Factors Influencing Colonization and Survival of Juvenile Blue Crabs Callinectes sapidus in Southeastern U.S. Tidal Creeks
Abstract
:1. Introduction
2. Methods
2.1. Study Sites and Field Sampling
2.2. Dynamic Occupancy Model to Describe Juvenile Blue Crab Habitat Use
3. Results
4. Discussion
4.1. Caveats and Potential Sources of Error
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beach, D. Coastal Sprawl: The Effects of Urban Design on Aquatic Ecosystems in the United States; Pew Oceans Commission: Arlington, VA, USA, 2002; p. 32. [Google Scholar]
- Hinrichsen, D. Coastal Waters of the World: Trends, Threats, and Strategies; Island Press: Washington, DC, USA, 1998; p. 275. [Google Scholar]
- Kennish, M.J. Coastal salt marsh systems in the US: A review of urbanization impacts. J. Coast. Res. 2001, 17, 731–748. [Google Scholar]
- Thrush, S.F.; Halliday, J.; Hewitt, J.E.; Lohrer, A.M. The effects of habitat loss, fragmentation, and community homogenization on resilience in estuaries. Ecol. Appl. 2008, 18, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.R.; Peterson, M.S. Effects of coastal urbanization on salt-marsh faunal assemblages in the Northern Gulf of Mexico. Mar. Coast. Fish. 2014, 6, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Dame, R.; Alber, M.; Allen, D.; Mallin, M.; Montague, C.; Lewitus, A.; Chalmers, A.; Gardner, R.; Gilman, C.; Kjerfve, B.; et al. Estuaries of the South Atlantic Coast of North America: Their geographical signatures. Estuaries 2000, 23, 793–819. [Google Scholar] [CrossRef]
- Krebs, J.M.; Bell, S.S.; McIvor, C.C. Assessing the link between coastal urbanization and the quality of nekton habitat in mangrove tidal tributaries. Est. Coasts 2014, 37, 832–846. [Google Scholar] [CrossRef]
- Krebs, J.M.; McIvor, C.C.; Bell, S.S. Nekton community structure varies in response to coastal urbanization near mangrove tidal tributaries. Est. Coasts 2014, 37, 815–831. [Google Scholar] [CrossRef]
- Sanger, D.; Blair, A.; DiDonato, G.; Washburn, T.; Jones, S.; Riekerk, G.; Wirth, E.; Stewart, J.; White, D.; Vandiver, L.; et al. Impacts of coastal development on the ecology of tidal creek ecosystems of the US southeast including consequences to humans. Est.Coasts 2015, 38, 549–566. [Google Scholar] [CrossRef]
- Wiegert, R.G.; Freeman, B.J. Tidal Salt Marshes of the Southeast Atlantic Coast: A Community Profile; US Department of the Interior, US Fish and Wildlife Service: Washington, DC, USA, 1990; Volume 85, p. 70.
- Teal, J.M.; Howes, B.L. Salt marsh values: Retrospection from the end of the century. In Concepts and Controversies in Tidal Marsh Ecology; Springer: Dordrecht, Germany, 2002; pp. 9–19. [Google Scholar]
- Deegan, L.A.; Hughes, J.E.; Rountree, R.A. Salt marsh ecosystem support of marine transient species. In Concepts and Controversies in Tidal Marsh Ecology; Springer: Dordrecht, Germany, 2002; pp. 333–365. [Google Scholar]
- Kneib, R.T. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In Concepts and Controversies in Tidal Marsh Ecology; Springer: Dordrecht, Germany, 2002; pp. 267–291. [Google Scholar]
- Stevens, P.W.; Montague, C.L.; Sulak, K.J. Fate of fish production in a seasonally flooded saltmarsh. Mar. Ecol. Prog. Ser. 2006, 327, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Holland, A.; Sanger, D.M.; Gawle, C.P.; Lerberg, S.B.; Santiago, M.S.; Riekerk, G.H.; Zimmerman, L.E.; Scott, G.I. Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. J. Exp. Mar. Biol. Ecol. 2004, 298, 151–178. [Google Scholar] [CrossRef]
