Spatial Distribution of Lichens in Metrosideros excelsa in Northern New Zealand Urban Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Environmental Variables
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Species Counts
3.2. Results of Geostatistical Analysis
3.3. Comparison between Inland and Coastal Sites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, J.E.J.; Ellis, C.J. Taxon–Compared with Trait-Based Analysis of Epiphytes, and the Role of Tree Species and Tree Age in Community Composition. Plant Ecol. Divers. 2010, 3, 203–210. [Google Scholar] [CrossRef]
- Ellis, C.J. Lichen Epiphyte Diversity: A Species, Community and Trait-Based Review. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 131–152. [Google Scholar] [CrossRef]
- Hurtado, P.; Prieto, M.; Martínez-Vilalta, J.; Giordani, P.; Aragón, G.; López-Angulo, J.; Košuthová, A.; Merinero, S.; Díaz-Peña, E.M.; Rosas, T.; et al. Disentangling Functional Trait Variation and Covariation in Epiphytic Lichens along a Continent-Wide Latitudinal Gradient. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192862. [Google Scholar] [CrossRef] [Green Version]
- Aragón, G.; López, R.; Martínez, I. Effects of Mediterranean Dehesa Management on Epiphytic Lichens. Sci. Total Environ. 2010, 409, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.; Martínez, I.; Aragón, G.; Verdú, M. Phylogenetic and Functional Structure of Lichen Communities under Contrasting Environmental Conditions. J. Veg. Sci. 2017, 28, 871–881. [Google Scholar] [CrossRef]
- Reynolds, C.L.; Er, O.A.H.; Winder, L.; Blanchon, D.J. Distribution and Community Composition of Lichens on Mature Mangroves (Avicennia marina Subsp. australasica (Walp.) J.Everett) in New Zealand. PLoS ONE 2017, 12, 0180525. [Google Scholar] [CrossRef] [Green Version]
- Ranius, T.; Johansson, P.; Berg, N.; Niklasson, M. The Influence of Tree Age and Microhabitat Quality on the Occurrence of Crustose Lichens Associated with Old Oaks. J. Veg. Sci. 2008, 19, 653–662. [Google Scholar] [CrossRef]
- Hilmo, O.; Holien, H.; Hytteborn, H.; Ely-aalstrup, H. Richness of Epiphytic Lichens in Differently Aged Picea Abies Plantations Situated in the Oceanic Region of Central Norway. Lichenologist 2009, 41, 97–108. [Google Scholar] [CrossRef]
- Lie, M.H.; Arup, U.; Grytnes, J.-A.; Ohlson, M. The Importance of Host Tree Age, Size and Growth Rate as Determinants of Epiphytic Lichen Diversity in Boreal Spruce Forests. Biodivers. Conserv. 2009, 18, 3579–3596. [Google Scholar] [CrossRef]
- Rosabal, D.; Burgaz, A.R.; Reyes, O.J. Substrate Preferences and Phorophyte Specificity of Corticolous Lichens on Five Tree Species of the Montane Rainforest of Gran Piedra, Santiago de Cuba. Bryologist 2013, 116, 113–121. [Google Scholar] [CrossRef]
- Lamit, L.J.; Busby, P.E.; Lau, M.K.; Compson, Z.G.; Wojtowicz, T.; Keith, A.R.; Zinkgraf, M.S.; Schweitzer, J.A.; Shuster, S.M.; Gehring, C.A.; et al. Tree Genotype Mediates Covariance among Communities from Microbes to Lichens and Arthropods. J. Ecol. 2015, 103, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Wolseley, P.; Sanderson, N.; Thüs, H.; Carpenter, D.; Eggleton, P. Patterns and Drivers of Lichen Species Composition in a NW-European Lowland Deciduous Woodland Complex. Biodivers. Conserv. 2017, 26, 401–419. [Google Scholar] [CrossRef] [Green Version]
- Calviño-Cancela, M.; Neumann, M.; López de Silanés, M.E. Contrasting Patterns of Lichen Abundance and Diversity in Eucalyptus globulus and Pinus pinaster Plantations with Tree Age. For. Ecol. Manag. 2020, 462, 117994. [Google Scholar] [CrossRef]
