lardizabal, C.; McMahan, C.D.; Elías, D.J.; Matamoros, W.A.; Barraza, J.E.; et al. Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats. Diversity 2022, 14, 793. https://doi.org/10.3390/d14100793
Contreras-MacBeath T, Ardón DA, Quintana Y, Angulo A, Lyons T, Lardizabal C, McMahan CD, Elías DJ, Matamoros WA, Barraza JE, et al. Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats. Diversity. 2022; 14(10):793. https://doi.org/10.3390/d14100793
Chicago/Turabian StyleContreras-MacBeath, Topiltzin, Diego A. Ardón, Yasmin Quintana, Arturo Angulo, Tim Lyons, Claudia Lardizabal, Caleb D. McMahan, Diego J. Elías, Wilfredo A. Matamoros, José Enrique Barraza, and et al. 2022. "Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats" Diversity 14, no. 10: 793. https://doi.org/10.3390/d14100793
APA StyleContreras-MacBeath, T., Ardón, D. A., Quintana, Y., Angulo, A., Lyons, T., Lardizabal, C., McMahan, C. D., Elías, D. J., Matamoros, W. A., Barraza, J. E., González, R., Fuentes-Montejo, C. E., Ambruster, J. W., Carrasco, J. C., & Brito Rodriguez, M. (2022). Freshwater Fishes of Central America: Distribution, Assessment, and Major Threats. Diversity, 14(10), 793. https://doi.org/10.3390/d14100793