- Peterson, M.S.; Lowe, M.R. Implications of cumulative impacts to estuarine and marine habitat quality for fish and invertebrate resources. Rev. Fish. Sci. 2009, 17, 505–523. [Google Scholar] [CrossRef]
- Bilkovic, D.M.; Roggero, M.M. Effects of coastal development on nearshore estuarine nekton communities. Mar. Ecol. Prog. Ser. 2008, 358, 27–39. [Google Scholar] [CrossRef]
- Hale, S.S.; Paul, J.F.; Heltshe, J.F. Watershed landscape indicators of estuarine benthic condition. Estuaries 2004, 27, 283–295. [Google Scholar] [CrossRef]
- Eberhardt, A.L.; Burdick, D.M.; Dionne, M. The effects of road culverts on nekton in New England salt marshes: Implications for tidal restoration. Restor. Ecol. 2010, 19, 776–785. [Google Scholar] [CrossRef]
- Valentine-Rose, L.; Layman, C.A.; Arrington, D.A.; Rypel, A.L. Habitat fragmentation decreases fish secondary production in Bahamian tidal creeks. Bull. Mar. Sci. 2007, 80, 863–877. [Google Scholar]
- Williams, A.B. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida; Smithsonian Institution Press: Washington, DC, USA, 1984; p. 550. [Google Scholar]
- Hines, A.H. Ecology of Juvenile and Adult Blue Crabs. The Blue Crab: Callinectes Sapidus; Kennedy, V.S., Cronin, L.E., Eds.; Maryland Sea Grant College: College Park, MD, USA, 2007; pp. 565–654. [Google Scholar]
- NCDMF. North Carolina Division of Marine Fisheries License and Statistics Section Annual Report. Available online: https://files.nc.gov/ncdeq/Marine-Fisheries/science---statistics/fisheries-statistics/big-book/2020-License-and-Statistics-Annual-Re-port.pdf#%5B%7B%22num%22%3A103%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22FitR%22%7D%2C-194%2C385%2C1421%2C1174%5D (accessed on 22 September 2021).
- Rozas, L.P.; Hackney, C.T. Use of oligohaline marshes by fishes and macrofaunal crustaceans in North Carolina estuaries. Estuaries 1984, 7, 213–224. [Google Scholar] [CrossRef]
- Fitz, H.C.; Wiegert, R.G. Utilization of the intertidal zone of a salt marsh by the blue crab Callinectes sapidus: Density, return frequency, and feeding habits. Mar. Ecol. Prog. Ser. 1991, 76, 249–260. [Google Scholar] [CrossRef]
- Posey, M.H.; Alphin, T.D.; Harwell, H.; Allen, B. Importance of low salinity areas for juvenile blue crabs, Callinectes sapidus Rathbun, in river-dominated estuaries of southeastern United States. J. Exp. Mar. Biol. Ecol. 2005, 319, 81–100. [Google Scholar] [CrossRef]
- NCDENR. Fishery Management Plan: Shrimp. March 2015. Available online: http://portal.ncdenr.org/c/document_library/get_file?p_l_id=1169848&folderId=24626903&name=DLFE-134540.pdf (accessed on 1 December 2020).
- NCDENR. North Carolina Coastal Habitat Protection Plan: Final Draft. 2016. Available online: https://files.nc.gov/ncdeq/Environmental%20Management%20Commission/EMC%20Meetings/2016/March2016/Attachments/AttachA_16-13CHPP_10Mar16.pdf (accessed on 10 January 2021).
- Luczkovich, J.J.; Brinson, M.M.; West, T.T.; Meyer, G.F.R. Analysis of Potential Effects of land Cover Change On Blue Crab (Callinectes sapidus) Populations in Primary Nursery Areas: Final Report; Project # 05-POP-0; Blue Crab Resource Grant Program; North Carolina Sea Grant: Raleigh, NC, USA, 2008; p. 82.
- NCDENR. Fishery Management Plan Update: Blue Crab. August 2020. Available online: http://portal.ncdenr.org/c/document_library/get_file?p_l_id=1169848&folderId=33789159&name=DLFE-143179.pdf (accessed on 1 December 2020).
