Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Locations
2.2. Statistical Analysis
3. Results and Discussion
3.1. Species List and Geographical Distribution
3.2. Fossil Species in Current Water Bodies
3.3. Regional Peculiarities of the Protista
3.4. Differences in the Species Composition of Geographically Adjacent Water Bodies
3.5. Estimation of Environment Parameters Influencing Species Composition and Richness
3.6. Similarity of the Species Composition of Geographically Distant Regions
3.7. Global Dispersal in Latitudinal Direction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kristiansen, J.; Škaloud, P. Chrysophyta. Handbook of the Protists, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–38. [Google Scholar]
- Dürrschmidt, M.; Croome, R. Mallomonadaceae (Chrysophyceae) from Malaysia and Australia. Nord. J. Bot. 1985, 5, 285–298. [Google Scholar] [CrossRef]
- Neustupa, J.; Řezácová, M. The genus Mallomonas (Mallomonadales, Synurophyceae) in several Southeast Asian urban water bodies–the biogeographical implications. Nova Hedwig. 2007, 84, 249–259. [Google Scholar] [CrossRef]
- Gusev, E.S.; Thant, N.T.H. Silica-scaled chrysophytes (Chrysophyceae and Synurophyceae) from Vietnam (Khanh Hoa and Quang Nam provinces). Nova Hedwig. 2011, 93, 191–199. [Google Scholar] [CrossRef]
- Gusev, E.S.; Kapustin, D.A.; Martynenko, N.A.; Guseva, E.E.; Kulikovskiy, M.S. Mallomonas gusakovii sp. nov. (Chrysophyceae, Synurales), a new species from Phu Quoc Island, Vietnam. Phytotaxa 2019, 406, 199–205. [Google Scholar] [CrossRef]
- Duff, K.E. Chrysophyte microfossils in arctic Siberian lakes. Chrysophytes: Progress and new horizons. Nova Hedwig. Beih. 1996, 114, 253–263. [Google Scholar]
- Kristiansen, J.; Düwel, L.; Wegeberg, S. Silica-scaled chrysophytes from the Taymyr Peninsula, Northern Siberia. Nova Hedwig. 1997, 65, 337–351. [Google Scholar] [CrossRef]
- Gusev, E.S.; Guseva, E.E.; Gabushev, V.A. Taxonomic composition of silica-scaled chrysophytes in rivers and lakes of Yakutia and Magadanskaya oblast (Russia). Nova Hedwig. Beih. 2018, 147, 105–117. [Google Scholar]
- Hällfors, G.; Hällfors, S. Records of chrysophytes with siliceous scales (Mallomonadaceae and Paraphysomonadaceae) from Finnish inland waters. Flagellates in freshwater ecosystems. Hydrobiologia 1988, 161, 1–29. [Google Scholar] [CrossRef]
- Nemcova, Y.; Kreidlová, J.; Kosová, A.; Neustupa, J. Lakes and pools of Aquitania region (France)–A biodiversity hotspot of Synurales in Europe. Nova Hedwig. 2012, 95, 1–24. [Google Scholar] [CrossRef]
- Bessudova, A.; Sorokovikova, L.M.; Tomberg, I.V.; Likhoshway, Y.V. Silica-scaled chrysophytes in large tributaries of Lake Baikal. Cryptogam. Algol. 2018, 39, 145–165. [Google Scholar] [CrossRef]
- McKenzie, C.; Kling, H. Scale-bearing Chrysophyceae (Mallomonadaceae and Paraphysomonadaceae) from Mackenzie Delta area lakes, Northwest Territories, Canada. Nord. J. Bot. 1989, 9, 103–112. [Google Scholar] [CrossRef]
- Kristiansen, J. Silica structures in the taxonomy and identification of scaled chrysophytes. Nova Hedwig. Beih. 1995, 112, 355–365. [Google Scholar]
- Forsström, L.; Sorvari, S.; Korhola, A.; Rautio, M. Seasonality of phytoplankton in subarctic Lake Saanajärvi in NW Finnish Lapland. Pol. Biol. 2005, 28, 846–861. [Google Scholar] [CrossRef]
- Rautio, M.; Dufresne, F.; Laurion, I.; Bonilla, S.; Vincent, W.F.; Christoffersen, K.S. Shallow freshwater ecosystems of the circumpolar. Écoscience 2011, 18, 204–222. [Google Scholar] [CrossRef]
- Charvet, S.; Vincent, W.F.; Lovejoy, C. Chrysophytes and other protists in High Arctic lakes: Molecular gene surveys, pigment signatures and microscopy. Polar Biol. 2012, 35, 733–748. [Google Scholar] [CrossRef]
- Preisig, H.R.; Hibberd, D.J. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 2. Nord. J. Bot. 1982, 2, 601–638. [Google Scholar] [CrossRef]
- Voloshko, L.N.; Gavrilova, O.V. A checklist of silica-scaled chrysophytes in Russia with an emphasis on the flora of Lake Ladoga. Nova Hedwig. Beih. 2001, 122, 147–167. [Google Scholar]