- Łubek, A.; Kukwa, M.; Jaroszewicz, B.; Czortek, P. Identifying Mechanisms Shaping Lichen Functional Diversity in a Primeval Forest. For. Ecol. Manag. 2020, 475, 118434. [Google Scholar] [CrossRef]
- Nascimbene, J.; Ackermann, S.; Dainese, M.; Garbarino, M.; Carrer, M. Fine-Scale Population Dynamics Help to Elucidate Community Assembly Patterns of Epiphytic Lichens in Alpine Forests. Fungal Ecol. 2016, 24, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Altman, J.; Doležal, J.; Čížek, L. Age Estimation of Large Trees: New Method Based on Partial Increment Core Tested on an Example of Veteran Oaks. For. Ecol. Manag. 2016, 380, 82–89. [Google Scholar] [CrossRef]
- Johansson, P.; Rydin, H.; Thor, G. Tree Age Relationships with Epiphytic Lichen Diversity and Lichen Life History Traits on Ash in Southern Sweden. Ecoscience 2007, 14, 81–91. [Google Scholar] [CrossRef]
- Coppins, A.M.; Coppins, B.J. Indices of Ecological Continuity for Woodland Epiphytic Lichen Habitats in the British Isles; British Lichen Society: London, UK, 2002. [Google Scholar]
- Lidén, M.; Pettersson, M.; Bergsten, U.; Lundmark, T. Artificial Dispersal of Endangered Epiphytic Lichens: A Tool for Conservation in Boreal Forest Landscapes. Biol. Conserv. 2004, 118, 431–442. [Google Scholar] [CrossRef]
- Brooker, R.W.; Brewer, M.J.; Britton, A.J.; Eastwood, A.; Ellis, C.; Gimona, A.; Poggio, L.; Genney, D.R. Tiny Niches and Translocations: The Challenge of Identifying Suitable Recipient Sites for Small and Immobile Species. J. Appl. Ecol. 2018, 55, 621–630. [Google Scholar] [CrossRef]
- Smith, P.L. Lichen Translocation with Reference to Species Conservation and Habitat Restoration. Symbiosis 2014, 62, 17–28. [Google Scholar] [CrossRef]
- Fritz, Ö.; Gustafsson, L.; Larsson, K. Does Forest Continuity Matter in Conservation?—A Study of Epiphytic Lichens and Bryophytes in Beech Forests of Southern Sweden. Biol. Conserv. 2008, 141, 655–668. [Google Scholar] [CrossRef]
- Käffer, M.I.; Ganade, G.; Marcelli, M.P. Lichen Diversity and Composition in Araucaria Forests and Tree Monocultures in Southern Brazil. Biodivers. Conserv. 2009, 18, 3543–3561. [Google Scholar] [CrossRef]
- Prather, H.M.; Eppley, S.M.; Rosenstiel, T.N. Urban Forested Parks and Tall Tree Canopies Contribute to Macrolichen Epiphyte Biodiversity in Urban Landscapes. Urban For. Urban Green. 2018, 32, 133–142. [Google Scholar] [CrossRef]
- Nash, T.H.; Gries, C. Lichens as Indicators of Air Pollution; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–29. [Google Scholar] [CrossRef]
- Wolseley, P.A.; James, P.W.; Theobald, M.R.; Sutton, M.A. Detecting Changes in Epiphytic Lichen Communities at Sites Affected by Atmospheric Ammonia from Agricultural Sources. Lichenologist 2006, 38, 161–176. [Google Scholar] [CrossRef]
- Kowarik, I.; Hiller, A.; Planchuelo, G.; Seitz, B.; von der Lippe, M.; Buchholz, S. Emerging Urban Forests: Opportunities for Promoting the Wild Side of the Urban Green Infrastructure. Sustainability 2019, 11, 6318. [Google Scholar] [CrossRef] [Green Version]
- Zipper, S.C.; Schatz, J.; Singh, A.; Kucharik, C.J.; Townsend, P.A.; Loheide, S.P. Urban Heat Island Impacts on Plant Phenology: Intra-Urban Variability and Response to Land Cover. Environ. Res. Lett. 2016, 11, 054023. [Google Scholar] [CrossRef]
