Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Data Collection
2.3. Statistical Analyses
3. Results
3.1. Description of the Collected Floristic Data
3.2. Null Model Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IAS | Invasive Alien Species |
PA | Protected Area |
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Simberloff, D.; Martin, J.L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courchamp, F.; Fournier, A.; Bellard, C.; Bertelsmeier, C.; Bonnaud, E.; Jeschke, J.M.; Russell, J.C. Invasion Biology: Specific Problems and Possible Solutions. Trends Ecol. Evol. 2017, 32, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Rejmánek, M.; Westbrooks, R. Introduced species: A significant component of human-caused global change. New Zealand J. Ecol. 1997, 21, 1–16. [Google Scholar]
- Pyšek, P. Alien and native species in central European urban floras: A quantitative comparison. J. Biogeogr. 1998, 25, 155–163. [Google Scholar] [CrossRef]
- Ricotta, C.; Godefroid, S.; Rocchini, D. Patterns of native and exotic species richness in the urban flora of Brussels: Rejecting the ‘rich get richer’ model. Biol. Invasions 2010, 12, 233–240. [Google Scholar] [CrossRef]
- Aerts, R.; Ewald, M.; Nicolas, M.; Piat, J.; Skowronek, S.; Lenoir, J.; Hattab, T.; Garzon-Lopez, C.X.; Feilhauer, H.; Schmidtlein, S.; et al. Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Front. Plant Sci. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hattab, T.; Garzon-Lopez, C.X.; Ewald, M.; Skowronek, S.; Aerts, R.; Horen, H.; Brasseur, B.; Gallet-Moron, E.; Spicher, F.; Decocq, G.; et al. A unified framework to model the potential and realized distributions of invasive species within the invaded range. Divers. Distrib. 2017, 23, 806–819. [Google Scholar] [CrossRef]
- Ceschin, S.; Ellwood, N.T.W.; Ferrante, G.; Mariani, F.; Traversetti, L. Habitat change and alteration of plant and invertebrate communities in waterbodies dominated by the invasive alien macrophyte Lemna minuta Kunth. Biol. Invasions 2020, 22, 1325–1337. [Google Scholar] [CrossRef]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulme, P.E.; Pyšek, P.; Jarošík, V.; Pergl, J.; Schaffner, U.; Vilà, M. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 2013, 28, 212–218. [Google Scholar] [CrossRef]
- Davis, M.A.; Thompson, K.; Philip Grime, J. Invasibility: The local mechanism driving community assembly and species diversity. Ecography 2005, 28, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Siniscalco, C.; Barni, E.; Bacaro, G. Non-native species distribution along the elevation gradient in the western Italian Alps. Plant Biosyst. 2011, 145, 150–158. [Google Scholar] [CrossRef]
- Barni, E.; Bacaro, G.; Falzoi, S.; Spanna, F.; Siniscalco, C. Establishing climatic constrains shaping the distribution of alien plant species along the elevation gradient in the Alps. Plant Ecol. 2012, 213, 757–767. [Google Scholar] [CrossRef]
- Jeschke, J.M. General hypotheses in invasion ecology. Divers. Distrib. 2014, 20, 1229–1234. [Google Scholar] [CrossRef]
- Bacaro, G.; Maccherini, S.; Chiarucci, A.; Jentsch, A.; Rocchini, D.; Torri, D.; Gioria, M.; Tordoni, E.; Martellos, S.; Altobelli, A.; et al. Distributional patterns of endemic, native and alien species along a roadside elevation gradient in Tenerife, Canary Island. Commun. Ecol. 2015, 16, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Ricciardi, A.; Blackburn, T.M.; Carlton, J.T.; Dick, J.T.A.; Hulme, P.E.; Iacarella, J.C.; Jeschke, J.M.; Liebhold, A.M.; Lockwood, J.L.; MacIsaac, H.J.; et al. Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends Ecol. Evol. 2017, 32, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Tordoni, E.; Napolitano, R.; Nimis, P.; Castello, M.; Altobelli, A.; Da Re, D.; Zago, S.; Chines, A.; Martellos, S.; Maccherini, S.; et al. Diversity patterns of alien and native plant species in Trieste port area: Exploring the role of urban habitats in biodiversity conservation. Urban Ecosyst. 2017, 20, 1151–1160. [Google Scholar] [CrossRef]
- Landi, S.; Tordoni, E.; Amici, V.; Bacaro, G.; Carboni, M.; Filibeck, G.; Scoppola, A.; Bagella, S. Contrasting patterns of native and non-native plants in a network of protected areas across spatial scales. Biodiv. Conserv. 2020, 29, 2035–2053. [Google Scholar] [CrossRef]