- Němcová, Y.; Pichrtová, M. Shape dynamics of silica scales (Chrysophyceae, Stramenopiles) associated with pH. Fottea 2012, 12, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Boo, S.M.; Kim, H.S.; Shin, W.; Boo, G.H.; Cho, S.M.; Jo, B.Y.; Kim, J.H.; Kim, J.H.; Yang, E.C.; Siver, P.A.; et al. Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes. Mol. Ecol. 2010, 19, 4328–4338. [Google Scholar] [CrossRef]
- Siver, P.A.; Wolfe, A.P. Scaled chrysophytes in middle Eocene lake sediments from northwestern Canada, including descrip-tions of six new species. Nova Hedwig. Beih. 2005, 128, 295–308. [Google Scholar]
- Siver, P.A.; Wolfe, A.P. Eocene scaled chrysophytes with pronounced modern affinities. Int. J. Plant Sci. 2005, 166, 533–536. [Google Scholar] [CrossRef]
- Siver, P.A.; Wolfe, A.P. Tropical ochrophyte algae from the Eocene of Northern Canada: A biogeographical response to past global warming. Palaios 2009, 24, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Siver, P.A.; Lott, A.M. Fossil species of Mallomonas from an Eocene maar lake with recessed dome structures: Early attempts at securing bristles to the cell covering? Nova Hedwig. 2012, 95, 517–529. [Google Scholar] [CrossRef]
- Siver, P.A.; Lott, A.M.; Wolfe, A.P. A summary of Synura taxa in early Cenozoic deposits from northern Canada. Nova Hedwig. Beih. 2013, 142, 181–190. [Google Scholar]
- Siver, P.A.; Jo, B.Y.; Kim, J.I.; Shin, W.; Lott, A.M.; Wolfe, A.P. Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches. Am. J. Bot. 2015, 102, 921–941. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.P.; Perren, B.B. Chrysophyte microfossils record marked responses to recent environmental changes in high- and mid-Arctic lakes. Can. J. Bot. 2001, 79, 747–752. [Google Scholar]
- Thienpont, J.R.; Rühland, K.M.; Pisaric, M.F.J.; Kokelj, S.V.; Kimpe, L.E.; Blais, J.M.; Smol, J.P. Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshw. Biol. 2013, 58, 337–353. [Google Scholar] [CrossRef]
- Wolfe, A.P.; Siver, P.A. A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales. Glob. Planet. Chang. 2013, 111, 189–198. [Google Scholar] [CrossRef]
- Mushet, G.R.; Laird, K.R.; Das, B.; Hesjedal, B.; Leavitt, P.R.; Scott, K.A.; Simpson, G.L.; Wissel, B.; Wolfe, J.D.; Cumming, B.F. Regional climate changes drive increased scaled-chrysophyte abundance in lakesdownwind of Athabasca Oil Sands nitrogen emissions. J. Paleolimnol. 2017, 58, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Schindler, D.W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 2001, 58, 18–29. [Google Scholar] [CrossRef]
- Paterson, A.M.; Winter, J.G.; Nicholls, K.H.; Clarks, B.J.; Ramcharan, C.W.; Yan, N.D.; Somers, K.M. Long-term changes in phytoplankton composition in seven Canadian Sheet lakes in response to multiple anthropogenic stressors. Can. J. Fish. Aquat. Sci. 2008, 65, 846–861. [Google Scholar] [CrossRef]
- Rühland, K.M.; Paterson, A.M.; Smol, J.P. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob. Change Biol. 2008, 14, 2740–2754. [Google Scholar] [CrossRef]
- Virta, L.; Soininen, J. Distribution patterns of epilithic diatoms along climatic, spatial and physicochemical variables in the Baltic Sea. Helgol. Mar. Res. 2017, 71, 16. [Google Scholar] [CrossRef]
- Passy, S.I.; Larson, C.A.; Jamoneau, A.; Budnick, W.; Heino, J.; Leboucher, T.; Tison-Rosebery, J.; Soininen, J. Biogeographical Patterns of Species Richness and Abundance Distribution in Stream Diatoms Are Driven by Climate and Water Chemistry. Am. Nat. 2018, 192, 605–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boenigk, J.; Wodniok, S.; Bock, C.; Beisser, D.; Hempel, C.; Grossmann, L.; Lange, A.; Jensen, A. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding Metagenom. 2018, 2, e21519. [Google Scholar] [CrossRef] [Green Version]
- Bock, C.; Jensen, M.; Forster, D.; Marks, S.; Nuy, J.; Psenner, R.; Beisser, D.; Boenigk, J. Factors shaping community patterns of protists and bacteria on a European scale: Distribution patterns of protists and bacteria. Environ. Microbiol. 2020, 22, 3757–3771. [Google Scholar] [CrossRef]