- Parra-Sanchez, E.; Banks-Leite, C. The Magnitude and Extent of Edge Effects on Vascular Epiphytes across the Brazilian Atlantic Forest. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hamberg, L.; Lehvävirta, S.; Kotze, D.J. Forest Edge Structure as a Shaping Factor of Understorey Vegetation in Urban Forests in Finland. For. Ecol. Manag. 2009, 257, 712–722. [Google Scholar] [CrossRef]
- Dislich, R.; Mantovani, W. Vascular Epiphyte Assemblages in a Brazilian Atlantic Forest Fragment: Investigating the Effect of Host Tree Features. Plant Ecol. 2016, 217, 1–12. [Google Scholar] [CrossRef]
- McDonald, L.; van Woudenberg, M.; Dorin, B.; Adcock, A.M.; McMullin, R.T.; Cottenie, K. The Effects of Bark Quality on Corticolous Lichen Community Composition in Urban Parks of Southern Ontario. Botany 2017, 95, 1141–1149. [Google Scholar] [CrossRef]
- Pescott, O.L.; Simkin, J.M.; August, T.A.; Randle, Z.; Dore, A.J.; Botham, M.S. Air Pollution and Its Effects on Lichens, Bryophytes, and Lichen-Feeding Lepidoptera: Review and Evidence from Biological Records. Biol. J. Linn. Soc. 2015, 115, 611–635. [Google Scholar] [CrossRef]
- Llop, E.; Pinho, P.; Matos, P.; Pereira, M.J.; Branquinho, C. The Use of Lichen Functional Groups as Indicators of Air Quality in a Mediterranean Urban Environment. Ecol. Indic. 2012, 13, 215–221. [Google Scholar] [CrossRef]
- Marmor, L.; Randlane, T. Effects of Road Traffic on Bark PH and Epiphytic Lichens in Tallinn | Folia Cryptogamica Estonica. Folia Cryptogam. Est. 2007, 43, 23–37. [Google Scholar]
- Standish, R.J.; Hobbs, R.J.; Miller, J.R. Improving City Life: Options for Ecological Restoration in Urban Landscapes and How These Might Influence Interactions between People and Nature. Landsc. Ecol. 2013, 28, 1213–1221. [Google Scholar] [CrossRef] [Green Version]
- McPhearson, P.; Feller, M.; Felson, A.; Karty, R.; Lu, J.; Palmer, M.; Wenskus, T. Assessing the Effects of the Urban Forest Restoration Effort of MillionTreesNYC on the Structure and Functioning of New York City Ecosystems. Cities Environ. 2011, 3, 7. [Google Scholar]
- Wallace, K.J.; Laughlin, D.C.; Clarkson, B.D. Exotic Weeds and Fluctuating Microclimate Can Constrain Native Plant Regeneration in Urban Forest Restoration. Ecol. Appl. 2017, 27, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Belinchón, R.; Harrison, P.J.; Mair, L.; Várkonyi, G.; Snäll, T. Local Epiphyte Establishment and Future Metapopulation Dynamics in Landscapes with Different Spatiotemporal Properties. Ecology 2017, 98, 741–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Sun, Z.; Wang, C.; Hao, Z.; Sun, B.; Zuo, Q.; Zhang, C.; Sun, R.; Jin, J.; Wang, H. Urban Orchards Provide a Suitable Habitat for Epiphytic Bryophytes. For. Ecol. Manag. 2021, 483, 118767. [Google Scholar] [CrossRef]
- Ewers, R.M.; Kliskey, A.D.; Walker, S.; Rutledge, D.; Harding, J.S.; Didham, R.K. Past and Future Trajectories of Forest Loss in New Zealand. Biol. Conserv. 2006, 133, 312–325. [Google Scholar] [CrossRef]
- Sullivan, J.; Meurk, C.; Whaley, K.; Simcock, R. Restoring Native Ecosystems in Urban Auckland: Urban Soils, Isolation, and Weeds as Impediments to Forest Establishment. N. Z. J. Ecol. 2009, 33, 60–71. [Google Scholar]
- Auckland Council. Auckland’s Urban Ngahere (Forest) Strategy. Available online: https://www.aucklandcouncil.govt.nz/plans-projects-policies-reports-bylaws/our-plans-strategies/topic-based-plans-strategies/environmental-plans-strategies/Pages/urban-ngahere-forest-strategy.aspx (accessed on 20 January 2021).
