How Does the Sexual Reproduction of Marine Life Respond to Ocean Acidification?
Abstract
:1. Background
2. The Physiological Mechanism of Spawning
3. Would This Mechanism Be Affected by Climate Change?
4. Can We Observe Climate Change Effects in the Field Already and What Could Be the Consequences?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shlesinger, T.; Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 2019, 365, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.R.; Baird, A.H.; Bouwmeester, J.; Edwards, A. Comment on Breakdown in spawning synchrony: A silent threat to coral persistence. Science 2020. Available online: https://science.sciencemag.org/content/365/6457/1002/tab-e-letters (accessed on 6 June 2020).
- Knowlton, N. The future of coral reefs. Proc. Natl. Acad. Sci. USA 2001, 98, 5419–5425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüning, K. Seaweeds. In Their Environment Biogeography and Ecophysiology; Wiley-Interscience Publication: New York, NY, USA, 1990. [Google Scholar]
- Pearson, G.A.; Serrao, E.A.; Brawley, S.H. Control of gamete release in fucoid algae: Sensing hydrodynamic conditions via carbon acquisition. Ecology 1998, 79, 1725–1739. [Google Scholar] [CrossRef]
- Pearson, G.A.; Serrão, E.A. Revisiting synchronous gamete release by fucoid algae in the intertidal zone: Fertilization success and beyond? Integr. Comp. Biol. 2006, 46, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Albright, R. Reviewing the Effects of Ocean Acidification on Sexual Reproduction and Early Life History Stages of Reef-Building Corals. J. Mar. Biol. 2011, 2011, 14. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.L.; Babcock, R.C.; Bull, G.D.; Oliver, J.K.; Wallace, C.C.; Willis, B.L. Mass spawning in tropical reef corals. Science 1984, 223, 1186–1189. [Google Scholar] [CrossRef]
- Clifton, K.E. Mass spawning by green algae on coral reefs. Science 1997, 275, 1116–1118. [Google Scholar] [CrossRef] [Green Version]
- van Woesik, R. Calm before the spawn: Global coral spawning patterns are explained by regional wind fields. Proc. R. Soc. B 2010, 277, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Sakai, Y.; Hatta, M.; Furukawa, S.; Kawata, M.; Ueno, N.; Maruyama, S. Environmental factors explain spawning day deviation from full moon in the scleractinian coral Acropora. Biol. Lett. 2020, 16, 20190760. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Sprintall, J.; Guan, C.; McPhaden, M.J.; Wang, F.; Hu, D.; Cai, W. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 2020, 6, eaax7727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, L.C.; Straub, S.; Bischof, K. Competition between calcifying and non-calcifying temperate marine macroalgae under elevated CO2 levels. Mar. Ecol. Prog. Ser. 2012, 46, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Olischläger, M.; Bartsch, I.; Gutow, L.; Wiencke, C. The effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool scenario. Phycol. Res. 2013, 61, 180–190. [Google Scholar] [CrossRef]
- Mercado, J.M.; Gordillo, F.J.L. Inorganic carbon acquisition in algal communities: Are the laboratory data relevant to the natural ecosystems? Photosyn. Res. 2011, 109, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Cyronak, T.; Takeshita, Y.; Courtney, T.A.; DeCarlo, E.H.; Eyre, B.E.; Kline, D.I.; Martz, T.; Page, H.; Price, N.N.; Smith, J.; et al. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol. Oceanogr. Lett. 2019, 5, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.H.; Gao, K.S. Regulation of gamete release in the economic brown seaweed Hizikia fusiforme (Phaeophyta). Biotechnol. Lett. 2005, 27, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, L.; Larsson, C.; Ryberg, H. Affinity, capacity and oxygen sensitivity of two different mechanisms of bicarbonate untilization in Ulva lactuca L. (Chlorophyta). Plant Cell Environ. 1999, 22, 969–978. [Google Scholar] [CrossRef]