- Teittinen, A.; Virta, L.; Li, M.; Wang, J. Factors influencing the biodiversity of three microbialgroups within and among islands of the Baltic Sea. FEMS Microb. Ecol. 2021, 97, fiab049. [Google Scholar] [CrossRef]
- Soininen, J.; Jamoneau, A.; Tison-Rosebery, J.; Passy, S.I. Global patterns and drivers of species and trait composition in diatoms. Glob. Ecol. Biogeogr. 2016, 25, 940–950. [Google Scholar] [CrossRef]
- Heino, J.; Mauricio Bini, L.; Karjalainen, S.M.; Mykrä, H.; Soininen, J.; Cardoso Galli Vieira, L.; Felizola Diniz-Filho, J.A. Geographical Patterns of Micro-Organismal Community Structure: Are Diatoms Ubiquitously Distributed across Boreal Streams? Oikos 2010, 119, 129–137. [Google Scholar] [CrossRef]
- Grosswald, M.G. The last Eurasian ice cover. MGI 1977, 30, 45–60. (In Russian) [Google Scholar]
- Grosswald, M.G. Glaciers of Continental Shelves; Kotlyakov, V.M., Ed.; Nauka: Moscow, Russia, 1983; p. 216. (In Russian) [Google Scholar]
- Grosswald, M.G. Glaciation of Antarctic type in the Northern Hemisphere (towards the global glaciation theory). MGI 1988, 63, 3–25. (In Russian) [Google Scholar]
- Grosswald, M.G. Paleohydrology of Eurasia during the last glaciation. MGI 1998, 84, 121–129. (In Russian) [Google Scholar]
- Grosswald, M.G. Hydrosphere Disasters in Eurasia and Glaciation in Arctic; Kotlyakov, V.M., Ed.; Scientific World: Moscow, Russia, 1999; p. 120. (In Russian) [Google Scholar]
- Grosswald, M.G.; Hughes, T.J. The Russian component of an Arctic Ice Sheet during the Last Glacial Maximum. Quat. Sci. Rev. 2002, 21, 121–146. [Google Scholar] [CrossRef]
- Grosswald, M.G. Glaciation in the North and Northeast Russia during the last great cold event. In Materials of Glaciological Studies; Kotlyakov, V.M., Ed.; Issue 106; Nauka: Moscow, Russia, 2009; p. 152. (In Russian) [Google Scholar]
- Alisov, B.P. Geographical types of climate. Meteorol. Hydrol. 1936, 6, 16–25. (In Russian) [Google Scholar]
- Zvereva, O.S.; Getsen, M.Y.; Iziurova, V.K. The system of relict lakes in the Bolshezemelskaya tundra. Rep. Sci. Acad. USSR 1964, 155, 677–679. (In Russian) [Google Scholar]
- Siver, P.A.; Voloshko, L.N.; Gavrilova, O.V.; Getsen, M.V. The scaled chrysophyte flora of the Bolshezemelskaya tundra. Nova Hedwig. 2005, 128, 125–150. [Google Scholar]
- Asmund, B.; Hilliard, D.K. Studies on Chrysophyceae from some ponds and lakes in Alaska. Hydrobiologia 1961, 7, 237–258. [Google Scholar] [CrossRef]
- Asmund, B.; Hillard, D.K. Studies on Chrysophyceae from some ponds and lakes in Alaska IV. Occurrence of a Mallomonopsis species in brackish water. Hydrobiologia 1965, 26, 521–526. [Google Scholar] [CrossRef]
- Asmund, B. Studies on Chrysophyceae from some ponds and lakes in Alaska. VI. Occurrence of Synura species. Hydrobiologia 1968, 31, 497–515. [Google Scholar] [CrossRef]
- Asmund, B.; Takahashi, E. Studies on Chrysophyceae from some ponds and lakes in Alaska. VIII. Mallomonas species examined with the electron microscope II. Hydrobiologia 1969, 34, 305–321. [Google Scholar] [CrossRef]
- Kristiansen, J. Silica-scaled chrysophytes from west Greenland: Disko island and the Søndre Strømfjord region. Nord. J. Bot. 1992, 12, 525–536. [Google Scholar] [CrossRef]
- Škaloud, P.; Škaloudová, M.; Procházková, A.; Němcová, Y. Morphological delineation and distribution patterns of four newly described species within the Synura petersenii species complex (Chrysophyceae, Stramenopiles). Europ. J. Physiol. 2014, 49, 213–229. [Google Scholar]
- Jacobsen, V.A. Scale-bearing Chrysophyceae (Mallomonadaceae and Paraphysomonadaceae) from West Greenland. Nord. J. Bot. 1985, 5, 381–398. [Google Scholar] [CrossRef]
- Nygaard, G. Freshwater phytoplankton from the Narssaq area, South Greenland. Bot. Tidsskr. 1978, 73, 191–238. [Google Scholar]
- Bradley, D.E. A study of Mallomonas, Synura, and Chrysosphaerella of Northern Iceland. J. Gen. Microbiol. 1964, 37, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, M.P. Observations on chrysophyceae from a Norwegian mountain lake. Brit. Phycol. J. 1981, 16, 373–378. [Google Scholar] [CrossRef]
- Němcová, Y. 2016. Available online: http://www.chrysophytes.eu/taxonomy/term/70122.10.20 (accessed on 23 December 2020).