- Simberloff, D. The role of propagule pressure in biological invasions. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Lonsdale, W.M. Global patterns of plant invasions and the concept of invasibility. Ecology 1999, 80, 1522–1536. [Google Scholar] [CrossRef]
- Tilman, D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 2004, 101, 10854–10861. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.; Richardson, D.M.; Landi, P.; Minoarivelo, H.O.; Garnas, J.; Roy, H.E. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 2016, 18, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Rejmánek, M. Species richness and resistance to invasions. In Diversity and Processes in Tropical Forest Ecosystems; Orians, G.H., Dirzo, R., Cushman, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 122, pp. 153–172. [Google Scholar]
- Pyšek, P.; Jarošík, V.; Kučera, T. Patterns of invasion in temperate nature reserves. Biol. Cons. 2002, 104, 13–24. [Google Scholar] [CrossRef]
- Pyšek, P.; Sádlo, J.; Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 2002, 74, 97–186. [Google Scholar]
- Rejmánek, M.; Richardson, D.M.; Pyšek, P. Plant Invasions and Invasibility of Plant Communities. In Vegetation Ecology; van der Maarel, E., Franklin, J., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 387–424. [Google Scholar]
- Alpert, P.; Bone, E.; Holzapfel, C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Persp. Plant Ecol. Evol. Syst. 2000, 3, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Pyšek, P.; Richardson, D.M. Invasive Plants. In Encyclopedia of Ecology; Jørgensen, S.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 1, pp. 2011–2019. [Google Scholar]
- Richardson, D.M.; Pyšek, P.; Carlton, J.T. A Compendium of Essential Concepts and Terminology in Invasion Ecology. In Fifty Years of Invasion Ecology; Richardson, D.M., Ed.; Wiley-Blackwell: Oxford, UK, 2010; pp. 409–420. [Google Scholar]
- Moravcová, L.; Pyšek, P.; Jarošík, V.; Pergl, J. Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species. PLoS ONE 2015, 10, e0123634. [Google Scholar] [CrossRef] [Green Version]
- Ceschin, S.; Abati, S.; Ellwood, N.T.W.; Zuccarello, V. Riding invasion waves: Spatial and temporal patterns of the invasive Lemna minuta from its arrival to its spread across Europe. Aqu. Bot. 2018, 150, 1–8. [Google Scholar] [CrossRef]
- Tecco, P.A.; Díaz, S.; Cabido, M.; Urcelay, C. Functional traits of alien plants across contrasting climatic and land-use regimes: Do aliens join the locals or try harder than them? J. Ecol. 2010, 98, 17–27. [Google Scholar] [CrossRef]
- Funk, J.L. The physiology of invasive plants in low-resource environments. Conserv. Physiol. 2013, 1, cot026. [Google Scholar] [CrossRef] [Green Version]
- Funk, J.L.; Standish, R.J.; Stock, W.D.; Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 2016, 97, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.M.; Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geog. Earth Environ. 2006, 30, 409–431. [Google Scholar] [CrossRef]
- Hayes, K.R.; Barry, S.C. Are there any consistent predictors of invasion success? Biol. Invasions 2008, 10, 483–506. [Google Scholar] [CrossRef]
- Lembrechts, J.J.; Rossi, E.; Milbau, A.; Nijs, I. Habitat properties and plant traits interact as drivers of non-native plant species’ seed production at the local scale. Ecol. Evol. 2018, 8, 4209–4223. [Google Scholar] [CrossRef]
- Catford, J.A.; Vesk, P.A.; Richardson, D.M.; Pyšek, P. Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Glob. Chang. Biol. 2012, 18, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Tordoni, E.; Petruzzellis, F.; Nardini, A.; Savi, T.; Bacaro, G. Make it simpler: Alien species decrease functional diversity of coastal plant communities. J. Veg. Sci. 2019, 30, 498–509. [Google Scholar] [CrossRef]
- Milbau, A.; Stout, J.C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 2008, 22, 308–317. [Google Scholar] [CrossRef]
- Jansen, F.; Ewald, J.; Zerbe, S. Ecological preferences of alien plant species in North-Eastern Germany. Biol. Invasions 2011, 13, 2691–2701. [Google Scholar] [CrossRef]
- Jauni, M.; Hyvonen, T. Interactions between alien plant species traits and habitat characteristics in agricultural landscapes in Finland. Biol. Invasions 2012, 14, 47–63. [Google Scholar] [CrossRef]