- Boesch, D.F.; Turner, R.E. Dependence of fishery species on salt marshes: The role of food and refuge. Est. Coasts 1984, 7, 460–468. [Google Scholar] [CrossRef]
- Ruiz, G.; Hines, A.; Posey, M. Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: An example from Chesapeake Bay. Mar. Ecol. Prog. Ser. 1993, 99, 1–6. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Seitz, R.D.; Seebo, M.S.; Colón-Carrión, D. Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay. J. Exp. Mar. Biol. Ecol. 2005, 319, 69–80. [Google Scholar] [CrossRef]
- Bart, J.; Earnst, S. Double sampling to estimate density and population trends in birds. Auk 2002, 119, 36–45. [Google Scholar] [CrossRef]
- Kellner, K.F.; Swihart, R.K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 2014, 9, e111436. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.I.; Nichols, J.D.; Hines, J.E.; Knutson, M.G.; Franklin, A.B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 2003, 84, 2200–2207. [Google Scholar] [CrossRef] [Green Version]
- Boström, C.; Pittman, S.J.; Simenstad, C.; Kneib, R.T. Seascape ecology and coastal biogenic habitats: Advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 2011, 427, 191–217. [Google Scholar] [CrossRef] [Green Version]
- Partyka, M.L.; Peterson, M.S. Habitat quality and salt-marsh species assemblages along an urbanization estuarine landscape. J. Coast. Res. 2008, 24, 1570–1581. [Google Scholar] [CrossRef]
- Gittman, R.K.; Fodrie, F.J.; Popowich, A.M.; Keller, D.A.; Bruno, J.F.; Currin, C.A.; Peterson, C.H.; Piehler, M. Engineering away our natural defenses: An analysis of shoreline hardening in the US. Front. Ecol. Environ. 2015, 13, 301–307. [Google Scholar] [CrossRef]
- Wilson, K.A.; Able, K.W.; Heck, K.L., Jr. Predation rates on juvenile blue crabs in estuarine nursery habitats: Evidence for the importance of macroalgae (Ulva lactuca). Mar. Ecol. Prog. Ser. 1990, 58, 243–251. [Google Scholar] [CrossRef]
- Royle, J.A.; Dorazio, R.M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities; Academic Press: Oxford, UK, 2008. [Google Scholar]
- MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Royle, J.A.; Langtimm, C.A. Estimating site occupancy rates when detection probabilities are less than one. Ecology 2002, 83, 2248–2255. [Google Scholar] [CrossRef]
- Mackenzie, D.I.; Royle, J.A. Designing occupancy studies: General advice and allocating survey effort. J. Appl. Ecol. 2005, 42, 1105–1114. [Google Scholar] [CrossRef]
- Royle, J.A.; Kéry, M. A Bayesian state-space formulation of dynamic occupancy models. Ecology 2007, 88, 1813–1823. [Google Scholar] [CrossRef]
- Kéry, M.; Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective; Academic Press: Amsterdam, The Netherlands, 2012; p. 535. [Google Scholar]
- Moilanen, A. Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 2002, 96, 516–530. [Google Scholar] [CrossRef]
- Royle, J.A.; Dorazio, R.M. Hierarchical models of animal abundance and occurrence. J. Agric. Biol. Environ. Stat. 2006, 11, 249–263. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.I. What are the issues with presence-absence data for wildlife managers? J. Wildl. Manag. 2005, 69, 849–860. [Google Scholar] [CrossRef]
- Pollock, K.H. A capture-recapture design robust to unequal probability of capture. J. Wildl. Manag. 1982, 46, 752. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Eggleston, D.B.; Heck, K.L., Jr.; Seitz, R.D.; van Montrans, J. Post-Settlement Abundance, Survival, and Growth of Postlarvae and Young Juvenile Blue Crabs in Nursery Habitats. The Blue Crab: Callinectes sapidus; Kennedy, V.S., Cronin, L.E., Eds.; Maryland Sea Grant College: College Park, MD, USA, 2007; pp. 535–564. [Google Scholar]
- Rudershausen, P.J.; Buckel, J.A.; Dueker, M.A.; Poland, S.J.; Hain, E. Comparison of fish and invertebrate assemblages among variably altered tidal creeks in a coastal landscape. Mar. Ecol. Prog. Ser. 2016, 544, 15–35. [Google Scholar] [CrossRef]
- Dudley, D.L.; Judy, M.H. Seasonal abundance and distribution of juvenile blue crabs in core sound, N.C. 1965–1968. Chesap. Sci. 1973, 14, 51–55. [Google Scholar] [CrossRef]
- Ryer, C.; van Montfrans, J.; Orth, R.J. Utilization of a seagrass meadow and tidal marsh creek by blue crabs Callinectes sapidus II. Spatial and temporal patterns of molting. Bull. Mar. Sci. 1990, 46, 95–104. [Google Scholar]
- Thomas, J.H.; Zimmerman, R.J.; Minello, T.J. Abundance patterns of juvenile blue crabs (Callinectes sapidus) in nursery habitats of two Texas bays. Bull. Mar. Sci. 1990, 46, 115–125. [Google Scholar]
- Fitz, H.C.; Wiegert, R.G. Local population dynamics of estuarine blue crabs: Abundance, recruitment, and loss. Mar. Ecol. Prog. Ser. 1992, 87, 23–40. [Google Scholar] [CrossRef]
- Zimmerman, R.J.; Minello, T.J.; Rozas, L.P. Saltmarsh linkages to productivity of penaeid shrimps and blue crabs in the northern Gulf of Mexico. In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, M.P., Kreeger, D.A., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2000; pp. 293–314. [Google Scholar]
- Peterson, G.W.; Turner, R.E. The Value of Salt marsh edge vs interior as a habitat for fish and decapod crustaceans in a louisiana tidal marsh. Estuaries 1994, 17, 235–262. [Google Scholar] [CrossRef]
- Allen, D.; Haertel-Borer, S.; Milan, B.; Bushek, D.; Dame, R. Geomorphological determinants of nekton use of intertidal salt marsh creeks. Mar. Ecol. Prog. Ser. 2007, 329, 57–71. [Google Scholar] [CrossRef]
- Rudershausen, P.; Merrell, J.; Buckel, J. Fragmentation of habitat affects communities and movement of nekton in salt marsh tidal creeks. Mar. Ecol. Prog. Ser. 2018, 586, 57–72. [Google Scholar] [CrossRef]
- McCarthy, M.A. Bayesian Methods for Ecology; Cambridge University Press: Cambridge, UK, 2007; p. 306. [Google Scholar]
- Kéry, M.; Royle, J.A. Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness. In R and BUGS: Volume 1: Prelude and Static Models; Academic Press: Amsterdam, The Netherlands, 2015; p. 808. [Google Scholar]
- R Development Core Team. R: A language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Spiegelhalter, D.; Thomas, A.; Best, N.; Lunn, D. OpenBUGS Version 3.2. 3 User Manual. MRC and Imperial College of Science, Technology and Medicine. 2009. Available online: http://mathstat.helsinki.fi/openbugs/ (accessed on 1 August 2009).