- Esler, A.E. Changes in the Native Plant Cover of Urban Auckland, New Zealand. N. Z. J. Bot. 1991, 29, 177–196. [Google Scholar] [CrossRef]
- Smale, M.C.; Gardner, O.R. Survival of Mount Eden Bush, an Urban Forest Remnant in Auckland, New Zealand. Pac. Conserv. Biol. 1999, 5, 83. [Google Scholar] [CrossRef]
- De Lange, P.; Galloway, D.; Blanchon, D.; Knight, A.; Rolfe, J.; Crowcroft, G.; Hitchmough, R. Conservation Status of New Zealand Lichens. N. Z. J. Bot. 2012, 50, 303–363. [Google Scholar] [CrossRef] [Green Version]
- Leddy, N.; Blanchon, D.J.; Wiapo, C.; Eruera, T.; Cameron, K.E.; Kahui-McConnell, R. Artificial Dispersal of the Lichen Crocodia aurata (Lobariaceae) Using Asexual Propagules and Gel-filled Gauze Packets. Ecol. Manag. Restor. 2019, 20, 119–125. [Google Scholar] [CrossRef]
- Blanchon, D.J.; Ranatunga, D.; Marshall, A.J.; de Lange, P.J. Ecological Communities of Tree Species Threatened by Myrtle Rust (Austropuccinia psidii (G. Winter) Beenken): The Lichenised Mycobiota of Pōhutukawa (Metrosideros excelsa Sol. Ex Gaertn., Myrtaceae). Perspect. Biosecur. 2020, 5, 23–44. [Google Scholar]
- De Lange, P.; Blanchon, D.; Knight, A.; Elix, J.; Lücking, R.; Frogley, K.; Harris, A.; Cooper, J.; Rolfe, J. Conservation Status of New Zealand Indigenous Lichens and Lichenicolous Fungi; Department of Conservation: Wellington, New Zealand, 2018.
- Toome-Heller, M.; Ho, W.W.H.; Ganley, R.J.; Elliott, C.E.A.; Quinn, B.; Pearson, H.G.; Alexander, B.J.R. Chasing Myrtle Rust in New Zealand: Host Range and Distribution over the First Year after Invasion. Australas. Plant Pathol. 2020, 49, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Hayward, B.W.; Hayward, G.C.; Galloway, D.J. Lichens of Great Barrier and Adjacent Islands, Northern New Zealand. J. R. Soc. N. Z. 1986, 16, 121–137. [Google Scholar] [CrossRef]
- Gadsdon, S.R.; Dagley, J.R.; Wolseley, P.A.; Power, S.A. Relationships between Lichen Community Composition and Concentrations of NO2 and NH3. Environ. Pollut. 2010, 158, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- NZTA. Nitrogen Dioxide Concentrations: New Zealand Transport Agency Data, 2010–16—Environmental Reporting GIS Map Data MfE Data Service. Available online: https://data.mfe.govt.nz/table/98426-nitrogen-dioxide-concentrations-new-zealand-transport-agency-data-201016/ (accessed on 25 January 2021).
- NZTA. Ambient Air Quality (Nitrogen Dioxide) Monitoring Programme–Operating Manual; 2017/18; NZTA: Wellington, New Zealand, 2017; Volume 3.
- ESRI. Available online: http://desktop.arcgis.com/en/arcmap/ (accessed on 10 November 2018).
- ESRI. How Hot Spot Analysis (Getis-Ord Gi *). Available online: http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 9 November 2018).
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- ESRI. How Cluster and Outlier Analysis (Anselin Local Moran’s I). Available online: http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm (accessed on 12 November 2018).
- Hannah, L.; Aguilar, G.; Blanchon, D. Spatial Distribution of the Mexican Daisy Erigeron karvinskianus, in New Zealand under Climate Change. Climate 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, G.D.; Blanchon, D.J.; Foote, H.; Pollonais, C.W.; Mosee, A.N. A Performance Based Consensus Approach for Predicting Spatial Extent of the Chinese Windmill Palm (Trachycarpus fortunei) in New Zealand under Climate Change. Ecol. Inform. 2017, 39, 130–139. [Google Scholar] [CrossRef]
- Sanders, L.J.; Aguilar, G.D.; Bacon, C.J. A Spatial Analysis of the Geographic Distribution of Musculoskeletal and General Practice Healthcare Clinics in Auckland, New Zealand. Appl. Geogr. 2013, 44. [Google Scholar] [CrossRef]
- ESRI. Ordinary Least Squares (OLS)—Help Documentation. Available online: https://desktop.arcgis.com/en/arcmap/10.7/tools/spatial-statistics-toolbox/ordinary-least-squares.htm (accessed on 9 January 2020).
- González-Maya, J.F.; Víquez-R, L.R.; Arias-Alzate, A.; Belant, J.L.; Ceballos, G. Spatial Patterns of Species Richness and Functional Diversity in Costa Rican Terrestrial Mammals: Implications for Conservation. Divers. Distrib. 2016, 22, 43–56. [Google Scholar] [CrossRef]
- Singers, N.J.D.; Rogers, G.M. A Classification of New Zealand’s Terrestrial Ecosystems; Department of Conversation: Wellington, New Zealand, 2014.