- Pichrtová, M.; Janatková, K.; Němcová, Y. Silica-scaled chrysophytes from Abisko (Swedish Lapland). Nord. J. Bot. 2011, 29, 112–118. [Google Scholar] [CrossRef]
- Němcová, Y.; Nováková, S.; Řezáčová-Škaloudová, M. Synura obesa sp. nov. (Synurophyceae) and other silica scaled chrysophytes from Abisko (Swedish Lapland). Nova Hedwig. 2008, 86, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Ikävalko, J.; Thomsen, H.A. Scale-covered and loricate flagellates (Chrysophyceae and Synurophyceae) from Baltic Sea ice. Nova Hedwig. Beih. 1994, 114, 147–160. [Google Scholar]
- Cronberg, G. Mallomonas variabilis, sp. nov. (Synurophyceae) with stomatocysts found in Lake Konnevesi, Finland. In Chrysophyte Algae; Sandgren, C.D., Smol, J.P., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 333–344. [Google Scholar]
- Kristiansen, J. Flagellates from Finnish Lappland. Bot. Tidsskr. 1964, 59, 315–333. [Google Scholar]
- Eloranta, P. Notes on the scaled chrysophytes (Synuraceae, Chrysophyceae) in small lake in and near Salamasajärvi Ntional Park western Finland. Memo. Soc. Fauna Flora Fenn. 1985, 61, 77–83. [Google Scholar]
- Eloranta, P. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from national park lakes in southern and central Finland. Nord. J. Bot. 1989, 8, 671–681. [Google Scholar] [CrossRef]
- Eloranta, P. Biogeography of chrysophytes in Finnish lakes. In Chrysophyte Algae: Ecology, Phylogeny and Development; Sandgren, C.D., Smo, J.P., Kristiansen, J., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 214–231. [Google Scholar]
- Ikävalko, J. Contribution to the flora of silica-scaled flagellates in Mikkeli, central Finland. Nova Hedwig. 1994, 58, 475–505. [Google Scholar]
- Ikävalko, J. Observations on silica-scaled flagellates (Chrysophyceae and Synurophyceae) in the brackish water of Pojo Bay, SW coast of Finland. Ann. Bot. Fen. 1994, 31, 1–27. [Google Scholar]
- Voloshko, L.N.; Gavrilova, O.V.; Gromov, B.V. Diversity of Chrysophyta (Paraphysomonadaceae, Mallomonadaceae, Synuraceae) in Lake Ladoga. Phycology 2002, 12, 25–35. (In Russian) [Google Scholar]
- Voloshko, L.N.; Gavrilova, O.V. Algae blooming in waters of the Northwest Russia. In Phylum Chrysophyta–Golden Algae; KMK Publishing House: Moscow, Russia, 2006; pp. 144–177. (In Russian) [Google Scholar]
- Balonov, I.M. Golden algae of the family Synuraceae lemm. in waters of Karelia. Inland Water Biol. 1979, 42, 1–26. (In Russian) [Google Scholar]
- Voloshko, L.N. New species of the genus Mallomonas (Chrysophyta, Synurophyceae) from lakes of the Vorkuta tundra. Bot. Zhurn. 2012, 97, 1090–1098. (In Russian) [Google Scholar]
- Voloshko, L.N. The new taxa of the genus Mallomonas (Chrysophyta, Synurophyceae) from the glacial lakes of Polar Ural (Russia). Bot. Zhurn. 2009, 94, 1068–1076. (In Russian) [Google Scholar]
- Voloshko, L.N. The chrysophycean algae from glacial lakes of Polar Ural (Russia). Nova Hedwig. Beih. 2010, 136, 191–211. [Google Scholar] [CrossRef]
- Bessudova, A.Y.; Firsova, A.D.; Sorokovikova, L.M.; Tomberg, I.V. Silica-Scaled Chrysophytes of the Lower Yenissei River and Gulfs of the Kara Sea with Elements of Autecology; Likhoshway, Y.V., Ed.; Publishing house of the V.B. Sochava Institute of Geography SB RAS: Irkutsk, Russia, 2016; p. 110. (In Russian) [Google Scholar]
- Bessudova, A.; Bukin, Y.S.; Sorokovikova, L.M.; Firsova, A.D.; Tomberg, I.V. Silica-scaled Chrysophytes in Small Lakes of the Lower Yenisei Basin, the Arctic. Nova Hedwig. 2018, 107, 315–336. [Google Scholar] [CrossRef]
- Firsova, A.D.; Bessudova, A.Y.; Sorokovikova, L.M.; Tomberg, I.V.; Likhoshway, Y.V. The diversity of chrysophycean algae in an arctic zone of river and sea water mixing, Russia. Am. J. Plant Sci. 2015, 6, 2439–2452. [Google Scholar] [CrossRef] [Green Version]