- Gelman, A. Package ‘R2OpenBUGS’: Running OpenBUGS for R. 2020. Available online: https://cran.r-project.org/web/packages/R2OpenBUGS/R2OpenBUGS.pdf (accessed on 1 December 2020).
- Gelman, A. Inference and monitoring convergence. In Markov Chain Monte Carlo in Practice; Wilks, W.R., Richardson, S., Spie-gelhater, D.J., Eds.; Chapman and Hall: London, UK, 1996; pp. 131–143. [Google Scholar]
- Van Dolah, R.F.; Riekerk, G.H.; Bergquist, D.C.; Felber, J.; Chestnut, D.E.; Holland, A.F. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina’s coastal zone. Sci. Total Environ. 2008, 390, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Rudershausen, P.J.; Lombardo, S.M.; Buckel, J.A. Linking historical changes in salt-marsh coverage to lost production of a nektonic bioindicator. Mar. Coast. Fish. 2021, 13, 131–139. [Google Scholar] [CrossRef]
- Rudershausen, P.J.; Lee, L.M.; Lombardo, S.M.; Merrell, J.H.; Buckel, J.A. Survival and habitat of yellow-phase American eels in north carolina tidal creeks. Trans. Am. Fish. Soc. 2019, 148, 978–990. [Google Scholar] [CrossRef]
- Beck, M.W.; Heck, K.L., Jr.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J. The role of nearshore ecosystems as fish and shellfish nurseries. Issues Ecol. 2003, 11, 1–12. [Google Scholar]
- Sanger, D.M.; Holland, A.F.; Scott, G.I. Tidal creeks and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Arch. Environ. Contam. Toxicol. 1999, 37, 445–457. [Google Scholar] [PubMed]
- Sanger, D.M.; Holland, A.F.; Scott, G.I. Tidal creeks and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Arch. Environ. Contam. Toxicol. 1999, 37, 458–471. [Google Scholar]
- Lerberg, S.B.; Holland, A.F.; Sanger, D.M. Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 2000, 23, 838–853. [Google Scholar] [CrossRef]
- Guerin, J.L.; Stickle, W.B. Effects of salinity gradients on the tolerance and bioenergetics of juvenile blue crabs (Callinectes sapidus) from waters of different environmental salinities. Mar. Biol. 1992, 114, 391–396. [Google Scholar] [CrossRef]
- Orth, R.J.; van Montfrans, J. Utilization of a seagrass meadow and tidal marsh creek by blue crabs Callinectes sapidus. I. Seasonal and annual variations in abundance with emphasis on post-settlement juveniles. Mar. Ecol. Prog. Ser. 1987, 41, 283–284. [Google Scholar] [CrossRef]
- Moksnes, P.-O.; Lipcius, R.; Pihl, L.; van Montfrans, J. Cannibal–prey dynamics in young juveniles and postlarvae of the blue crab. J. Exp. Mar. Biol. Ecol. 1997, 215, 157–187. [Google Scholar] [CrossRef]
- King, R.S.; Hines, A.H.; Craige, F.D.; Grap, S. Regional, watershed and local correlates of blue crab and bivalve abundances in subestuaries of Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 2005, 319, 101–116. [Google Scholar] [CrossRef]
- Dittel, A.I.; Epifanio, C.E.; Fogel, M.L. Trophic relationships of juvenile bluecrabs (Callinectes sapidus) in estuarine habitats. Hydrobiologia 2006, 568, 379–390. [Google Scholar] [CrossRef]
- Johnson, E.; Eggleston, D. Population density, survival and movement of blue crabs in estuarine salt marsh nurseries. Mar. Ecol. Prog. Ser. 2010, 407, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Bretsch, K.; Allen, D.M. Tidal migrations of nekton in salt marsh intertidal creeks. Est. Coasts 2006, 29, 474–486. [Google Scholar] [CrossRef]
- Mense, D.J.; Wenner, E.L. Distribution and Abundance of Early Life History Stages of the Blue Crab, Callinectes sapidus, in Tidal Marsh Creeks near Charleston, South Carolina. Estuaries 1989, 12, 157–168. [Google Scholar] [CrossRef]