- Kiebacher, T.; Keller, C.; Scheidegger, C.; Bergamini, A. Epiphytes in Wooded Pastures: Isolation Matters for Lichen but Not for Bryophyte Species Richness. PLoS ONE 2017, 12, 0182065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, L.; Bates, J.W.; Bell, J.N.B.; James, P.W.; Purvis, O.W. Diversity and Sensitivity of Epiphytes to Oxides of Nitrogen in London. Environ. Pollut. 2007, 146, 299–310. [Google Scholar] [CrossRef]
- Talbot, N.; Crimmins, P. Air Quality in Auckland: In-Depth Trend Analysis Technical Report 2020/004; Auckland Council: Auckland, New Zealand, 2020.
- Van Herk, C.M.; Mathijssen-Spiekman, E.A.M.; de Zwart, D. Long Distance Nitrogen Air Pollution Effects on Lichens in Europe. Lichenologist 2003, 35, 347–359. [Google Scholar] [CrossRef]
- Wolseley, P.A.; Stofer, S.; Mitchell, R.; Truscott, A.-M.; Vanbergen, A.; Chimonides, J.; Scheidegger, C. Variation of Lichen Communities with Landuse in Aberdeenshire, UK. Lichenologist 2006, 38, 307–322. [Google Scholar] [CrossRef] [Green Version]
No. | Site Name | Classification |
---|---|---|
1 | Jaggers Bush | Inland |
2 | Western Springs | Inland |
3 | Waiatarua Reserve | Inland |
4 | Cranwell Park | Inland |
5 | Oakley Creek Unitec | Inland |
6 | Mount Albert | Inland |
7 | Roy Clements Tree Walk | Inland |
8 | Coyle Park | Coastal |
9 | Eric Armishaw Walkway | Coastal |
10 | Blockhouse Bay | Coastal |
11 | Green Bay | Coastal |
12 | Kingswood Reserve | Coastal |
13 | Tony Segedin Reserve | Coastal |
14 | Tahaki Reserve | Inland |
15 | Cornwall Park | Inland |
16 | Auckland Domain | Inland |
17 | Murrays Bay | Coastal |
18 | Long Bay | Coastal |
19 | Devonport | Coastal |
20 | Tamaki Drive | Coastal |
No | Species | Occurrences (out of 200 Trees) | Sites Found |
---|---|---|---|
2 | Parmotrema reticulatum (Taylor) M.Choisy | 136 | 20 |
1 | Dirinaria applanata (Fée) Awasthi | 131 | 18 |
6 | Chrysothrix xanthina (Vain.) Kalb | 111 | 17 |
10 | Punctelia subrudecta (Nyl.) Krog | 74 | 13 |
14 | Parmotrema perlatum (Huds.) M.Choisy | 69 | 12 |
18 | Lepraria finkii (B. de Lesd.) R.C.Harris | 69 | 12 |
3 | Graphis elegans (Sm.) Ach. | 66 | 14 |
4 | Usnea rubicunda Stirt. | 62 | 17 |
12 | Heterodermia speciosa (Wulfen) Trevis. | 45 | 9 |
13 | Flavoparmelia haywardiana Elix & J.Johnst. | 25 | 6 |
15 | Physcia poncinsii Hue | 18 | 5 |
11 | Ramalina celastri (Spreng.) Krog et Swinscow | 17 | 7 |
20 | Parmotrema robustum (Degel.) Hale | 14 | 4 |
25 | Parmotrema mellissii (C.W.Dodge) Hale | 11 | 2 |
30 | Lecanora elatinoides Räsänen | 9 | 4 |
7 | Xanthoria parietina (L.) Th.Fr | 7 | 6 |
26 | Parmotrema austrocetratum Elix & J.Johnst. | 7 | 2 |
16 | Pertusaria thiospoda C.Knight | 6 | 3 |
19 | Pyxine subcinerea Stirt. | 6 | 3 |
27 | Sticta martinii D.J.Galloway | 6 | 2 |
5 | Coenogonium luteum (Dicks.) Kalb & Lücking | 5 | 2 |