- Balonov, I.M.; Kuzmina, A.E. Golden algae. In Proceeding of Limnological Institute, RAS of the Academy of Sciences of USSRP; Votintsev, K.K., Ed.; Hydrochemical and Hydrobiological Studies of the Khantay Reservoir, Nauka, Siberian Branch: Novosibirsk, Russia, 1986; pp. 59–70. (In Russian) [Google Scholar]
- Bessudova, A.; Tomberg, I.V.; Firsova, A.D.; Kopyrina, L.I.; Likhoshway, Y.V. Silica-scaled chrysophytes in lakes Labynkyr and Vorota of the Sakha (Yakutia) Republic, Russia. Nova Hedwig. Beih. 2019, 148, 35–48. [Google Scholar] [CrossRef]
- Kuzmina, A.E.; Kuzmin, G.V. First data on golden algae of the family Synuraceae Lemm. In Magadan Oblast; Books of Abstract of the X All-Soviet Union Workshop «Biological Problems of North» Part 2; Magadan, Russia, 1983; pp. 258–259. (In Russian) [Google Scholar]
- Thorleifson, L.H. Review of Lake Agassiz History. In Sedimentology, Geomorphology, and History of the Central Lake Agassiz Basin; Teller, J.T., Thorleifson, L.H., Matile, G., Brisbin, W.C., Eds.; Field Trip Guidebook B2; Geological Association of Canada Annual Meeting: St. John’s, NL, Canada, 1996; pp. 55–84. [Google Scholar]
- Teller, J.T.; Boyd, M.; Yang, Z.R.; Kor, P.S.G.; Fard, A.M. Alternative routing of Lake Agassiz overflow during the Younger Dryas: New dates, paleotopography, and a reevaluation. Quat. Sci. Rev. 2005, 24, 1890–1905. [Google Scholar] [CrossRef]
- Rudoy, A.N. Ice-dammed lakes and glacial debris super-flows in the Altay and the Sayan Mountains in late Wurm: A review. In Proceedings of the Mudflows: Disasters, Risk, Forecast, Protection, Pyatigorsk, Russia, 22–29 September 2008; pp. 313–316. (In Russian). [Google Scholar]
- Rudoy, A.N.; Zemtsov, V.A. New results of modelling hydraulic characteristics of diluvial streams from the Late Quaternary Chuya-Kuray. Ice Snow 2010, 109, 111–118. (In Russian) [Google Scholar]
- Rudoy, A.N. A Late Pleistocene ice-dammed lake in the Abai basin in the Upper Koksa valley. Bull. Tomsk. Polutechnic Univ. 2011, 318, 8–13. (In Russian) [Google Scholar]
- Michalek, J.M. Examining the progression and termination of Lake Agassiz. Mich. State Univ. 2013, 1–24. [Google Scholar]
- Lepper, K.; Buell, A.W.; Fisher, T.G.; Lowell, T.V. A chronology for glacial Lake Agassiz shorelines along Upham’s namesake transect. Quat. Res. 2013, 80, 88–98. [Google Scholar] [CrossRef]
- Raghunathan, T.E. What do we do with missing data? Some options for analysis of incomplete data. Annu. Rev. Public Health 2004, 25, 99–117. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, S.; Freckleton, R.P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 2008, 23, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.M.; Arbour, J.H.; Jackson, D.A. Testing of the effect of missing data estimation and distribution in morphometric multivariate data analyses. Syst. Biol. 2012, 61, 941–954. [Google Scholar] [CrossRef]
- Nakagawa, S.; Freckleton, R.P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 2011, 65, 103–116. [Google Scholar] [CrossRef]
- Newgard, C.D.; Lewis, R.J. Missing data: How to best account for what is not known. JAMA 2015, 314, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar]
- Dyson, K. Custom Community Ecology Helper R Scripts [Internet]. 2018. Available online: https://github.com/kdyson/R_Scripts (accessed on 23 December 2020).
- Dyson, K. Vegetation communities on commercial developments are heterogenous and determined by development and landscaping decisions, not socioeconomics. PLoS ONE 2019, 14, e0222069. [Google Scholar]
- Kassambara, A. Practical Guide to Principal Component Methods in R: PCA, M (CA), FAMD, MFA, HCPC, Factoextra. STHDA. 2017. Available online: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/ (accessed on 18 November 2020).
