Ecosystem Engineers in the World Coasts: Case Studies and Conceptual Linkages
Abstract
:Acknowledgments
Conflicts of Interest
References
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 1997, 78, 1946–1957. [Google Scholar] [CrossRef]
- Jones, C.G.; Gutiérrez, J.L. On the purpose, meaning, and usage of the ecosystem engineering concept. In Ecosystem Engineers: Plants to Protists; Cuddington, K., Byers, J.E., Wilson, W.G., Hastings, A., Eds.; Academic Press: New York, NY, USA, 2007; pp. 3–24. [Google Scholar]
- Gutiérrez, J.L.; Jones, C.G. Ecosystem engineers. In Encyclopedia of Life Sciences; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar] [CrossRef]
- Wright, J.P.; Jones, C.G. The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience 2006, 56, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.R.; Sawyer, C.F. Introduction to the special issue—Zoogeomorphology and ecosystem engineering. Geomorphology 2012, 157, 1–5. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Bertoldi, W.; Corenblit, D. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Sci. Rev. 2012, 111, 129–141. [Google Scholar] [CrossRef]
- Byers, J.E.; Cuddington, K.; Jones, C.G.; Talley, T.S.; Hastings, A.; Lambrinos, J.G.; Crooks, J.A.; Wilson, W.G. Using ecosystem engineers to restore ecological systems. Trends Ecol. Evol. 2006, 21, 493–500. [Google Scholar] [CrossRef]
- Mosepele, K.; Moyle, P.B.; Merron, G.S.; Purkey, D.R.; Mosepele, B. Fish, floods, and ecosystem engineers: Aquatic conservation in the Okavango Delta, Botswana. BioScience 2009, 59, 53–64. [Google Scholar] [CrossRef]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Dayton, P.K. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In Proceedings of the Colloquium on Conservation Problems in Antarctica; Parker, B.C., Ed.; Allen Press: Lawrence, KS, USA, 1972; pp. 81–96. [Google Scholar]
- Pocklington, J.B.; Keough, M.J.; O’Hara, T.D.; Bellgrove, A. The influence of canopy cover on the ecological function of a key autogenic ecosystem engineer. Diversity 2019, 11, 79. [Google Scholar] [CrossRef] [Green Version]
- Chava, A.; Artemieva, A.; Yakovis, E. Plant part age and size affect sessile macrobenthic assemblages associated with a foliose red algae Phycodrys rubens in the white sea. Diversity 2019, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Arkema, K.K.; Samhouri, J.F. Living on the edge: Variation in the abundance and demography of a kelp forest epibiont. Diversity 2019, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Hacker, S.D.; Jay, K.R.; Cohn, N.; Goldstein, E.B.; Hovenga, P.A.; Itzkin, M.; Moore, L.J.; Mostow, R.S.; Mullins, E.V.; Ruggiero, P. Species-specific functional morphology of four US Atlantic coast dune grasses: Biogeographic implications for dune shape and coastal protection. Diversity 2019, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.S.; South, P.M. Communities and attachment networks associated with primary, secondary and alternative foundation species; a case study of stressed and disturbed stands of southern bull kelp. Diversity 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Ndhlovu, A.; McQuaid, C.D.; Nicastro, K.; Marquet, N.; Gektidis, M.; Monaco, C.J.; Zardi, G. Biogeographical patterns of endolithic infestation in an invasive and an indigenous intertidal marine ecosystem engineer. Diversity 2019, 11, 75. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.S.; Wernberg, T.; Altieri, A.; Tuya, F.; Gulbransen, D.; McGlathery, K.J.; Holmer, M.; Silliman, B.R. Habitat cascades: The conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr. Comp. Biol. 2010, 50, 158–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.S.; Silliman, B.R. A facilitation cascade enhances local biodiversity in seagrass beds. Diversity 2019, 11, 30. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.L.; Bagur, M.; Palomo, M.G. Algal epibionts as co-engineers in mussel beds: Effects on abiotic conditions and mobile interstitial invertebrates. Diversity 2019, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.L.; Jones, C.G.; Sousa, R. Toward an integrated ecosystem perspective of invasive species impacts. Acta Oecol. 2014, 54, 131–138. [Google Scholar] [CrossRef]
- Ellis, R.D. Red grouper (Epinephelus morio) shape faunal communities via multiple ecological pathways. Diversity 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.E.; Angelini, C.; Safak, I.; Altieri, A.H.; Osborne, T.Z. Effects of changing vegetation composition on community structure, ecosystem functioning, and predator–prey interactions at the saltmarsh-mangrove ecotone. Diversity 2019, 11, 208. [Google Scholar] [CrossRef] [Green Version]
- Cannizzo, Z.J.; Nix, S.K.; Whaling, I.C.; Griffen, B.D. Individual morphology and habitat structure alter social interactions in a range-shifting species. Diversity 2019, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.G.; Gutiérrez, J.L.; Byers, J.E.; Crooks, J.A.; Lambrinos, J.G.; Talley, T.S. A framework for understanding physical ecosystem engineering by organisms. Oikos 2010, 119, 1862–1869. [Google Scholar] [CrossRef]
- Commito, J.A.; Jones, B.R.; Jones, M.A.; Winders, S.E.; Como, S. After the fall: Legacy effects of biogenic structure on wind-generated ecosystem processes following mussel bed collapse. Diversity 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Bagur, M.; Gutiérrez, J.L.; Arribas, L.P.; Palomo, M.G. Vacant bivalve boreholes increase invertebrate species richness in a physically harsh, low intertidal platform. Diversity 2019, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Pillay, D. Ecosystem engineering by thalassinidean crustaceans: Response variability, contextual dependencies and perspectives on future research. Diversity 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Bruschetti, M. Role of reef-building, ecosystem engineering polychaetes in shallow water ecosystems. Diversity 2019, 11, 168. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, J.L. Ecosystem Engineers in the World Coasts: Case Studies and Conceptual Linkages. Diversity 2020, 12, 243. https://doi.org/10.3390/d12060243
Gutiérrez JL. Ecosystem Engineers in the World Coasts: Case Studies and Conceptual Linkages. Diversity. 2020; 12(6):243. https://doi.org/10.3390/d12060243
Chicago/Turabian StyleGutiérrez, Jorge L. 2020. "Ecosystem Engineers in the World Coasts: Case Studies and Conceptual Linkages" Diversity 12, no. 6: 243. https://doi.org/10.3390/d12060243
APA StyleGutiérrez, J. L. (2020). Ecosystem Engineers in the World Coasts: Case Studies and Conceptual Linkages. Diversity, 12(6), 243. https://doi.org/10.3390/d12060243