- Simonova, D.; Lososova, Z. Which factors determine plant invasions in man-made habitats in the Czech Republic? Persp. Plant Ecol. Evol. Syst. 2008, 10, 89–100. [Google Scholar] [CrossRef]
- Chytry, M.; Pysek, P.; Wild, J.; Pino, J.; Maskell, L.C.; Vilà, M. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 2009, 15, 98–107. [Google Scholar] [CrossRef]
- Carboni, M.; Santoro, R.; Acosta, A.T.R. Dealing with scarce data to understand how environmental gradients and propagule pressure shape fine-scale alien distribution patterns on coastal dunes. J. Veg. Sci. 2011, 22, 751–765. [Google Scholar] [CrossRef]
- Milbau, A.; Stout, J.C.; Graae, B.J.; Nijs, I. A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biol. Invasions 2009, 11, 941–950. [Google Scholar] [CrossRef]
- Lembrechts, J.J.; Lenoir, J.; Nuñez, M.A.; Pauchard, A.; Geron, C.; Bussé, G.; Nijs, I. Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography 2017, 40, 1–9. [Google Scholar] [CrossRef]
- Hulme, P.E. Biological invasions: Winning the science battles but losing the conservation war? Oryx 2003, 37, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Chytrý, M.; Jarošík, V.; Pyšek, P.; Hájek, O.; Knollová, I.; Tichý, L.; Danihelka, J. Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 2008, 89, 1541–1553. [Google Scholar] [CrossRef] [Green Version]
- Foxcroft, L.C.; Pyšek, P.; Richardson, D.M.; Genovesi, P. Plant Invasions in Protected Areas: Patterns, Problems and Challenges; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Sitzia, T.; Campagnaro, T.; Kowarik, I.; Trentanovi, G. Using forest management to control invasive alien species: Helping implement the new European regulation on invasive alien species. Biol. Invasions 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Bazzichetto, M.; Malavasi, M.; Bartak, V.; Acosta, A.T.R.; Rocchini, D.; Carranza, M.L. Plant invasion risk: A quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 2018, 95, 311–319. [Google Scholar] [CrossRef]
- Houlahan, J.E.; Findlay, C.S. Effect of Invasive Plant Species on Temperate Wetland Plant Diversity. Conserv. Biol. 2004, 18, 1132–1138. [Google Scholar] [CrossRef]
- Jones, T.A.; Hughes, J.M.R. Wetland inventories and wetland loss studies: A European perspective. In Waterfowl and Wetland Conservation in the 1990s: A Global Perspective; Moser, M., Prentice, R.C., van Vessem, J., Eds.; IWRB Spec. Publ. No. 26; Proc IWRB Symp: St Petersburg Beach, FL, USA; Slimbridge, UK, 1993; pp. 164–169. [Google Scholar]
- European Commission. Life and Europe’s Wetlands. Restoring a Vital Ecosystem; European Commission: Luxembourg, 2007. [Google Scholar]
- Jantke, K.; Schleupner, C.; Schneider, U.A. Gap analysis of European wetland species: Priority regions for expanding the Natura 2000 network. Biodivers. Conserv. 2011, 20, 581–605. [Google Scholar] [CrossRef]
- Abellán, P.; Sanchez-Fernandez, D.; Velasco, J.; Millan, A. Effectiveness of protected area networks in representing freshwater biodiversity: The case of a Mediterranean river basin (south-eastern Spain). Aquat. Conserv. 2007, 17, 361–374. [Google Scholar] [CrossRef]
- Roe, J.; Georges, A. Heterogeneous wetland complexes, buffer zones, and travel corridors: Landscape management for freshwater reptiles. Biol. Conserv. 2007, 135, 67–76. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Crit. Rev. Plant. Sci. 2004, 23, 431–452. [Google Scholar] [CrossRef]
- Berg, J.A.; Meyer, G.A.; Young, E.B. Propagule pressure and environmental conditions interact to determine establishment success of an invasive plant species, glossy buckthorn (Frangula alnus), across five different wetland habitat types. Biol. Invasions 2016, 18, 1363–1373. [Google Scholar] [CrossRef]
- Cancian, G. Il Carso Monfalconese: Litostratigrafia, Tettonica, Speleomorfologia e Speleogenesi; Grotte d’Italia: Bologna, Italy, 1976; Volume 5, pp. 5–30. [Google Scholar]
- Cucchi, F.; Pugliese, N.; Ulcigrai, F. Il Carso Triestino: Note geologiche e stratigrafiche. Int. J. Speleol. 1989, 18, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Samez, D.; Casagrande, G.; Cucchi, F.; Zini, L. Idrodinamica dei laghi di Doberdò e di Pietrarossa (Carso Classico, Italia): Relazioni con le piene dei fiumi Isonzo, Vipacco e Timavo. Atti Mem. Commun. Grotte E. Boegan 2005, 40, 133–152. [Google Scholar]
