Reusing Old and Producing New Data Is Useful for Species Delimitation in the Taxonomically Controversial Iberian Endemic Pair Petrocoptis montsicciana/P. pardoi (Caryophyllaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Analysis
2.2. Niche Analysis
3. Results
3.1. Genetic Structure and Divergence between Taxa
3.2. Climatic Niches of P. montisicciana and P. pardoi
4. Discussion and Conclusions
4.1. Both Genetic and Ecological Data Confirm the Distinction between P. montsicciana and P. pardoi
4.2. Conservation Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buira, A.; Aedo, C.; Medina, L. Spatial patterns of the Iberian and Balearic endemic vascular flora. Biodivers. Conserv. 2017, 26, 479–508. [Google Scholar] [CrossRef]
- Mayol, M.; Rosselló, J.A. A synopsis of Silene subgenus Petrocoptis (Caryophyllaceae). Taxon 1999, 48, 471–482. [Google Scholar] [CrossRef]
- Jafari, F.; Zarre, S.; Gholipour, A.; Eggens, F.; Rabeler, R.K.; Oxelman, B. A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae). Taxon 2020, 69, 337–368. [Google Scholar] [CrossRef]
- Cires, E.; Fernández-Prieto, J.A. Phylogenetic relationships of Petrocoptis A. Braun ex Endl. (Caryophyllaceae), a discussed genus from the Iberian Peninsula. J. Plant Res. 2015, 128, 223–238. [Google Scholar] [CrossRef] [PubMed]
- De Castro-Arrazola, I.; March-Salas, M.; Lorite, J. Assessment of the potential risk of rock-climbing for cliff plant species and natural protected areas of Spain. Front. Ecol. Evol. 2021, 9, 229. [Google Scholar]
- De Bolòs, O.; Rivas-Martínez, S. Comentarios sobre el género Petrocoptis. Petrocoptis montsicciana sp. nova. An. Inst. Bot. A J. Cavanilles 1970, 26, 53–60. [Google Scholar]
- Montserrat, P.; Fernández-Casas, J. Petrocoptis. In Flora Iberica; Castroviejo, S., Laínz, M., López-González, G., Montserrat, P., Muñoz-Garmendia, F., Paiva, J., Villar, L., Eds.; Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 1990; Volume 2, pp. 304–312. [Google Scholar]
- De Bolòs, O.; Vigo, J. Flora dels Països Catalans. Volum II (Crucíferes-Amarantàcies); Barcino: Barcelona, Spain, 1990. [Google Scholar]
- Walters, S.M. Petrocoptis A. Braun. In Flora Europaea, 1, 2nd ed.; Tutin, T.G., Burges, N.A., Chater, A.O., Edmonson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 190–191. [Google Scholar]
- López-Pujol, J.; Bosch, M.; Simon, J.; Blanché, C. Allozyme diversity of two endemic Petrocoptis species: P. montsicciana and its close relative P. pardoi (Caryophyllaceae). Can. J. Bot. 2001, 79, 1379–1389. [Google Scholar]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [Google Scholar] [CrossRef]
- Padial, J.M.; Miralles, A.; de la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 16. [Google Scholar] [CrossRef]
- Su, X.; Wu, G.; Li, L.; Liu, J. Species delimitation in plants using the Qinghai-Tibet Plateau endemic Orinus (Poaceae: Tridentinae) as an example. Ann. Bot. 2015, 116, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Massó, S.; López-Pujol, J.; Vilatersana, R. Reinterpretation of an endangered taxon based on integrative taxonomy: The case of Cynara baetica (Compositae). PLoS ONE 2018, 13, e0207094. [Google Scholar] [CrossRef] [PubMed]
- Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Int. J. Mol. Sci. 2011, 12, 865–889. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquetto, I.V.; Randles, B.M.; Borgman, C.L. On the reuse of scientific data. Data Sci. J. 2017, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Scerri, E.M.L.; Kühnert, D.; Blinkhorn, J.; Groucutt, H.S.; Roberts, P.; Nicoll, K.; Zerboni, A.; Orijemie, E.A.; Barton, H.; Candy, I.; et al. Field-Based sciences must transform in response to COVID-19. Nat. Ecol. Evol. 2020, 4, 1571–1574. [Google Scholar] [CrossRef]
- Wagensommer, R.P.; Medagli, P.; Turco, A.; Perrino, E.V. IUCN Red List evaluation of the Orchidaceae endemic to Apulia (Italy) and considerations on the application of the IUCN protocol to rare species. Nat. Conserv. Res. 2020, 5 (Suppl. S1), 90–101. [Google Scholar] [CrossRef]
- Kuzmanović, N.; Lakušić, D.; Frajman, B.; Stevanoski, I.; Conti, F.; Schönswetter, P. Long neglected diversity in the Accursed Mountains (western Balkan Peninsula): Ranunculus bertisceus is a genetically and morphologically divergent new species. Bot. J. Linn. Soc. 2021. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Manni, F.; Guérard, E.; Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 2004, 76, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Dieringer, D.; Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellie data sets. Mol. Ecol. Notes 2003, 3, 167–169. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.-J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Guardiola, M.; Sáez, L. Petrocoptis montsicciana O. Bolòs & Rivas Mart. In Atlas y Libro Rojo de la Flora Vascular Amenazada de España—Adenda 2017; Moreno Saiz, J.C., Iriondo Alegría, J.M., Martínez García, F., Martínez Rodríguez, J., Salazar Mendías, C., Eds.; Ministerio para la Transición Ecológica-Sociedad Española de Biología de la Conservación de Plantas: Madrid, Spain, 2019; pp. 134–135. [Google Scholar]
- Red de Seguimiento para Especies de Flora y Hábitats de Interés Comunitario en Aragón, LIFE12 NAT/ES/000180 RESECOM. Petrocoptis montsicciana O. Bolòs & Rivas Mart. 2014. Available online: http://www.liferesecom.ipe.csic.es/eic/Petrocoptis%20montsicciana%20_LIFE.doc (accessed on 27 December 2020).
- López, S.; Fabregat, C. Nuevos datos para la flora de Aragón. Flora Montiber. 2011, 49, 85–95. [Google Scholar]
- Brown, J.L. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- ESRI. ArcGIS: Release 10.2; Esri Inc.: Redmond, WA, USA, 2013; Available online: http://www.esri.com/ (accessed on 29 December 2020).
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.P.; Vilela, B.; Buzatto, B.A.; Moczek, A.P.; Hortal, J. Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biol. Invasions 2016, 18, 3137–3148. [Google Scholar] [CrossRef] [Green Version]
- Schoener, T.W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 1970, 51, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef] [PubMed]
- Herrando-Moraira, S.; Nualart, N.; Herrando-Moraira, A.; Chung, M.G.; Chung, M.Y.; López-Pujol, J. Climatic niche characteristics of native and invasive Lilium lancifolium. Sci. Rep. 2019, 9, 14334. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 29 December 2020).