- Raven, J.A.; Beardall, J. CO2 concentrating mechanisms and environmental change. Aquat. Bot. 2014, 118, 24–37. [Google Scholar] [CrossRef]
- Raven, J.A.; Hurd, C.L. Ecophysiology of photosynthesis in macroalgae. Photosynth. Res. 2012, 113, 105–125. [Google Scholar] [CrossRef]
- Beardall, J.; Raven, J.A. Acquisition of Inorganic Carbon by Microalgae and Cyanobacteria. In Microbial Photosynthesis; Wang, Q., Ed.; Springer: Singapore, 2020; pp. 151–168. [Google Scholar]
- García-Gómez, C.; Gordillo, F.J.L.; Palma, A.; Rosario, M.L.; Segovia, M. Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta. Photochem. Photobiol. Sci. 2014, 13, 1347–1358. [Google Scholar] [CrossRef]
- Vardi, A.; Berman-Frank, I.; Rozenberg, T.; Hadas, O.; Kaplan, A.; Levine, A. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 1999, 9, 1061–1064. [Google Scholar] [CrossRef] [Green Version]
- Sitte, P.; Weiler, E.W.; Kadereit, J.W.; Bresinsky, A.; Körner, C. Strasbuger Lehrbuch der Botanik; Spektrum Akademischer Verlag: Heidelberg, Germany, 2002. [Google Scholar]
- Raven, J.A.; Johnston, A.M.; Kuebler, J.E.; Korb, R.; McInroy, S.G.; Handley, L.L.; Scrimgeour, C.M.; Walker, D.I.; Beardall, J.; Clayton, M.N.; et al. Seaweeds in Cold Seas: Evolution and Carbon Acquisition. Ann. Bot. 2002, 90, 525–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olischläger, M.; Iñiguez, C.; Koch, K.; Wiencke, C.; Gordillo, F.J.L. Increased pCO2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima. Planta 2017, 245, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef]
- Hurd, C.L.; Cornwall, C.E.; Currie, K.I.; Hepburn, C.D.; McGraw, C.M.; Hunter, K.A.; Boyd, P. Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: A mechanism for differential susceptibility? Glob. Change Biol. 2011, 17, 3254–3262. [Google Scholar] [CrossRef]
- Al-Moghrabi, S.; Goiran, C.; Allemand, D.; Speziale, N.; Jaubert, J. Inorganic carbon uptake for photosynthesis by the symbiotic coral-dinoflagellate association II. Mechanisms for bicarbonate uptake. J. Exp. Mar. Biol. Ecol. 1996, 199, 227–248. [Google Scholar] [CrossRef]
- Tansik, A.L.; Fitt, W.K.; Hopkinson, B.M. External carbonic anhydrase in three Caribbean corals: Quantification of activity and role in CO2 uptake. Coral Reefs 2015, 34, 703–713. [Google Scholar] [CrossRef]
- Leggat, W.; Murray, R.B.; Yellowlees, D. Evidence for an Inorganic Carbon-Concentrating Mechanism in the Symbiotic Dinoflagellate Symbiodinium sp. Plant Physiol. 1999, 121, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Schoepf, V.; Cornwall, C.E.; Pfeifer, S.M.; Carrion, S.A.; Alessi, C.; Comeau, S.; McCulloch, M.T. Impacts of coral bleaching on pH and oxygen gradients across the coral concentration boundary layer: A microsensor study. Coral Reefs 2018, 37, 1169–1180. [Google Scholar] [CrossRef]
- Comeau, S.; Cornwall, C.E.; Pupier, C.A.; DeCarlo, T.M.; Alessi, C.; Trehern, R.; McCulloch, M.T. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 2019, 9, 12829. [Google Scholar] [CrossRef] [Green Version]
- Sorek, M.; Díaz-Almeyda, E.M.; Medina, M.; Levy, O. Circadian clocks in symbiotic corals: The duet between Symbiodinium algae and their coral host. Mar. Genom. 2013, 14, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Sorek, M.; Schnytzer, Y.; Waldman Ben-Asher, H.; Caspi, V.C.; Chen, C.S.; Miller, D.J.; Levy, O. Setting the pace: Host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 2018, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Paxton, C.; Baria, M.; Weis, V.; Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 2016, 24, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, S.C. Factors controlling induction of reproduction in algae-review: The text. Folia Microbiol. 2012, 57, 387–407. [Google Scholar] [CrossRef]