- Meise, C.J.; Stehlik, L.L. Habitat use, temporal abundance variability, and diet of blue crabs from a New Jersey estuarine sys-tem. Estuaries 2003, 26, 731–745. [Google Scholar] [CrossRef]
- Dittel, A.I.; Hines, A.H.; Ruiz, G.M.; Ruffin, K.K. Effects of shallow water refuge on behavior and density-dependent mortality of juvenile blue crabs in the Chesapeake Bay. Bull. Mar. Sci. 1995, 57, 902–916. [Google Scholar]
- Peterson, M.S.; Comyns, B.H.; Hendon, J.R.; Bond, P.J.; Duff, G.A. Habitat use by early life history stages of fishes and crus-taceans along a changing estuarine landscape: Differences between natural and altered shoreline sites. Wetl. Ecol. Manag. 2000, 8, 209–219. [Google Scholar] [CrossRef]
- Seitz, R.D.; Lipcius, R.N.; Olmstead, N.H.; Seebo, M.S.; Lambert, D.M. Influence of shallow-water habitats and shoreline de-velopment on abundance, biomass, and diversity of benthic prey and predators in Chesapeake Bay. Mar. Ecol. Prog. Ser. 2006, 326, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Balouskus, R.G.; Targett, T.E. Fish and blue crab density along a riprap-sill-hardened shoreline: Comparisons with spartinamarsh and riprap. Trans. Am. Fish. Soc. 2016, 145, 766–773. [Google Scholar] [CrossRef]
- Long, W.C.; Grow, J.N.; Majoris, J.E.; Hines, A.H. Effects of anthropogenic shoreline hardening and invasion by Phragmites australis on habitat quality for juvenile blue crabs (Callinectes sapidus). J. Exp. Mar. Biol. Ecol. 2011, 409, 215–222. [Google Scholar] [CrossRef]
- Lewis, D.H.; Roer, R.D. Thermal preference in distribution of blue crabs, Callinectes sapidus, in a power plant cooling pond. J. Crustac. Biol. 1988, 8, 283–289. [Google Scholar] [CrossRef]
- Das, T.; Stickle, W. Sensitivity of crabs Callinectes sapidus and C. similis and the gastropod Stramonita haemastoma to hypoxia and anoxia. Mar. Ecol. Prog. Ser. 1993, 98, 263–274. [Google Scholar] [CrossRef]
- Seitz, R.D.; Marshall, L.S., Jr.; Hines, A.H.; Clark, K.L. Effects of hypoxia on predator-prey dynamics of the blue crab Callinectes sapidus and the Baltic clam Macoma balthica in Chesapeake Bay. Mar. Ecol. Prog. Ser. 2003, 257, 179–188. [Google Scholar] [CrossRef]
- McConaugha, J.R. Decapod Larvae: Dispersal, Mortality, and Ecology. A Working Hypothesis. Am. Zoöl. 1992, 32, 512–523. [Google Scholar] [CrossRef]
- Yeager, L.A.; Krebs, J.M.; McIvor, C.C.; Brame, A.B. Juvenile blue crab abundances in natural and man-made tidal channels in mangrove habitat, Tampa Bay, Florida. Bull. Mar. Sci. 2007, 80, 555–565. [Google Scholar]
- Heck, K.L., Jr.; Coen, L.D. Predation and the abundance of juvenile blue crabs: A comparison of selected east and gulf coast (USA) studies. Bull. Mar. Sci. 1995, 57, 877–883. [Google Scholar]
- Van Montfrans, J.; Epifanio, C.E.; Knott, D.M.; Lipcius, R.N.; Mense, D.J.; Metcalf, K.S.; Olmi III, E.J.; Orth, R.J.; Posey, M.H.; Wenner, E.L.; et al. Settlement of blue crab postlarvae in Western North Atlantic Estuaries. Bull. Mar. Sci. 1995, 57, 834–854. [Google Scholar]
- Moksnes, P.O.; Heck, K.L., Jr. Relative importance of habitat selection and predation for the distribution of blue crab megalopae and young juveniles. Mar. Ecol. Prog. Ser. 2006, 308, 165–181. [Google Scholar] [CrossRef]
- Seitz, R.D.; Lipcius, R.N.; Seebo, M.S. Food availability and growth of the blue crab in seagrass and unvegetated nurseries of Chesapeake Bay. J. Exp. Mar. Biol. Ecol. 2005, 319, 57–68. [Google Scholar] [CrossRef]