- Gottlieb, L.D. Isozyme evidence and problem solving in plant systematics. In Plant Biosystematics; Grant, W.F., Ed.; Academic Press: Orlando, FL, USA, 1984; pp. 343–357. [Google Scholar]
- Gottlieb, L.D. Rethinking classic examples of recent speciation in plants. New Phytol. 2003, 161, 71–82. [Google Scholar] [CrossRef]
- Crawford, D.J. Electrophoretic data and plant speciation. Syst. Bot. 1985, 10, 405–416. [Google Scholar] [CrossRef]
- Crawford, D.J. Genetics of plant isozymes. In Isozymes in Plant Biology; Soltis, D.E., Soltis, P.S., Eds.; Dioscorides Press: Portland, OR, USA, 1990; pp. 146–164. [Google Scholar]
- Crawford, D.J. Progenitor-derivative species pairs and plant speciation. Taxon 2010, 59, 1413–1423. [Google Scholar] [CrossRef]
- Gottlieb, L.D. Genetic differentiation, sympatric speciation and the origin of a diploid species of Stephanomeria. Am. J. Bot. 1973, 60, 545–553. [Google Scholar] [CrossRef]
- Crawford, D.J. Phylogenetic and systematic inferences from electrophoretic studies. In Isozymes in Plant Genetics and Breeding, Part A; Tanksley, S.D., Orton, T.J., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1983; pp. 257–287. [Google Scholar]
- Gutiérrez, F.; Gutiérrez, M. (Eds.) Landscapes and Landforms of Spain; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Lososová, Z.; Divíšek, J.; Chytrý, M.; Götzenberger, L.; Těšitel, J.; Mucina, L. Macroevolutionary patterns in European vegetation. J. Veg. Sci. 2021, 32, e12942. [Google Scholar] [CrossRef]
- Fernández-Mazuecos, M.; Jiménez-Mejías, P.; Rotllan-Puig, X.; Vargas, P. Narrow endemics to Mediterranean islands: Moderate genetic diversity but narrow climatic niche of the ancient, critically endangered Naufraga (Apiaceae). Perspect. Plant. Ecol. Evol. Syst. 2014, 16, 190–202. [Google Scholar] [CrossRef]
- Prieto-Mossi, J.; García-Mut, L.; Estrelles, E.; Ibars, A.M. Protocolo de germinación y cultivo de Petrocoptis pardoi Pau (Caryophyllaceae). Bot. Asppects 2017, 3.2, 7–12. [Google Scholar]
- Sainz, H.; Franco, F.; Arias, J. Estrategias para la Conservación de la Flora Amenazada de Aragón; Diputación General de Aragón: Zaragoza, Spain, 1996. [Google Scholar]
- Wagensommer, R.P.; Fröhlich, T.; Fröhlich, M. First record of the southeast European species Cerinthe retorta Sibth. & Sm. (Boraginaceae) in Italy and considerations on its distribution and conservation status. Acta Bot. Gall. Bot. Lett. 2014, 161, 111–115. [Google Scholar]
- Panitsa, M.; Kontopanou, A. Diversity of chasmophytes in the vascular flora of Greece: Floristic analysis and phytogeographical patterns. Bot. Serb. 2017, 41, 199–211. [Google Scholar]
- Liber, Z.; Surina, B.; Nikolić, T.; Škrtić, D.; Šatović, Z. Spatial distribution, niche ecology and conservation genetics of Degenia velebitica (Brassicaceae), a narrow endemic species of the north-western Dinaric Alps. Plant. Syst. Evol. 2020, 306, 64. [Google Scholar] [CrossRef]
- Garrido, J.L.; Fenu, G.; Mattana, E.; Bacchetta, G. Spatial genetic structure of Aquilegia taxa endemic to the island of Sardinia. Ann. Bot. 2012, 109, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Tseng, Y.-H.; Huang, H.-Y.; Xu, W.-B.; Yang, H.-A.; Peng, C.-I.; Liu, Y.; Chung, K.-F. Phylogeography of Begonia luzhaiensis suggests both natural and anthropogenic causes for the marked population genetic structure. Bot. Stud. 2019, 60, 20. [Google Scholar] [CrossRef]
- Jiménez-López, F.J.; Ortiz, M.A.; Berjano, R.; Talavera, S.; Terrab, A. High population genetic substructure in Hypochaeris leontodontoides (Asteraceae), an endemic rupicolous species of the Atlas Mountains in NW Africa. Alp. Bot. 2016, 126, 73–85. [Google Scholar] [CrossRef]