- Kristiansen, J. Cosmopolitan chrysophytes. Syst. Geog. Plants 2000, 70, 291–300. [Google Scholar] [CrossRef]
- Kristiansen, J. Dispersal and biogeography of silica-scaled chrysophytes. Biodiv. Conserv. 2008, 17, 419–426. [Google Scholar] [CrossRef]
- Siver, P.A. Mallomonas aperturae sp. nov. (Synurophyceae) reveals that the complex cell architecture observed on modern synurophytes was well established by the middle Eocene. Phycologia 2018, 57, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Němcová, Y.; Neustupa, J.; Novakova, S.; Kalina, T. Silica-scaled chrysophytes of the Czech Republic. Acta Univ. Carol. Geol. 2003, 47, 285–346. [Google Scholar]
- Siver, P.A. The distribution of chrysophytes along environmental gradients: Their use as biologicalindicators. In Chrysophyte Algae; Sandgren, C.D., Smol, J.P., Kristiansen, J., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 232–268. [Google Scholar]
- Kristiansen, J. Golden Algae: A Biology of Chrysophytes; A.R.G. Gantner Verlag: Königstein, Germany, 2005; p. 167. [Google Scholar]
- Siver, P.A. Synurophyte Algae. In Freshwater Algae of North America: Ecology and Classification, 2nd ed.; Academic Press: Boston, MA, USA, 2015; pp. 607–651. [Google Scholar]
- Siver, P.A.; Lott, A.M. The scaled chrysophyte flora in freshwater ponds and lakes from Newfoundland, Canada, and their relationship to environmental variables. Cryptogam. Algol. 2017, 38, 325–347. [Google Scholar] [CrossRef]
- Bessudova, A.; Domysheva, V.M.; Firsova, A.D.; Likhoshway, Y.V. Silica-scaled chrysophytes of Lake Baikal. Acta Biol. Sib. 2017, 3, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.W. Factors influencing the diversity, species composition ans abundance of phytoplankton in twenty one arctic and Subarctic lakes. Int. Rev. Ges. Hydrobiol. Hydrogr. 1979, 64, 591–601. [Google Scholar] [CrossRef]
- Alexander, V.; Stanley, D.W.; Daley, R.I.; McRoy, C.P. Primary producers. In Limnology of Tundra Ponds; Hobbie, J.E., Ed.; Dowden, Hutchinson and Ross, Inc.: Stroudsburg, PA, USA, 1980; pp. 179–223. [Google Scholar]
- Starmach, K. Chrysophyceae and Haptophyceae; Gustav Fischer, Verlag: Jena, Germany, 1985. [Google Scholar]
- Kristiansen, J.; Preisig, H.R. Chrysophyte and Haptophyte Algae. 2 Teil/Part 2: Synurophyceae. In Freshwater Flora of Central Europe; Budel, B., Gartner, G., Krienitz, L., Preisig, H.R., Schagerl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; p. 252. [Google Scholar]
- Siver, P.A.; Lott, A.M. Biogeographic patterns in scaled chrysophytes from east coast of North America. Freshw. Biol. 2012, 57, 451–466. [Google Scholar] [CrossRef]
- Kwiatkowski, R.E.; Roff, J.C. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can. J. Bot. 1976, 54, 2546–2561. [Google Scholar] [CrossRef]
- Locke, A.; Sprules, W.G. Effects of acidic pH and phytoplankton on survival and condition of Bosmina longirostris and Daphnia pulex. Hydrobiologia 2000, 437, 187–196. [Google Scholar] [CrossRef]
- Moldan, F.; Cosby, B.J.; Wright, R.F. Modeling past and future acidification of Swedish lakes. AMBIO 2013, 42, 577–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matz, V.D.; Ufimtsev, G.F.; Mandelbaum, M.M. Cenozoic of the Baikal Rift Basin: Structure and Geological History; Academic Publishing House Geo: Novosibirsk, Russia, 2001; p. 252. (In Russian) [Google Scholar]
- Bondarenko, N.A.; Genkal, S.I. On the discovery of Baikal endemic algae in mountain lakes in Transbaikalia. Bot. J. 2005, 90, 1398–1411. (In Russian) [Google Scholar]
- Kozhova, O.M.; Zagorenko, G.F.; Ladeyschikova, E.N. Features of phytoplankton oz. Khubsugul. Hydrobiol. J. 1977, 13, 77–82. (In Russian) [Google Scholar]
- Edlund, M.B.; Soninkhishig, N.; Stoermer, E.F. The diatom (Bacillariophyta) flora of Lake Hövsgöl National Park, Mongolia. In The Geology, Biodiversity and Ecology of Lake Hövsgöl (Mongolia); Goulden, C., Sitnikova, T., Gelhaus, J., Boldgiv, B., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2006; pp. 145–177. [Google Scholar]
- Dorofeyuk, N.I.; Tsetsegmaa, D. Summary of the Flora of Algae of Mongolia; Science: Moscow, Russia, 2002; p. 282. (In Russian) [Google Scholar]