- Rozas, L.P.; Minello, T. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: A review of sampling design with focus on gear selection. Estuaries 1997, 20, 199–213. [Google Scholar] [CrossRef]
- Pardieck, R.; Orth, R.; Diaz, R.; Lipcius, R. Ontogenetic changes in habitat use by postlarvae and young juveniles of the blue crab. Mar. Ecol. Prog. Ser. 1999, 186, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Lahoz-Monfort, J.J.; Guillera-Arroita, G.; Wintle, B.A. Imperfect detection impacts the performance of species distribution models. Glob. Ecol. Biogeogr. 2014, 23, 504–515. [Google Scholar] [CrossRef]
- Bailey, L.L.; MacKenzie, D.I.; Nichols, J.D. Advances and applications of occupancy models. Methods Ecol. Evol. 2014, 5, 1269–1279. [Google Scholar] [CrossRef]
- Otto, C.R.V.; Bailey, L.L.; Roloff, G.J. Improving species occupancy estimation when sampling violates the closure assumption. Ecography 2013, 36, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Rota, C.T.; Fletcher, R.J., Jr.; Dorazio, R.M.; Betts, M.G. Occupancy estimation and the closure assumption. J. Appl. Ecol. 2009, 46, 1173–1181. [Google Scholar] [CrossRef]
- Terando, A.J.; Costanza, J.; Belyea, C.; Dunn, R.; McKerrow, A.; Collazo, J.A. The Southern megalopolis: Using the past to predict the future of urban sprawl in the Southeast U.S. PLoS ONE 2014, 9, e102261. [Google Scholar] [CrossRef] [Green Version]
Creek | Watershed Area (m2) | Impervious Area (m2) | Watershed Impervious % | High Tide Area (m2) | Marsh Area (m2) | Instream Marsh % | Culvert Presence, Number of Study Sites | Edge (m) | Location of Each Sample Site Relative to the Lowermost Culvert | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | |||||||||
Spooners | 490,859 | 64,220 | 13.0 | 7691 | 6324 | 82.2 | Yes, 2 | 400 | Below | Above | Above |
Webb | 86,951 | 20,074 | 23.1 | 13,494 | 0 | 0 | No, 0 | 0 | NA | NA | NA |
Pelletier West | 698,413 | 325,629 | 46.7 | 5427 | 3706 | 68.3 | Yes, 2 | 500 | Below | Above | Above |
Pelletier North | 541,729 | 163,602 | 30.2 | 7235 | 1729 | 23.9 | Yes, 2 | 150 | Below | Above | Above |
Pelletier East | 1,127,387 | 260,740 | 23.1 | 4170 | 113 | 2.7 | Yes, 2 | 145 | Below | Above | Above |
Porters | 1,095,729 | 110,166 | 10.0 | 15,162 | 9498 | 62.6 | Yes, 1 | 1200 | Below | Below | Below |
Town | 786,101 | 142,284 | 18.1 | 9077 | 7997 | 88.1 | Yes, 3 | 695 | Below | Above | Above |
Atlantic Veneer | 414,224 | 64,322 | 15.5 | 5209 | 4247 | 81.5 | Yes, 2 | 500 | Below | Above | Above |
Year | Spring | Summer | Fall | Winter |
---|---|---|---|---|
2018 | - | 6 | 3 | 2 |
2019 | 4 | 0 | 7 | 6 |
2020 | 1 | 2 | 2 | - |
Creek | Site | Water Temperature | Salinity | Dissolved Oxygen |
---|---|---|---|---|
Spooners | 1 | 21.6 (8.0) | 17.6 (9.3) | 5.2 (1.8) |
2 | 21.6 (8.0) | 17.5 (9.3) | 5.1 (1.8) | |
3 | 20.8 (7.8) | 10.4 (9.6) | 5.4 (1.9) | |
Webb | 1 | 20.0 (7.0) | 26.4 (3.3) | 6.1 (1.5) |
2 | 20.0 (7.0) | 26.5 (3.3) | 6.1 (1.5) | |
3 | 20.1 (7.3) | 24.0 (4.0) | 5.8 (1.4) | |
Pelletier West | 1 | 21.4 (7.6) | 18.6 (7.8) | 5.3 (1.8) |
2 | 21.5 (7.5) | 18.5 (7.8) | 5.3 (1.8) | |
3 | 22.0 (7.9) | 8.1 (6.3) | 5.4 (2.2) | |
Pelletier North | 1 | 20.5 (7.1) | 15.6 (9.2) | 5.2 (2.1) |
2 | 20.6 (7.1) | 15.4 (9.0) | 5.3 (2.1) | |
3 | 19.9 (6.9) | 9.8 (9.2) | 4.7 (2.2) | |
Pelletier East | 1 | 21.3 (7.4) | 18.7 (7.7) | 5.2 (1.9) |
2 | 21.4 (7.3) | 16.5 (7.3) | 5.2 (2.0) | |
3 | 21.4 (6.7) | 13.1 (7.8) | 6.0 (2.8) | |