- Keith, S.A.; Maynard, J.A.; Edwards, A.J.; Guest, J.R.; Bauman, A.G.; van Hooidonk, R.; Heron, S.F.; Berumen, M.L.; Bouwmeester, J.; Piromvaragorn, S.; et al. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc. R. Soc. 2016, 283, 20160011. [Google Scholar] [CrossRef] [Green Version]
- Bauman, A.G.; Baird, A.H.; Cavalcante, G.H. Coral reproduction in the world’s warmest reefs: Southern Persian Gulf (Dubai, United Arab Emirates). Coral Reefs 2011, 30, 405–413. [Google Scholar] [CrossRef]
- Howells, E.J.; Abrego, D.; Meyer, E.; Kirk, N.L.; Burt, J.A. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Glob. Chang. Biol. 2016, 22, 2702–2714. [Google Scholar] [CrossRef]
- van Hooidonk, R.; Maynard, J.A.; Manzello, D.; Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 2014, 20, 103–112. [Google Scholar] [CrossRef]
- Feely, R.A.; Sabine, C.L.; Lee, K.; Berelson, W.; Kleypas, J.; Fabry, V.J.; Millero, F.J. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science 2004, 305, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Porzio, L.; Garrard, S.L.; Buia, M.C. The effect of ocean acidification on early algal colonization stages at natural CO2 vents. Mar. Biol. 2013, 160, 2247–2259. [Google Scholar] [CrossRef]
- Schuhmacher, H. Korallenriffe, 4th ed.; BLV Verlagsgesellschaft m.b.H.: München, Germany; Wien, Austria; Zürich, Switzerland, 1991; pp. 121–126. [Google Scholar]
- Hock, K.; Doropoulos, C.; Gorton, R.; Condie, S.A.; Mumbay, P.J. Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nat. Commun. 2019, 10, 3463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, C.; Tollrian, R.; Huettel, M. Rapid recycling of coral mass spawning products in permeable reef sediments. MEPS 2004, 271, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: Pelagic–benthic coupling. Coral Reefs 2008, 27, 123–132. [Google Scholar] [CrossRef]
- Glud, R.N.E.; Eyre, B.D.; Patten, N. Biogeochemical responses to mass coral spawning at the Great Barrier Reef: Effects on respiration and primary production. Limnol. Oceanogr. 2008, 53. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.; Haas, A.; Naumann, M.; Mayr, C.; el-Zibdah, M. Comparative investigation of organic matter release by corals and benthic reef algae—Implications for pelagic and benthic microbial metabolism. In Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, FL, USA, 7–11 July 2008; pp. 1319–1323. [Google Scholar]
- Haas, A.F.; Jantzen, C.; Naumann, M.S.; Iglesias-Prieto, R.; Wild, C. Organic matter release by the dominant primary producers in a Caribbean reef lagoon: Implication for in situ O2 availability. Mar. Ecol. Prog. Ser. 2010, 409, 27–39. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olischläger, M.; Wild, C. How Does the Sexual Reproduction of Marine Life Respond to Ocean Acidification? Diversity 2020, 12, 241. https://doi.org/10.3390/d12060241
Olischläger M, Wild C. How Does the Sexual Reproduction of Marine Life Respond to Ocean Acidification? Diversity. 2020; 12(6):241. https://doi.org/10.3390/d12060241
Chicago/Turabian StyleOlischläger, Mark, and Christian Wild. 2020. "How Does the Sexual Reproduction of Marine Life Respond to Ocean Acidification?" Diversity 12, no. 6: 241. https://doi.org/10.3390/d12060241
APA StyleOlischläger, M., & Wild, C. (2020). How Does the Sexual Reproduction of Marine Life Respond to Ocean Acidification? Diversity, 12(6), 241. https://doi.org/10.3390/d12060241