- Cremaschi, M. The loess in northern and central Italy: A loess basin between the Alps and the Mediterranean regions. In The Loess in Northern and Central Italy; Cremaschi, M., Ed.; Centro di studio per la Stratigrafia e Petrografia delle Alpi Centrali, Editrice Gutenberg: Milano, Italy, 1990; pp. 15–19. [Google Scholar]
- Cucchi, F.; Forti, P.; Marinetti, E.; Zini, L. Recent developments in knowledge of the hydrogeology of the classical karst. Acta Carsologica 2000, 29, 55–78. [Google Scholar]
- Zini, L.; Calligaris, C.; Zavagno, E. Classical Karst hydrodynamics: A shared aquifer within Italy and Slovenia. Evolving Water Resources Systems: Understanding, Predicting and Managing Water–Society Interactions. In Proceedings of the ICWRS2014, Bologna, Italy, 4–6 June 2014; IAHS Publ. 364. pp. 499–504. [Google Scholar]
- Calligaris, C.; Mezga, K.; Slejko, F.F.; Zini, L. Groundwater Characterization by Means of Conservative (δ18O and δ2H) and Non-Conservative (87Sr/86Sr) Isotopic Values: The Classical Karst Region Aquifer Case (Italy–Slovenia). Geosciences 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Cucchi, F.; Furlani, S.; Marinetti, E. Monitoraggio in continuo del livello del lago di Doberdò. Atti Mem. Commun. Grotte E. Boegan 1999, 37, 143–153. [Google Scholar]
- Devillers, P.; Devillers-Terschuren, J.; Ledant, J.P. CORINE Biotopes Manual. Habitats of the European Community. Data Specifications—Part 2; EUR 12587/3 EN; Office for Official Publications of the European Communities: Luxembourg, 1991. [Google Scholar]
- Devillers, P.; Devillers-Terschuren, J. A Classification of Palaearctic Habitats; Nature and environment, No 78; Council of Europe: Strasbourg, France, 1996. [Google Scholar]
- Davies, C.E.; Moss, D.; Hill, M.O. EUNIS Habitat Classification Revised 2004; Report to the European Topic Centre on Nature Protection and Biodiversity; European Environment Agency: Copenhagen, Denmark, 2004. [Google Scholar]
- European Commission. Interpretation Manual of European Union Habitats; EUR 28, April 2013, DG Environment, Nature ENV B.3; European Commission: Luxembourg, 2013; p. 144. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie, 3rd ed.; Springer: Vienna, Austria, 1964. [Google Scholar]
- Westhoff, V.; Van der Maarel, E. The Braun-Blanquet approach. In Classification of Plant Communities, 2nd ed.; Whittaker, R.H., Ed.; Junk: The Hague, The Netherlands, 1978. [Google Scholar]
- Biondi, E. Phytosociology today: Methodological and conceptual evolution. Plant Biosyst. 2011, 145, 19–29. [Google Scholar] [CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S.; et al. An updated checklist of the vascular flora alien to Italy. Plant Biosyst. 2018, 152, 556–592. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; et al. Plant communities of Italy: The Vegetation Prodrome. Plant Biosyst. 2014, 148, 728–814. [Google Scholar] [CrossRef] [Green Version]
- Legendre, L.; Legendre, P. Numerical Ecology, 2nd ed.; Elsevier Science BV: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Gotelli, N.J.; Graves, G.R. Null Models in Ecology; Smithsonian Institution Press: Washington, DC, USA, 1996. [Google Scholar]
- Bajocco, S.; Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires prefer? Landscape Ecol. 2008, 23, 241–248. [Google Scholar] [CrossRef]
- Manly, B.F.; McDonald, L.L.; Thomas, D.L. Resource Selection by Animals: Statistical Design and Analysis for Field Studies; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Alldredge, J.R.; Thomas, D.L.; McDonald, L.L. Survey and comparison of methods for study of resource selection. J. Agric. Biol. Environ. Stat. 1998, 3, 237–253. [Google Scholar] [CrossRef]
- Barreda, V.D.; Palazzesi, L.; Tellería, M.C.; Olivero, E.B.; Raine, J.I.; Forest, F. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl. Acad. Sci. USA 2015, 112, 10989–10994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čuda, J.; Skálová, H.; Janovský, Z.; Pyšek, P. Competition among native and invasive Impatiens species: The roles of environmental factors, population density and life stage. AoB Plants 2015, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgins, K.A.; Bock, D.G.; Hahn, M.A.; Heredia, S.M.; Turner, K.G.; Rieseberg, L.H. Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa. Mol. Ecol. 2015, 24, 2226–2240. [Google Scholar] [CrossRef]