Porters | 1 | 20.5 (7.9) | 18.6 (7.0) | 5.8 (2.3) |
2 | 20.5 (7.9) | 18.5 (7.0) | 5.8 (2.3) | |
3 | 19.4 (7.3) | 8.8 (7.6) | 5.3 (2.4) | |
Town | 1 | 19.3 (7.4) | 11.1 (9.0) | 5.9 (2.6) |
2 | 19.3 (7.4) | 11.0 (8.7) | 5.8 (2.6) | |
3 | 18.7 (6.7) | 5.2 (8.3) | 5.7 (2.0) | |
Atlantic Veneer | 1 | 20.0 (7.8) | 21.4 (8.4) | 4.9 (2.0) |
2 | 20.0 (7.8) | 21.3 (8.4) | 4.9 (2.0) | |
3 | 20.2 (7.3) | 13.2 (8.9) | 4.8 (2.0) |
Sub-Model | Parameter Name | Parameter Description | 2.5 | Median | 97.5 |
---|---|---|---|---|---|
Ecological | a[1] | auto-logistic regression parameter for colonization: season 1 | −1.57 | 12.34 | 26.63 |
a[2] | auto-logistic regression parameter for colonization: season 2 | −8.81 | 5.89 | 22.66 | |
a[3] | auto-logistic regression parameter for colonization: season 3 | −8.83 | 5.18 | 21.52 | |
a[4] | auto-logistic regression parameter for colonization: season 4 | −15.18 | 2.16 | 19.94 | |
a[5] | auto-logistic regression parameter for colonization: season 5 | −3.27 | 9.65 | 24.24 | |
a[6] | auto-logistic regression parameter for colonization: season 6 | −8.74 | 5.20 | 18.86 | |
a[7] | auto-logistic regression parameter for colonization: season 7 | −6.01 | 9.19 | 24.01 | |
a[8] | auto-logistic regression parameter for colonization: season 8 | −6.63 | 7.64 | 22.56 | |
a[9] | auto-logistic regression parameter for colonization: season 9 | −16.50 | −2.23 | 11.98 | |
b[1] | auto-logistic regression parameter for survival: season 1 | −6.33 | 8.84 | 26.09 | |
b[2] | auto-logistic regression parameter for survival: season 2 | −8.75 | 5.83 | 23.59 | |
b[3] | auto-logistic regression parameter for survival: season 3 | −7.87 | 7.72 | 24.25 | |
b[4] | auto-logistic regression parameter for survival: season 4 | −18.37 | 1.56 | 20.80 | |
b[5] | auto-logistic regression parameter for survival: season 5 | −17.70 | 4.20 | 21.76 | |
b[6] | auto-logistic regression parameter for survival: season 6 | −8.97 | 5.39 | 22.73 | |
b[7] | auto-logistic regression parameter for survival: season 7 | −9.44 | 5.27 | 22.49 | |
b[8] | auto-logistic regression parameter for survival: season 8 | −7.83 | 7.22 | 23.37 | |
b[9] | auto-logistic regression parameter for survival: season 9 | −15.58 | −1.72 | 13.11 | |
alpha2 * imperv[i] | colonization effect of percent watershed imperviousness | −15.54 | −4.64 | 0.98 | |
alpha5 * OccSalt[i] | colonization effect of mean site-level salinity | −6.01 | 3.86 | 11.04 | |
alpha2 * imperv[i] * z[i, t−1] | partial survival effect of percent watershed imperviousness | −8.79 | −1.08 | 13.60 | |
alpha5 * OccSalt[i] * z[i, t−1] | partial survival effect of mean site-level salinity | −8.24 | 3.91 | 13.89 | |
Observation | beta0 | regression intercept for observation sub-model | −1.78 | −1.56 | −1.33 |
beta1 * Temp[i,j,t] | observation effect of occasion-specific water temperature | −0.02 | 0.23 | 0.48 |
Parameter Name | Parameter Description | 2.5 | Median | 97.5 |
---|---|---|---|---|
intcol[1] | logit-scale colonization probability between seasons 1 and 2 | −1.57 | 12.34 | 26.63 |
intcol[2] | logit-scale colonization probability between seasons 2 and 3 | −8.81 | 5.89 | 22.66 |
intcol[3] | logit-scale colonization probability between seasons 3 and 4 | −8.83 | 5.18 | 21.52 |
intcol[4] | logit-scale colonization probability between seasons 4 and 5 | −15.18 | 2.16 | 19.94 |
intcol[5] | logit-scale colonization probability between seasons 5 and 6 | −3.27 | 9.65 | 24.24 |
