Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Analysis of Soil Physicochemical Properties
2.3. DNA Extraction and MiSeq Sequencing
2.4. Bioinformatic Analyses
2.5. Statistical Analyses
3. Results
3.1. Soil Chemical Properties
3.2. Description of Bacterial Community
3.3. Alpha Diversity
3.4. Composition of Bacterial Community
3.5. Beta Diversity
3.6. Functional Prediction of the Bacterial Community
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
NGS | Next-Generation Sequencing |
RDA | Redundancy Analysis |
PcoA | Principal Coordinate Analysis |
PICRUSt | Phylogenetic Investigation of Communities by Reconstruction of Unobserved States |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
OTUs | Operational Taxonomic Units |
References
- Xiang, K.-L.; Wu, S.-D.; Yu, S.-X.; Liu, Y.; Jabbour, F.; Erst, A.S.; Zhao, L.; Wang, W.; Chen, Z.-D. The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification. PLoS ONE 2016, 11, e0153127. [Google Scholar] [CrossRef] [PubMed]
- Li, C.B.; Li, X.X.; Chen, Y.G.; Gao, H.Q.; Bu, P.L.; Zhang, Y.; Ji, X.P. Huang-Lian-Jie-Du-Tang Protects Rats from Cardiac Damages Induced by Metabolic Disorder by Improving Inflammation-Mediated Insulin Resistance. PLoS ONE 2013, 8, e67530. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Pan, Y.; Li, L.; Wu, X.; Wang, Y. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. PLoS ONE 2018, 13, e0193811. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, S.Y.; Chen, L.; Huang, X.J.; Zhang, Q.W.; Jiang, R.W.; Yao, F.; Ye, W.C. New enantiomeric isoquinoline alkaloids from Coptis chinensis. Phytochem. Lett. 2014, 7, 89–92. [Google Scholar] [CrossRef]
- Wu, L.; Chen, J.; Wu, H.; Wang, J.; Wu, Y.; Lin, S.; Khan, M.U.; Zhang, Z.; Lin, W. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Sci. Rep. 2016, 6, 26601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhang, R.; Xue, C.; Xun, W.; Sun, L.; Xu, Y.; Shen, Q. Pyrosequencing Reveals Contrasting Soil Bacterial Diversity and Community Structure of Two Main Winter Wheat Cropping Systems in China. Microb. Ecol. 2014, 67, 443–453. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, Y.; Xiong, W.; Ran, W.; Shen, B.; Shen, Q.; Zhang, R. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 2014, 9, e85301. [Google Scholar] [CrossRef]
- Klein, E.; Katan, J.; Gamliel, A. Soil suppressiveness by organic amendment to Fusarium disease in cucumber: Effect on pathogen and host. Phytoparasitica 2016, 44, 239–249. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, R.; Xue, C.; Zhang, S.; Li, S.; Zhang, N.; Shen, Q. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol. Fertil. Soils 2012, 48, 807–816. [Google Scholar] [CrossRef]
- Sun, B.; Dong, Z.-X.; Zhang, X.-X.; Li, Y.; Cao, H.; Cui, Z.-L. Rice to Vegetables: Short- Versus Long-Term Impact of Land-Use Change on the Indigenous Soil Microbial Community. Microb. Ecol. 2011, 62, 474–485. [Google Scholar] [CrossRef]
- Xuan, D.T.; Guong, V.T.; Rosling, A.; Alström, S.; Chai, B.; Högberg, N. Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa. Biol. Fertil. Soils 2012, 48, 217–225. [Google Scholar] [CrossRef]
- Xiong, W.; Li, Z.; Liu, H.; Xue, C.; Zhang, R.; Wu, H.; Li, R.; Shen, Q. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing. PLoS ONE 2015, 10, e0136946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Long, X.Q.; Huo, X.D.; Chen, Y.F.; Lou, K. 16S rRNA-Based PCR-DGGE Analysis of Actinomycete Communities in Fields with Continuous Cotton Cropping in Xinjiang, China. Microb. Ecol. 2013, 66, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Lin, W.X.; Yang, Y.H.; Chen, H.; Chen, X.J. Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. Agric. Sci. China 2011, 10, 1374–1384. [Google Scholar] [CrossRef]
- Eickhorst, T.; Tippkötter, R. Improved detection of soil microorganisms using fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD-FISH). Soil Biol. Biochem. 2008, 40, 1883–1891. [Google Scholar] [CrossRef]
- Han, Y.; Xu, L.; Liu, L.; Yi, M.; Guo, E.; Zhang, A.; Yi, H. Illumina sequencing reveals a rhizosphere bacterial community associated with foxtail millet smut disease suppression. Plant Soil 2017, 410, 411–421. [Google Scholar] [CrossRef]