- Chen, M.; Yan, T.; Shen, Q.; Lu, X.; Pan, Q.; Huang, Y.; Tang, Y.; Fu, X.; Liu, M.; Jiang, W.; et al. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol. 2017, 214, 304–316. [Google Scholar] [CrossRef]
- Tordoni, E.; Petruzzellis, F.; Nardini, A.; Bacaro, G. Functional Divergence Drives Invasibility of Plant Communities at the Edges of a Resource Availability Gradient. Diversity 2020, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Martini, F.; Galasso, G. Elodea nuttallii (Planc.) H.St.John. In Aggiornamenti Alla Flora Del Friuli Venezia Giulia (Italia Nord-Orientale). Nuova Serie. I (1-40); Martini, F., Ed.; Gortania: Udine, Italy, 2014; Volume 35, pp. 44–45. [Google Scholar]
- Poldini, L. La Vegetazione del Carso Isontino e Triestino; Lint: Trieste, Italy, 1989. [Google Scholar]
- Xie, D.; Yu, D.; Yu, L.F.; Liu, C.H. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 2010, 655, 37–47. [Google Scholar] [CrossRef]
- Barrat-Segretain, M.H.; Elger, A.; Sagnes, P.; Puijalon, S. Comparison of three life-history traits of invasive Elodea canadensis Michx. and Elodea nuttallii (Planch.) H. St. John. Aq. Bot. 2002, 74, 299–313. [Google Scholar] [CrossRef]
- Simpson, D.A. Displacement of Elodea canadensis Michx by Elodea nuttallii (Planch.) H. St John in the British Isles. Watsonia 1990, 18, 173–177. [Google Scholar]
- Barrat-Segretain, M.H. Invasive species in the Rhône River floodplain (France): Replacement of Elodea canadensis Michaux by E. nuttallii St. John in two former river channels. Archiv für Hydrobiologie 2001, 152, 237–251. [Google Scholar]
- Larson, D. Non-Indigenous Freshwaters Plants. Patterns, Processes and Risk Evaluation; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2007. [Google Scholar]
- Aeschimann, D.; Lauber, K.; Moser, D.M.; Theurillat, J.P. Flora Alpina; Zanichelli: Bologna, Italy, 2004. [Google Scholar]
- Li, J.; Ma, M. Seeds over-wintering characteristics of Italian Cocklebur and Stab Cocklebur: Two invasive plants in Xinjiang, China. S. Afr. J. Bot. 2019, 121, 216–218. [Google Scholar] [CrossRef]
- Broadfoot, W.M.; Williston, H.L. Flooding Effects on Southern Forests. J. For. 1973, 71, 584–587. [Google Scholar]
- Bertoli, M.; Franz, F.; Pastorino, P.; Prearo, M.; Pizzul, E. Seasonal patterns of Phragmites australis breakdown in a karstic freshwater system (Doberdò Lake, Northeast Italy) in relation to water level fluctuations, environmental features, and macrobenthic invertebrate communities. Hydrobiologia 2020, 847, 2123–2140. [Google Scholar] [CrossRef]
- Wittenberg, R. (Ed.) An Inventory of Alien Species and Their Threat to Biodiversity and Economy in Switzerland; CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape: Delémont, Switzerland, 2005. [Google Scholar]
- Danuso, F.; Zanin, G.; Sartorato, I. A modelling approach for evaluating phenology and adaptation of two congeneric weeds (Bidens frondosa and Bidens tripartita). Ecol. Model. 2012, 243, 33–41. [Google Scholar] [CrossRef]
- Pyšek, P.; Chytrý, M.; Pergl, J.; Sádlo, J.; Wild, J. Plant invasions in the Czech Republic: Current state, introduction dynamics, invasive species and invaded habitats. Preslia 2012, 84, 575–629. [Google Scholar]
- Wei, C.; Tang, S.; Pan, Y.; Li, X. Plastic responses of invasive Bidens frondosa to water and nitrogen addition. Nordic J. Bot. 2017, 35, 232–239. [Google Scholar] [CrossRef]
- Crowe, D.R.; Parker, W.H. Hybridization and agamospermy of Bidens in northwestern Ontario. Taxon 1981, 30, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Petrova, A.S.; Vladimirov, V. Two alien species of Bidens (Asteraceae) new to the Bulgarian flora. Phyt. Balc. 2009, 15, 367–371. [Google Scholar]
- Nimis, P.L.; Martellos, S.; Moro, A. IL progetto Dryades: Come identificare una pianta, da Gutenberg a Internet. Biol. Italiani 2003, 7, 9–15. [Google Scholar]
- Halvorson, W.L.; Guertin, P. Factsheet for: Oxalis stricta L.; USGS Weeds in the West project: Status of Introduced Plants in Southern Arizona Parks; USGS: Tucson, AZ, USA, 2003.