- Genkal, S.I.; Popovskaya, G.I.; Belikh, O.I.; Firsova, A.D. New and interesting diatoms in plankton of Lake Khubsugul: Centrophyceae. Inland Water Biol. 2005, 4, 3–8. (In Russian) [Google Scholar]
- Usoltseva, M.; Kopyrina, L.; Titova, L.; Morozov, A.; Firsova, A.; Zakharova, Y.; Bashenkhaeva, M.; Maslennikova, M.; Likhoshway, Y. Finding of a putative Lake Baikal endemic, Lindavia minuta, in distant lakes near the Arctic pole in Yakutia (Russia). Diatom Res. 2020, 35, 141–153. [Google Scholar] [CrossRef]
- Schlichting, H.E. The role of waterfowl in the dispersal of algae. Trans. Am. Micros. Soc. 1960, 79, 160–166. [Google Scholar] [CrossRef]
- Hopkins, D.M. History of Sea Level in Beringia for the Last 250,000 Years, Beringia in the Cenozoic Era; Far East Branch of the Academy of Sciences of the USSR: Vladivostok, Russia, 1976; pp. 9–25. (In Russian) [Google Scholar]
- Finlay, B.J.; Clarke, K.J. Ubiquitous dispersal of microbial species. Nature 1999, 400, 828. [Google Scholar] [CrossRef]
- Finlay, B.J. Global dispersal of free-living microbial eukaryote species. Science 2002, 296, 1061–1063. [Google Scholar] [CrossRef] [Green Version]
- Becking, B. Geobiologie of Inleiding tot de Milieukunde; Van Stockum & Zoon: The Hague, The Netherlands, 1934. [Google Scholar]
- O’Malley, M.A. ‘Everything is everywhere: But the environment selects’: Ubiquitous distribution and ecological determinism in microbial biogeography. Stud. Hist. Philos. Biol. Biomed. Sci. 2008, 39, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Padisák, J.; Vasas, G.; Borics, G. Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia 2016, 764, 3–27. [Google Scholar] [CrossRef]
No. | Region | Climatic Zones | Locality | Coordinates | References | Number of Water Bodies in the Region | Variation of the Number of Taxa in Water Bodies of a Region | Total Number of Taxa in the Region |
---|---|---|---|---|---|---|---|---|
1. | Alaska | Temperate | Alaska | 60°20′–68°6′ N, 154°5′–165°45′ W | [51,52,53,54] | 15 | 0 to 13 | 32 |
2. | Northern Canada | Subarctic | Northern Canada | 68°20′–69°30′ N, 132°30′–133°50′ W | [12] | 9 | 0 to 9 | 17 |
3. | West Greenland | Arctic | Disko Island Oqaq Island district S. Nipisat Island Strømfjord | 67°–69° N | [55,56] | 52 | 0 to 9 | 53 |
63°40′–64°25′ N, 50°10′–52° W | [57] | 21 | 0 to 24 | |||||
4. | Southern Greenland | Arctic | Southern Greenland | 60°91′24″ N, 46°04′76″ W | [58] | 2 | 3 to 10 | 12 |
5. | Iceland | Subarctic | Northern Iceland | 65°41′42″ N, 18°7′15″ W | [59] | 10 | 4 to 8 | 30 |
South-West | 64°11′49″ N, 21°8′13″ W | [13] | 1 | 1 | ||||
6. | Sweden–Norway border | Temperate | Sweden–Norway border | 69°05′ N, 20°87′ E | [14] | 1 | 2 | 4 |
Central Norway | Central Norway | 62°15′ N, 0°15′ E | [60] | 1 | 2 | |||
Barduelva Norway | 69°0′50″ N, 18°29′5″ E | [56] | 1 | |||||
a pond in Nygårdsparken, Bergen | 60°23′10″ N, 5°19′28″ E | [56] | ||||||
7. | Sweden | Temperate | Sweden | 63°35′36″ N, 19°50′11″ E | [61] | 2 | 7 to 35 | 55 |
Sweden | 67°75′66″–68°43′30″ N, 18°23′96″–20°09′29″ E | [56] | 10 | 1 to 2 | ||||
Swedish Lapland | 68°20′–68°26′ N, 18°15′–19°6′ E | [62] | 5 | 2 to 23 | ||||
68°21′N, 18°49′E | [63] | 8 | 1 to 4 | |||||
8. | Baltic Sea | Temperate | Baltic Sea | 59°58′–64°15′ N, 20°25′–25°27′ E | [64] | 1 | 14 | 14 |
9. | Finland | Temperate | Finland | 64°31′12″ N, 26°16′59″ E | [9] | 141 | 1 to 37 | 92 |
Finland | 62°36′3.0456″ N, 26°32′51.27″ E | [65] | 1 | 20 | ||||
Finland | 61°75′65″–62°88′11″ N, 25°49′72″–26°48′58″ E | [64] | 8 | 1 to 2 | ||||
Finnish Lapland | 69°45′–69°46′ N, 27°0′–27°1′ E | [66] | 1 | 6 | ||||
Western Finland | 62°7′–63°29′ N, 24°36′–26°48′ E | [67] | 10 | 3 to 9 | ||||
Southern and central Finland | 61°42′–63°17′ N, 22°9′–25°28′ E | [68,69] | 42 | 6 to 22 | ||||
Southern and central Finland | 61°37′–61°43′ N, 26°54′–26°44′ E | [70] | 8 | 21 to 34 | ||||
Southwestern coast of Finland | 60°2′30.75″ N, 23°29′36.46″ E | [71] | 1 | 49 | ||||
10. | Russia, Leningrad oblast–Karelia border | Temperate | Russia, Leningrad oblast–Karelia border | 60°48′7.4304″ N, 31°30′48.1212″ E | [18,72,73] | 1 | 26 | 31 |