- Boisselier-Dubayle, M.-C.; Leblois, R.; Samadi, S.; Lambourdière, J.; Sarthou, C. Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana—A test of the forest refuge hypothesis. Ecography 2010, 33, 175–184. [Google Scholar] [CrossRef]
- Orellana, M.R.; López-Pujol, J.; Blanché, C.; Bosch, M. Genetic diversity in the endangered dysploid larkspur Delphinium bolosii and its close diploid relatives in the series Fissa of the Western Mediterranean area. Biol. J. Linn. Soc. 2007, 92, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Vergara, M.; Basto, M.P.; Madeira, M.J.; Gómez-Moliner, B.J.; Santos-Reis, M.; Fernandes, C.; Ruiz-González, A. Inferring population genetic structure in widely and continuously distributed carnivores: The stone marten (Martes foina) as a case study. PLoS ONE 2015, 10, e0134257. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.I.; Abbott, R.J. The origin and evolution of Tertiary relict floras. Adv. Bot. Res. 2002, 38, 281–314. [Google Scholar]
- Molins, A.; Bacchetta, G.; Rosato, M.; Rosselló, J.A.; Mayol, M. Molecular phylogeography of Thymus herba-barona (Lamiaceae): Insight into the evolutionary history of the flora of the western Mediterranean islands. Taxon 2011, 60, 1295–1305. [Google Scholar] [CrossRef]
- Bobo-Pinilla, J.; Barrios de León, S.B.; Seguí Colomar, J.; Fenu, G.; Bacchetta, G.; Peñas de Giles, J.; Martínez-Ortega, M.M. Phylogeography of Arenaria balearica L. (Caryophyllaceae): Evolutionary history of a disjunct endemic from the Western Mediterranean continental islands. PeerJ 2016, 4, e2618. [Google Scholar] [CrossRef] [Green Version]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Moreno, J.C. (Ed.) Lista Roja de la Flora Vascular Española. Actualización con los Datos de la Adenda 2010 al Atlas y Libro Rojo de la Flora Vascular Amenazada; Sociedad Española de Biología de la Conservación de las Plantas: Madrid, Spain, 2011. [Google Scholar]
- Diputación General de Aragón. Decreto 181/2005, de 6 de septiembre, del Gobierno de Aragón, por el que se modifica parcialmente el Decreto 49/1995, de 28 de marzo, de la Diputación General de Aragón, por el que se regula el Catálogo de Especies Amenazadas de Aragón. Bol. Of. Aragón 2005, 114, 11527–11532. [Google Scholar]
- Generalitat de Catalunya. RESOLUCIÓ AAM/732/2015, de 9 d’abril, per la qual s’aprova la catalogació, descatalogació i canvi de categoria d’espècies i subespècies del Catàleg de flora amenaçada de Catalunya. D. Of. General. Catalunya 2015, 6854. CVE-DOGC-A-15106031-2015. [Google Scholar]
- Generalitat Valenciana. Ordre 6/2013, de 25 de març, de la Conselleria d’Infraestructures, Territori i Medi Ambient, per la qual es modifiquen les llistes valencianes d’espècies protegides de flora i fauna. D Of. Comunitat Valencia. 2013, 6996, 8682–8690. [Google Scholar]
- Moritz, C. Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 1999, 130, 217–228. [Google Scholar] [CrossRef]
- Fenster, C.B.; Dudash, M.R. Genetic considerations for plant population restoration and conservation. In Restoration of Endangered Species: Conceptual Issues, Planning and Implementation; Bowles, M.L., Whelan, C.J., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 34–62. [Google Scholar]
- Frankham, R.; Ballou, J.D.; Eldridge, M.D.B.; Lacy, R.C.; Ralls, K.; Dudash, M.R.; Fenster, C.B. Predicting the probability of outbreeding depression. Conserv. Biol. 2011, 25, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Guisan, A.; Broennimann, O.; Engler, R.; Vust, M.; Yoccoz, N.G.; Lehmann, A.; Zimmermann, N.E. Using niche-based models to improve the sampling of rare species. Conserv. Biol. 2006, 20, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Choudhury, B.I.; Khan, M.L.; Peterson, A.T. Ecological niche modeling and local knowledge predict new populations of Gymnocladus assamicus a critically endangered tree species. Endang. Species Res. 2010, 11, 175–181. [Google Scholar] [CrossRef]