- Poldini, L.; Vidali, M. Cenosi arbustive nelle Alpi sudorientali (NE–Italia). Coll. Phytosoc. 1995, 24, 141–167. [Google Scholar]
- Freeman, C.C.; Schofield, E.K. Roadside Wildflowers of the Southern Great Plains; University Press of Kansas: Lawrence, KS, USA, 1991. [Google Scholar]
- Park, C.M.; Choi, G.H. Study on the Flooding Tolerance of Some Woody Plants for Selecting Useful Revegetation Plants in Lake and Marsh Slopes. J. Korean Environ. Res. Reveg. Technol. 2001, 4, 45–51. [Google Scholar]
- Doroftei, M.; Mierlă, M.; Marinov, M. Ecology of some alien plant species in Danube Delta. Ovid. Univ. Ann. Nat. Sci. Biol. Ecol. 2005, 9, 1–4. [Google Scholar]
- Takagi, K.; Hioki, Y. Autecology, distributional expansion and negative effects of Amorpha fruticosa L. on a river ecosystem: A case study in the Sendaigawa River, Tottori Prefecture. Landsc. Ecol. Eng. 2013, 9, 175–188. [Google Scholar] [CrossRef]
- Kozuharova, E.; Matkowski, A.; Woźniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa—A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Brigić, A.; Vujčić-Karlo, S.; Kepčija, R.M.; Stančić, Z.; Alegro, A.; Ternjej, I. Taxon specific response of carabids (Coleoptera, Carabidae) and other soil invertebrate taxa on invasive plant Amorpha fruticosa in wetlands. Biol. Invasions 2014, 16, 1497–1514. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Species Diversity in Space and Time; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Catford, J.A.; Daehler, C.C.; Murphy, H.T.; Sheppard, A.W.; Hardesty, B.D.; Westcott, D.A.; Rejmánek, M.; Bellingham, P.J.; Pergl, J.; Horvitz, C.C.; et al. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Persp. Plant Ecol. Evol. Syst. 2012, 14, 231–241. [Google Scholar] [CrossRef]
- Petruzzellis, F.; Nardini, A.; Savi, T.; Tonet, V.; Castello, M.; Bacaro, G. Less safety for more efficiency: Water relations and hydraulics of the invasive tree Ailanthus altissima (Mill.) Swingle compared with native Fraxinus ornus L. Tree Physiol. 2019, 39, 76–87. [Google Scholar] [CrossRef]
- Gallien, L.; Mazel, F.; Lavergne, S.; Renaud, J.; Douzet, R.; Thuiller, W. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol. Invasions 2014, 17, 1407–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Habitat Type | Vegetation Type | Area (ha) | N. Plot |
---|---|---|---|
Aquatic vegetation (Lemnetea minoris and Potametea pectinati) | Submerged communities in standing water in small channels (Lemnion trisulcae, Potamion pectinati) | 0.15 | 4 |
Submerged communities in flowing water (Potamion pectinati, Batrachion fluitantis) | 0.80 | 4 | |
Submerged and floating-leaved communities in pools (Nymphaeion albae, Potamion pectinati, Ceratophyllion demersi) | 1.51 | 5 | |
Marsh vegetation (Phragmito australis-Magnocaricetea elatae) | Community dominated by Schoenoplectus lacustris (Scirpetum lacustris) | 1.33 | 4 |
Phragmites australis reedbed (Phragmitetum australis) | 9.99 | 10 | |
Community dominated by Eleocharis palustris (Eleocharitetum palustris) | 0.13 | 4 | |
Community dominated by Persicaria amphibia and Persicaria hydropiper (Polygonetum hydropiperis) | 1.03 | 4 | |