61°46′23.24″ N, 35°19′12.46″ E | [73] | 1 | 10 | |||||
11. | Russia, Karelia | Temperate | Russia, Karelia | 61°7′–64°27′ N, 33°0′–35° 25′ E | [74] | 26 | 31 | 31 |
12. | Russia, Bolshezemelskaya tundra | Subarctic | Vashutkini lake Kharbey Vash.-Kharbey | 67°57′49.64″ N, 61°31′08.58″ E | [50] | 18 | 5 to 29 | 55 |
13. | Russia, Vorkutinskaya tundra | Subarctic | Vorkuta tundra | 67°23′35″ N, 63°15′80″ E | [50,75] | 4 | 12 to 28 | 51 |
14. | Russia, Polar Urals | Subarctic | Russia, Polar Urals | 67°17′–68°07′ N, 65°30–66°04′ E | [76,77] | 9 | 6 to 19 | 44 |
15. | Russia, Lower Yenisei basin | Subarctic | Russia, Lower Yenisei basin | 66°35′–73°23′ N, 75°17′–86°34′ E | [78,79] | 6 | 0 to 25 | 36 |
16. | Russia, Kara Sea gulfs and bays | Subarctic | Russia, Kara Sea gulfs and bays | 69°58′ N–73°23′ N, 80°28′ E–83°32′ E | [78,80] | 4 | 10 to 18 | 22 |
17. | Russia, Khantay Reservoir | Temperate | Russia, Khantay Reservoir | 67°40′4″ N, 87°45′32″ E | [81] | 4 | 0 to 25 | 27 |
18. | Russia, Taymyr Peninsula | Arctic | Russia, Taymyr Peninsula | 74°37′ N, 101°45′ E | [6,7] | 13 | 0 to 15 | 28 |
19. | Russia, North-Western part of Yakutia | Arctic | Russia, Yakutia | 73°05′ N, 113°59′ E | [8] | 1 | 7 | 7 |
20. | Russia, Eastern part of Yakutia | Temperate | Russia, Yakutia | 62°26′–62°33′ N, 143°33′–143°39′ E | [82] | 2 | 13 to 20 | 22 |
21. | Russia, Magadan oblast | Temperate | Russia, Magadan oblast | 62°34′33″ N, 154°2′13″ E | [8,83] | 12 | 0 to 10 | 22 |
Influence Model | AICc Information Criterion | Total R2 | Residual R2 |
---|---|---|---|
Best influence model: community ~ regions + T | 526.46 | 0.315 | 0.685 |
Total influence model: community ~ T + pH + conductivity + month + regions | 536.61 | 0.376 | 0.624 |
Best influence model of the factors on the species composition of communities in water bodies—the combined influence of the facts of the sampling region and the temperature factor at the time of sampling. The individual value of R2 is indicated for the corresponding factor in the formula | |||
Factor + Formula | Factor R2 | Residual R2 | p |
Regions community ~ regions + T | 0.30079 | 0.69921 | 0.000999 |
Regions community ~ T + regions | 0.295 | 0.705 | 0.000999 |
T community ~ regions + T | 0.01421 | 0.98579 | 0.000999 |
T community ~ T + regions | 0.02 | 0.98 | 0.000999 |
No. | Taxon | T, °C | pH | Conductivity, µS cm−1 |
---|---|---|---|---|
1. | Chrysosphaerella brevispina | 3.9–19.7 | 5.5–8.3 | 10–708 |
2. | C. coronacircumspina | 4.5–17.7 | 5–8.4 | 10–708 |
3. | C. longispina | 4.5–21 | 5–7.6 | 13–146 |
4. | Paraphysomonas vestita | 3.9–19.7 | 5–8.1 | 13–708 |
5. | Spiniferomonas bourrellyi | 4.5–19.1 | 5–8.3 | 11–246 |
6. | S. trioralis | 3.9–19.7 | 5–8.4 | 10–708 |
7. | Mallomonas acaroides | 0.3–18 | 5.5–8.3 | 19–708 |
8. | M. akrokomos | 0.3–19.4 | 5–8.4 | 10–708 |
9. | M. alpina | 5–19.7 | 5.5–8 | 19–708 |
10. | M. caudata | 3.7–17 | 5–8.1 | 19–708 |
11. | M. crassisquama | 0.3–20 | 5–8.4 | 17–709 |
12. | M. elongata | 8.5–16.8 | 5.5–8.3 | 21–664 |
13. | M. heterospina | 6.8–19.7 | 5.5–8 | 14–708 |
14. | M. punctifera | 8.4–17.7 | 5–8.3 | 19–708 |
15. | M. striata | 3.9–18 | 5.5–8.1 | 20–708 |
16. | M. tonsurata | 6.8–16.8 | 5–8.4 | 16–708 |
17. | Synura spinosa | 0.3–18.7 | 5.5–8.1 | 16–664 |
18. | S. petersenii | 0.3–19.7 | 5–8.5 | 13–708 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessudova, A.; Bukin, Y.; Likhoshway, Y. Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies. Diversity 2021, 13, 284. https://doi.org/10.3390/d13070284
Bessudova A, Bukin Y, Likhoshway Y. Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies. Diversity. 2021; 13(7):284. https://doi.org/10.3390/d13070284
Chicago/Turabian StyleBessudova, Anna, Yurij Bukin, and Yelena Likhoshway. 2021. "Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies" Diversity 13, no. 7: 284. https://doi.org/10.3390/d13070284
APA StyleBessudova, A., Bukin, Y., & Likhoshway, Y. (2021). Dispersal of Silica-Scaled Chrysophytes in Northern Water Bodies. Diversity, 13(7), 284. https://doi.org/10.3390/d13070284