- Ashworth, A.J.; DeBruyn, J.M.; Allen, F.L.; Radosevich, M.; Owens, P.R. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol. Biochem. 2017, 114, 210–219. [Google Scholar] [CrossRef]
- Tan, Y.; Cui, Y.; Li, H.; Kuang, A.; Li, X.; Wei, Y.; Ji, X. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol. Res. 2017, 194, 10–19. [Google Scholar] [CrossRef]
- Degnan, P.H.; Ochman, H. Illumina-based analysis of microbial community diversity. ISME J. 2012, 6, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Nacke, H.; Thürmer, A.; Wollherr, A.; Will, C.; Hodac, L.; Herold, N.; Schöning, I.; Schrumpf, M.; Daniel, R. Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. PLoS ONE 2011, 6, e17000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Mao, H.; Li, X. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour. Technol. 2018, 249, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Mojib, N.; Hakim, J.A.; Hawes, I.; Tanabe, Y.; Andersen, D.T.; Bej, A.K. Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee, East Antarctica. Front. Microbiol. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, M.; Xu, C.; Chen, J.; Zhu, C.; Li, J.; Lv, G. Characteristics of bacterial community in cloud water at Mt Tai: Similarity and disparity under polluted and non-polluted cloud episodes. Atmos. Chem. Phys. 2017, 17, 5253–5270. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, J.; Sengupta, A.; Grewal, P.; Dick, W.A. Functional Predictions of Microbial Communities in Soil as Affected by Long-term Tillage Practices. Agric. Environ. Lett. 2017, 2, 170031. [Google Scholar] [CrossRef] [Green Version]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- del Carmen Portillo, M.; Franquès, J.; Araque, I.; Reguant, C.; Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 2016, 219, 56–63. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, Y.; Lv, F.; Hu, L.; Wei, L.; Yuan, Z.; Lin, H. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping. Appl. Soil Ecol. 2018, 125, 117–127. [Google Scholar] [CrossRef]
- Enwall, K.; Nyberg, K.; Bertilsson, S.; Cederlund, H.; Stenström, J.; Hallin, S. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol. Biochem. 2007, 39, 106–115. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- De Quadros, P.D.; Zhalnina, K.; Davis-Richardson, A.; Fagen, J.R.; Drew, J.; Bayer, C.; Camargo, F.A.O.; Triplett, E.W. The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical acrisol. Diversity 2012, 4, 375–395. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Srivastava, D.S.; Emmett Duffy, J.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 2006, 443, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Ladau, J.; Clemente, J.C.; Leff, J.W.; Owens, S.M.; Pollard, K.S.; Knight, R.; Gilbert, J.A.; McCulley, R.L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 2013, 342, 621–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.H.; Huang, X.Q.; Zhang, F.G.; Zhao, D.K.; Yang, X.M.; Shen, Q.R. Application of Trichoderma harzianum SQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. J. Sci. Food Agric. 2012, 92, 2465–2470. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Gu, T.; Zhang, W.; Shen, Q.; Yin, S.; Qiu, H. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Kennedy, A.C.; Smith, K.L. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 1995, 170, 75–86. [Google Scholar] [CrossRef]
- Mazzola, M. Assessment and Management of Soil Microbial Community Structure for Disease Suppression. Annu. Rev. Phytopathol. 2004, 42, 35–59. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, D.; Ruan, Y.; Xue, C.; Zhang, J.; Li, R.; Shen, Q. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana Fusarium wilt disease suppression induced by bio-organic fertilizer application. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.; Kruijt, M.; De Bruijn, I.; Dekkers, E.; Van Der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M.; et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Antoun, H.; Beauchamp, C.J.; Goussard, N.; Chabot, R.; Lalande, R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 1998, 204, 57–67. [Google Scholar] [CrossRef]