Carex elata sedge beds (Caricetum elatae) | 12.40 | 13 | |
Carex vesicaria sedge beds (Caricetum vesicariae) | 0.74 | 4 | |
Helophyte mosaic (Phragmitetalia, Magno-Caricetalia) | 0.63 | 4 | |
Community dominated by Sparganium erectum (Glycerio-Sparganietum neglecti) | 0.18 | 4 | |
Lake shore herbaceous vegetation (Agrostietea stoloniferae and Bidentetea tripartitae) | Communities dominated by Agrostis stolonifera and Rorippa sylvestris, community dominated by Bidens tripartita and Persicaria hydropiper (Potentillion anserinae, Bidention tripartitae) | 2.97 | 7 |
Willow shrublands and woodlands (Alnetea glutinosae and Salicetea purpureae) | Community dominated by Salix cinerea (Frangulo alni-Salicetum cinereae) | 1.13 | 4 |
Community dominated by Salix alba (Salicetea purpureae) | 2.53 | 6 | |
Meso-hygrophilous shrublands and forests (Rhamno catharticae-Prunetea spinosae and Salici purpureae-Populetea nigrae) | Shrub community with Ulmus minor and Paliurus spina-christi (Berberidion vulgaris) | 3.63 | 8 |
Meso-hygrophilous forest dominated by Ulmus minor and Populus nigra (Salici purpureae-Populetea nigrae) | 14.35 | 15 | |
Meso-hygrophilous forest dominated by Ulmus minor and Fraxinus angustifolia subsp. oxycarpa (Salici purpureae-Populetea nigrae) | 4.42 | 9 | |
Nitrophilous forests (Robinietea) | Robinia pseudoacacia forest with Lamium orvala (Lamio orvalae-Sambucetum nigrae) | 0.71 | 4 |
Robinia pseudoacacia forest (Bryonio dioicae-Sambucetum nigrae) | 2.12 | 5 | |
Plantations | Hybrid poplar plantations | 1.56 | 5 |
Habitat Type | Ambrosia artemisiifolia | Amorpha fruticosa | Bidens frondosa | Bidens vulgata | Cuscuta campestris | Elodea nuttallii | Oxalis stricta | Parthenocissus quinquefolia | Robinia pseudoacacia | Vitis ×ruggerii | Xanthium italicum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aquatic vegetation | %Freq. | 0 | 0 | 7.7 * | 0 | 0 | 61.5 *** | 0 | 0 | 0 | 0 | 0 |
%C.I. | 0–23.1 | 0–30.8 | 15.4–84.6 | 0–38.5 | 0–23.1 | 0–23.1 | 0–15.4 | 0–7.7 | 0–23.1 | 0–7.7 | 0–38.5 | |
Marsh vegetation | %Freq. | 6.4 | 4.2 | 48.9 | 17 | 6.4 | 2.1 | 0 | 0 | 0 * | 0 | 27.7 * |
%C.I. | 0–10.6 | 2.1–17 | 34–66 | 8.5–25.5 | 2.1–12.8 | 2.1–12.8 | 0–10.6 | 0–4.2 | 2.1–12.8 | 0–4.2 | 8.5–25.5 | |
Lake shore herbaceous vegetation | %Freq. | 42.9 ** | 0 | 100 | 100 *** | 85.7 *** | 0 | 0 | 0 | 0 | 14.3 | 85.7 *** |
%C.I. | 0–28.6 | 0–42.9 | 0–100 | 0–42.9 | 0–28.6 | 0–28.6 | 0–28.6 | 0–14.3 | 0–28.6 | 0–14.3 | 0–42.9 | |
Willow shrublands and woodlands | %Freq. | 0 | 10 | 70 | 50 * | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
%C.I. | 0–20 | 0–30 | 10–90 | 0–40 | 0–30 | 0–30 | 0–20 | 0–10 | 0–30 | 0–10 | 0–40 | |
Meso-hygrophilous shrublands and forests | %Freq. | 0 | 12.5 | 40.6 | 0 ** | 0 | 0 | 15.6 ** | 6.2 | 0 | 3.1 | 0 ** |
%C.I. | 0–12.5 | 0–18.7 | 28.1–68.7 | 6.2–28.1 | 0–15.6 | 0–15.6 | 0–12.5 | 0–6.2 | 0–15.6 | 0–6.2 | 6.2–28.1 | |
Nitrophilous forests | %Freq. | 0 | 0 | 44.4 | 0 | 0 | 0 | 11.1 | 0 | 100 *** | 0 | 0 |
%C.I. | 0–22.2 | 0–33.3 | 11.1–88.8 | 0–44.4 | 0–22.2 | 0–22.2 | 0–22.2 | 0–11.1 | 0–22.2 | 0–11.1 | 0–44.4 | |
Plantations | %Freq. | 20 | 100 *** | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