intcol[6] | logit-scale colonization probability between seasons 6 and 7 | −8.74 | 5.20 | 18.86 |
intcol[7] | logit-scale colonization probability between seasons 7 and 8 | −6.01 | 9.19 | 24.01 |
intcol[8] | logit-scale colonization probability between seasons 8 and 9 | −6.63 | 7.64 | 22.56 |
intcol[9] | logit-scale colonization probability between seasons 9 and 10 | −16.50 | −2.23 | 11.98 |
intColSummerFall | mean colonization intercept between summer and fall | −1.59 | 6.45 | 14.59 |
intColFallWinter | mean colonization intercept between fall and winter | −4.87 | 5.72 | 15.91 |
intColWinterSpring | mean colonization intercept between winter and spring | −3.08 | 7.31 | 18.01 |
intColSpringSummer | mean colonization intercept between spring and summer | −6.37 | 5.03 | 16.93 |
intsurv[1] | logit-scale survival probability between seasons 1 and 2 | 8.50 | 20.20 | 37.94 |
intsurv[2] | logit-scale survival probability between seasons 2 and 3 | 2.17 | 10.53 | 28.48 |
intsurv[3] | logit-scale survival probability between seasons 3 and 4 | 3.73 | 11.99 | 29.42 |
intsurv[4] | logit-scale survival probability between seasons 4 and 5 | −15.15 | 3.95 | 27.04 |
intsurv[5] | logit-scale survival probability between seasons 5 and 6 | −6.51 | 13.66 | 32.64 |
intsurv[6] | logit-scale survival probability between seasons 6 and 7 | 3.24 | 9.42 | 26.79 |
intsurv[7] | logit-scale survival probability between seasons 7 and 8 | 3.40 | 13.53 | 34.48 |
intsurv[8] | logit-scale survival probability between seasons 8 and 9 | 4.49 | 14.02 | 31.46 |
intsurv[9] | logit-scale survival probability between seasons 9 and 10 | −11.19 | −3.93 | 3.57 |
intSurvSummerFall | mean survival intercept between summer and fall | 1.93 | 10.12 | 19.11 |
intSurvFallWinter | mean survival intercept between fall and winter | 3.97 | 11.01 | 21.61 |
intSurvWinterSpring | mean survival intercept between winter and spring | 5.02 | 13.33 | 26.64 |
intSurvSpringSummer | mean survival intercept between spring and summer | −2.37 | 9.94 | 23.81 |
colImperv | effect of watershed imperviousness on logit-scale colonization probability | −15.54 | −4.64 | 0.98 |
colSalt | effect of mean site-level salinity on logit-scale colonization probability | −6.01 | 3.86 | 11.04 |
survImperv | effect of watershed imperviousness on logit-scale survival probability | −9.38 | −4.23 | −0.08 |
survSalt | effect of mean site-level salinity on logit-scale survival probability | 1.82 | 6.76 | 13.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudershausen, P.J.; Merrell, J.H.; Buckel, J.A. Factors Influencing Colonization and Survival of Juvenile Blue Crabs Callinectes sapidus in Southeastern U.S. Tidal Creeks. Diversity 2021, 13, 491. https://doi.org/10.3390/d13100491
Rudershausen PJ, Merrell JH, Buckel JA. Factors Influencing Colonization and Survival of Juvenile Blue Crabs Callinectes sapidus in Southeastern U.S. Tidal Creeks. Diversity. 2021; 13(10):491. https://doi.org/10.3390/d13100491
Chicago/Turabian StyleRudershausen, Paul J., Jeffery H. Merrell, and Jeffrey A. Buckel. 2021. "Factors Influencing Colonization and Survival of Juvenile Blue Crabs Callinectes sapidus in Southeastern U.S. Tidal Creeks" Diversity 13, no. 10: 491. https://doi.org/10.3390/d13100491
APA StyleRudershausen, P. J., Merrell, J. H., & Buckel, J. A. (2021). Factors Influencing Colonization and Survival of Juvenile Blue Crabs Callinectes sapidus in Southeastern U.S. Tidal Creeks. Diversity, 13(10), 491. https://doi.org/10.3390/d13100491