9 | Polyblastidium casarettianum (A.Massal.) Kalb | 4 | 2 |
24 | Enterographa pallidella (Nyl.) Redinger | 4 | 3 |
33 | Lecanora subumbrina Müll.Arg. | 3 | 2 |
8 | Bacidia laurocerasi (Delise ex Duby) Vain. | 2 | 1 |
17 | Unknown | 1 | 1 |
21 | Lecania cyrtella (Ach.) Th.Fr. | 1 | 1 |
22 | Bacidia wellingtonii D.J.Galloway | 1 | 1 |
23 | Arthonia atra (Pers.) A.Schneid. | 1 | 1 |
28 | Thalloloma subvelata (Stirt.) D.J.Galloway | 1 | 1 |
29 | Parmotrema crinitum (Ach.) M.Choisy | 1 | 1 |
31 | Lecanactis neozelandica Egea & Torrente | 1 | 1 |
32 | Opegrapha agelaeoides Nyl. | 1 | 1 |
Site | Species/Tree Ave. | Total Species/Site | DBH Ave. (cm) | Coast Dist. (m) | Roads Dist. (m) | Original Forest Dist. (m) | NO2 Ave. 2010–2016 (μg/m3) |
---|---|---|---|---|---|---|---|
1 | 2.30 | 4 | 12.58 | 305.12 | 164.17 | 194.23 | 22.13 |
2 | 3.30 | 5 | 112.74 | 762.76 | 33.86 | 358.97 | 22.48 |
3 | 2.20 | 3 | 23.41 | 1240.32 | 578.89 | 1389.31 | 28.28 |
4 | 2.00 | 4 | 39.86 | 1989.83 | 1493.82 | 560.46 | 21.37 |
5 | 4.60 | 16 | 62.95 | 810.02 | 52.98 | 131.63 | 26.29 |
6 | 4.75 | 7 | 130.81 | 2318.48 | 1468.32 | 0.00 | 35.57 |
7 | 3.50 | 6 | 83.98 | 2405.05 | 1805.70 | 604.20 | 34.18 |
8 | 5.00 | 9 | 98.82 | 7.11 | 1153.78 | 239.73 | 24.88 |
9 | 4.60 | 9 | 113.57 | 54.32 | 272.90 | 839.52 | 30.31 |
10 | 6.50 | 16 | 122.77 | 288.99 | 1207.91 | 0.00 | 36.58 |
11 | 5.75 | 13 | 69.79 | 69.66 | 355.55 | 0.00 | 21.17 |
12 | 4.33 | 10 | 81.21 | 27.86 | 2081.97 | 175.11 | 30.77 |
13 | 8.50 | 13 | 135.99 | 34.78 | 355.43 | 673.66 | 31.86 |
14 | 4.83 | 10 | 92.36 | 2468.29 | 767.38 | 697.92 | 32.23 |
15 | 4.40 | 6 | 127.77 | 3429.34 | 66.44 | 0.00 | 29.68 |
16 | 5.75 | 12 | 169.71 | 1120.35 | 713.05 | 580.01 | 37.02 |
17 | 5.57 | 16 | 108.42 | 92.37 | 1851.02 | 601.14 | - |
18 | 5.50 | 15 | 136.20 | 53.71 | 89.45 | 1532.80 | - |
19 | 5.29 | 10 | 173.89 | 72.09 | 1195.40 | 2389.34 | 29.82 |
20 | 4.85 | 10 | 142.22 | 98.17 | 500.74 | 661.19 | 28.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benitez, G.N.; Aguilar, G.D.; Blanchon, D. Spatial Distribution of Lichens in Metrosideros excelsa in Northern New Zealand Urban Forests. Diversity 2021, 13, 170. https://doi.org/10.3390/d13040170
Benitez GN, Aguilar GD, Blanchon D. Spatial Distribution of Lichens in Metrosideros excelsa in Northern New Zealand Urban Forests. Diversity. 2021; 13(4):170. https://doi.org/10.3390/d13040170
Chicago/Turabian StyleBenitez, Gladys N., Glenn D. Aguilar, and Dan Blanchon. 2021. "Spatial Distribution of Lichens in Metrosideros excelsa in Northern New Zealand Urban Forests" Diversity 13, no. 4: 170. https://doi.org/10.3390/d13040170
APA StyleBenitez, G. N., Aguilar, G. D., & Blanchon, D. (2021). Spatial Distribution of Lichens in Metrosideros excelsa in Northern New Zealand Urban Forests. Diversity, 13(4), 170. https://doi.org/10.3390/d13040170