%C.I. | 0–40 | 0–40 | 0–100 | 0–60 | 0–40 | 0–40 | 0–20 | 0–20 | 0–40 | 0–20 | 0–60 |
Habitat Type | Ambrosia artemisiifolia | Amorpha fruticosa | Bidens frondosa | Bidens vulgata | Cuscuta campestris | Elodea nuttallii | Oxalis stricta | Parthenocissus quinquefolia | Robinia pseudoacacia | Vitis ×ruggerii | Xanthium italicum | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aquatic vegetation | %Abund. | 0 | 0 | 0.1 ** | 0 | 0 | 24.2 *** | 0 | 0 | 0 | 0 | 0 |
%C.I. | 0–12.8 | 0–13.1 | 1.3–15.8 | 0–4.9 | 0–2.7 | 0–12.1 | 0–1.9 | 0–0.5 | 0–23.1 | 0–0.8 | 0–10.9 | |
Marsh vegetation | %Abund. | 3.3 | 0.6 | 6.7 | 0.6 | 0.3 | 1.8 | 0 | 0 | 0 ** | 0 | 7.4 ** |
%C.I. | 0–6.1 | 0.3–6.3 | 3.7–10 | 0.4–2.7 | 0.1–1.4 | 0.4–6.6 | 0–0.8 | 0–0.1 | 2.1–12.8 | 0–0.2 | 1.4–6.7 | |
Lake shore herbaceous vegetation | %Abund. | 27 ** | 0 | 43 *** | 20 *** | 10 *** | 0 | 0 | 0 | 0 | 1.4 | 23 ** |
%C.I. | 0–14.3 | 0–16 | 0.3–20.1 | 0–7 | 0–3.9 | 0–14.4 | 0–3.4 | 0–0.9 | 0–28.6 | 0–1.4 | 0–14.9 | |
Willow shrublands and woodlands | %Abund. | 0 | 3.7 | 8 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 |
%C.I. | 0–15.3 | 0–13 | 0.7–16.5 | 0–5.6 | 0–2.7 | 0–14 | 0–2.5 | 0–0.6 | 0–30 | 0–1 | 0–12.5 | |
Meso-hygrophilous shrublands and forests | %Abund. | 0 | 0.4 | 1.5 ** | 0 ** | 0 | 0 | 0.6 | 0.2 | 0 | 0.1 | 0 *** |
%C.I. | 0–7.6 | 0–7.8 | 2.6–10.9 | 0.2–3.2 | 0–1.8 | 0–7.8 | 0–1.2 | 0–0.2 | 0–15.6 | 0–0.4 | 0.8–7.9 | |
Nitrophilous forests | %Abund. | 0 | 0 | 1.3 | 0 | 0 | 0 | 2.7 | 0 | 100 *** | 0 | 0 |
%C.I. | 0–15.8 | 0–17.5 | 0.7–17.8 | 0–6.6 | 0–2.9 | 0–15.6 | 0–2.7 | 0–0.7 | 0–22.2 | 0–1.1 | 0–13.7 | |
Plantations | %Abund. | 0.4 | 64 *** | 10.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
%C.I. | 0–20 | 0–18 | 0–24.4 | 0–8 | 0–5.2 | 0–18 | 0–4.8 | 0–1.2 | 0–40 | 0–2 | 0–17.2 |
Habitat Type | Observed IAS Richness | Random IAS Richness C. I. | p-Value |
---|---|---|---|
Aquatic vegetation | 2 | 4–9 | 0.0008 |
Marsh vegetation | 7 | 9–11 | 0.0008 |
Lake shore herbaceous vegetation | 6 | 2–8 | 0.3482 |
Willow shrublands and woodlands | 4 | 3–9 | 0.1438 |
Meso-hygrophilous shrublands and forests | 5 | 7–11 | 0.0004 |
Nitrophilous forests | 3 | 3–8 | 0.0611 |
Plantations | 3 | 1–7 | 0.3837 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liccari, F.; Castello, M.; Poldini, L.; Altobelli, A.; Tordoni, E.; Sigura, M.; Bacaro, G. Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area. Diversity 2020, 12, 267. https://doi.org/10.3390/d12070267
Liccari F, Castello M, Poldini L, Altobelli A, Tordoni E, Sigura M, Bacaro G. Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area. Diversity. 2020; 12(7):267. https://doi.org/10.3390/d12070267
Chicago/Turabian StyleLiccari, Francesco, Miris Castello, Livio Poldini, Alfredo Altobelli, Enrico Tordoni, Maurizia Sigura, and Giovanni Bacaro. 2020. "Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area" Diversity 12, no. 7: 267. https://doi.org/10.3390/d12070267
APA StyleLiccari, F., Castello, M., Poldini, L., Altobelli, A., Tordoni, E., Sigura, M., & Bacaro, G. (2020). Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area. Diversity, 12(7), 267. https://doi.org/10.3390/d12070267