- Li, X.g.; Ding, C.f.; Zhang, T.l.; Wang, X. xiang Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 2014, 72, 11–18. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Zhang, L.; Yang, J.; Liao, B.; Li, X.; Chen, S. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. 2017, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 1997, 197, 61–69. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. FEEDBACK IN THE PLANT-SOIL SYSTEM. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef] [Green Version]
- LIU, J.; WU, F.; YANG, Y. Effects of Cinnamic Acid on Bacterial Community Diversity in Rhizosphere Soil of Cucumber Seedlings Under Salt Stress. Agric. Sci. China 2010, 9, 266–274. [Google Scholar] [CrossRef]
- Li, X.; Rui, J.; Xiong, J.; Li, J.; He, Z.; Zhou, J.; Yannarell, A.C.; Mackie, R.I. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere. PLoS ONE 2014, 9, e112609. [Google Scholar] [CrossRef]
Seasons | Samples | TCN (g/kg) | TCP (g/kg) | TCK (g/kg) | TOC (g/kg) | pH |
---|---|---|---|---|---|---|
Winter | NCS | 2.66 ± 0.33ab | 1.17 ± 0.04d | 21.95 ± 0.58c | 21.70 ± 0.64b | 4.88 ± 0.08b |
CyS1 | 0.99 ± 0.16c | 1.66 ± 0.03c | 27.88 ± 1.13b | 11.16 ± 1.45c | 5.84 ± 0.33a | |
CyS3 | 2.09 ± 0.26b | 2.82 ± 0.44b | 30.17 ± 1.03a | 21.62 ± 1.57b | 5.11 ± 0.32b | |
CyS5 | 3.27 ± 0.68a | 4.18 ± 0.23a | 9.27 ± 0.22d | 36.04 ± 3.33a | 4.49 ± 0.01c | |
Summer | NCS | 3.13 ± 0.91a | 1.47 ± 0.35c | 21.86 ± 2.10b | 21.44 ± 1.23b | 6.20 ± 0.21b |
CyS1 | 1.02 ± 0.28b | 1.97 ± 0.27bc | 31.21 ± 2.97a | 8.35 ± 1.12c | 6.48 ± 0.25a | |
CyS3 | 1.52 ± 0.78b | 2.35 ± 0.71b | 31.86 ± 1.71a | 19.23 ± 0.68b | 6.09 ± 0.13b | |
CyS5 | 2.68 ± 0.48a | 4.18 ± 0.38a | 9.30 ± 1.17c | 33.90 ± 4.49a | 5.59 ± 0.10c |
Predicted Gene | Winter | Summer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated * Fallow Fields | Cultivated Fields | Cultivated * Fallow Fields | Cultivated Fields | |||||||
F | P | F | P | F | P | F | P | |||
Nitrogen-cycling genes | Denitrification | narG | 7.29 | 0.005 | 4.50 | 0.044 | 0.84 | 0.500 | 4.11 | 0.054 |
narJ | 4.26 | 0.029 | 3.90 | 0.060 | 0.93 | 0.456 | 4.08 | 0.055 | ||
narI | 4.23 | 0.030 | 3.96 | 0.059 | 1.48 | 0.270 | 4.35 | 0.048 | ||
nosZ | 3.55 | 0.048 | 6.14 | 0.020 | 2.74 | 0.090 | 3.30 | 0.084 | ||
ALAS | 1.81 | 0.200 | 0.45 | 0.652 | 0.63 | 0.608 | 2.20 | 0.166 | ||
napA | 4.42 | 0.026 | 1.22 | 0.339 | 4.99 | 0.018 | 1.13 | 0.364 | ||
napB | 2.97 | 0.074 | 0.83 | 0.468 | 6.25 | 0.008 | 0.78 | 0.489 | ||
norB | 1.66 | 0.228 | 1.89 | 0.206 | 8.73 | 0.002 | 0.14 | 0.872 | ||
nirK | 17.4 | <0.001 | 17.50 | <0.001 | 3.99 | 0.035 | 3.28 | 0.085 | ||
N fixation | nifD | 2.34 | 0.125 | 0.21 | 0.812 | 5.16 | 0.016 | 4.13 | 0.054 | |
Nitrification | amoA.amoB | 25.70 | <0.001 | 26.00 | <0.001 | 1.43 | 0.283 | 10.50 | 0.004 | |
Carbon-degrading genes | glycolate oxidase | 5.40 | 0.014 | 2.70 | 0.121 | 1.69 | 0.222 | 0.71 | 0.519 | |
alpha-amylase | 0.69 | 0.580 | 0.56 | 0.601 | 1.89 | 0.186 | 24.40 | <0.001 | ||
Starch | glucoamylase | 1.69 | 0.221 | 2.75 | 0.117 | 0.52 | 0.676 | 0.31 | 0.741 | |
Cellulose | endoglucanase | 2.52 | 0.107 | 5.92 | 0.023 | 3.34 | 0.056 | 6.02 | 0.022 | |
Chitin | chitinase | 1.69 | 0.222 | 3.18 | 0.090 | 1.39 | 0.293 | 22.20 | <0.001 | |
xylose isomerase | 11.00 | 0.001 | 11.70 | 0.003 | 0.45 | 0.721 | 2.07 | 0.182 | ||
Lignin | catalase | 13.4 | <0.001 | 1.50 | 0.273 | 0.66 | 0.594 | 2.34 | 0.152 | |
Hemicellulose | beta-glucosidase | 35.3 | <0.001 | 7.09 | 0.014 | 0.67 | 0.587 | 3.91 | 0.060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alami, M.M.; Xue, J.; Ma, Y.; Zhu, D.; Gong, Z.; Shu, S.; Wang, X. Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. Diversity 2020, 12, 57. https://doi.org/10.3390/d12020057
Alami MM, Xue J, Ma Y, Zhu D, Gong Z, Shu S, Wang X. Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. Diversity. 2020; 12(2):57. https://doi.org/10.3390/d12020057
Chicago/Turabian StyleAlami, Mohammad Murtaza, Jinqi Xue, Yutao Ma, Dengyan Zhu, Zedan Gong, Shaohua Shu, and Xuekui Wang. 2020. "Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields" Diversity 12, no. 2: 57. https://doi.org/10.3390/d12020057
APA StyleAlami, M. M., Xue, J., Ma, Y., Zhu, D., Gong, Z., Shu, S., & Wang, X. (2020). Structure, Diversity, and Composition of Bacterial Communities in Rhizospheric Soil of Coptis chinensis Franch under Continuously Cropped Fields. Diversity, 12(2), 57. https://doi.org/10.3390/d12020057