- Särkinen, T.; Gonzáles, P.; Knapp, S. Distribution models and species discovery: The story of a new Solanum species from the Peruvian Andes. PhytoKeys 2013, 31, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wagensommer, R.P.; Perrino, E.V.; Silletti, G.N. Carex phyllostachys A. Mey. (Cyperaceae) new for Italy and phytogeographical considerations. Phyton 2014, 54, 215–222. [Google Scholar]
- Schwartz, K.R.; Parsons, E.C.M.; Rockwood, L.; Wood, T.C. Integrating in-situ and ex-situ data management processes for biodiversity conservation. Ecol. Evol. 2017, 120, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Işik, K. Rare and endemic species: Why are they prone to extinction? J. Bot. 2011, 35, 411–417. [Google Scholar]
- Perrino, E.V.; Silletti, G.N.; Erben, M.; Wagensommer, R.P. Viola cassinensis subsp. Lucana (Violaceae), a new subspecies from Lucanian Apennine, southern Italy. Phyton 2018, 58, 109–115. [Google Scholar]
- Coelho, N.; Gonçalves, S.; Romano, A. Endemic plant species conservation: Biotechnological approaches. Plants 2020, 9, 345. [Google Scholar] [CrossRef] [Green Version]
Model | Partitioning | Variance (%) | F-Statistic | p |
---|---|---|---|---|
1 group | Among populations | 44.51 | FST = 0.445 | <0.001 |
Within populations | 55.49 | |||
2 groups: P. montsicciana—P. pardoi | Among species | 18.60 | FCT = 0.186 | <0.01 |
Among populations within species | 30.54 | FSC = 0.375 | <0.001 | |
Within populations | 50.87 | FST = 0.491 | <0.001 |
Model | Occurrences | AUC ± SD | Threshold | Variables |
---|---|---|---|---|
P. montsicciana | 60 | 0.994 ± 0.002 | 0.1355 | bio7 (24.9) > bio9 (35.2) > bio3 (24.9) > bio15 (0.3) > bio19 (5.2) > bio6 (2.7) > bio8 (3.5) |
P. pardoi | 31 | 0.998 ± 0.001 | 0.4936 | bio19 (13.0) > bio9 (30.6) > bio3 (31.7) > bio7 (17) > bio6 (3.0) > bio15 (4.4) > bio8 (0.4) |
Species Comparisons | Niche Overlap (D) | Niche Dynamics | |||
---|---|---|---|---|---|
Sp. 1 | Sp. 2 | Unfilling | Stability | Expansion | |
PM | PP | 0 | 1 | 0 | 1 |
PP | PM | 0 | 1 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nualart, N.; Herrando-Moraira, S.; Cires, E.; Guardiola, M.; Laguna, E.; Pérez-Prieto, D.; Sáez, L.; López-Pujol, J. Reusing Old and Producing New Data Is Useful for Species Delimitation in the Taxonomically Controversial Iberian Endemic Pair Petrocoptis montsicciana/P. pardoi (Caryophyllaceae). Diversity 2021, 13, 205. https://doi.org/10.3390/d13050205
Nualart N, Herrando-Moraira S, Cires E, Guardiola M, Laguna E, Pérez-Prieto D, Sáez L, López-Pujol J. Reusing Old and Producing New Data Is Useful for Species Delimitation in the Taxonomically Controversial Iberian Endemic Pair Petrocoptis montsicciana/P. pardoi (Caryophyllaceae). Diversity. 2021; 13(5):205. https://doi.org/10.3390/d13050205
Chicago/Turabian StyleNualart, Neus, Sonia Herrando-Moraira, Eduardo Cires, Moisès Guardiola, Emilio Laguna, David Pérez-Prieto, Llorenç Sáez, and Jordi López-Pujol. 2021. "Reusing Old and Producing New Data Is Useful for Species Delimitation in the Taxonomically Controversial Iberian Endemic Pair Petrocoptis montsicciana/P. pardoi (Caryophyllaceae)" Diversity 13, no. 5: 205. https://doi.org/10.3390/d13050205
APA StyleNualart, N., Herrando-Moraira, S., Cires, E., Guardiola, M., Laguna, E., Pérez-Prieto, D., Sáez, L., & López-Pujol, J. (2021). Reusing Old and Producing New Data Is Useful for Species Delimitation in the Taxonomically Controversial Iberian Endemic Pair Petrocoptis montsicciana/P. pardoi (Caryophyllaceae). Diversity, 13(5), 205. https://doi.org/10.3390/d13050205