Effects of Fertilization Methods on Chemical Properties, Enzyme Activity, and Fungal Community Structure of Black Soil in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Fertilizer Preparation
2.3. Experimental Design
2.4. Soil Physicochemical Property Analysis
2.5. Analysis of Soil Enzyme Activities
2.6. Fungal Community Diversity Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Soil Enzyme Activity
3.3. Fungal Taxonomic Classification and Relative Abundance
3.4. Fungal Community Diversity
3.5. Fungal Community Structure
3.6. The Relationship between Soil Properties and Fungal Community Composition
4. Discussion
4.1. Impact of Different Fertilization Strategies on the Properties of Soil
4.2. Impact of Different Fertilization Treatments on Soil Enzymes
4.3. Impact of Fertilization Treatments on Fungal Diversity in Soil
4.4. Impact of Fertilization Treatments on Fungal Community Structure
4.5. The Relationship between Soil Properties and the Composition of Fungal Communities
4.6. Impact of Different Fertilization Treatment on Soil-Borne Plant Pathogens
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marquez, O.; Julia, G.d.B. Soil Taxonomy, a Basic System of Soil Classification for Making and Interpreting Soil Surveys. Geofis. Int. 1975, 99, 270. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Guo, H.; Meng, D.; Wang, Y.; Wong, P.K. Interaction between Microbes DNA and Atrazine in Black Soil Analyzed by Spectroscopy. Clean Soil 2015, 43, 867–871. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Qin, Y.; Yu, S.; Chu, H.; Jian, J.; Liu, X.; Wang, G.J.S.B. Diversity and Distribution Patterns of Acidobacterial Communities in the Black Soil Zone of Northeast CHINA. Soil Biol. Biochem. 2016, 95, 212–222. [Google Scholar] [CrossRef]
- Wang, W.; Chen, C.; Wu, X.; Xie, K.; Yin, C.-M.; Hou, H.; Xie, X. Effects of Reduced Chemical Fertilizer Combined with Straw Retention on Greenhouse Gas Budget and Crop Production in Double Rice Fields. Biol. Fertil. Soils 2018, 55, 89–96. [Google Scholar] [CrossRef]
- Soman, C.; Li, D.; Wander, M.M.; Kent, A.D. Long-Term Fertilizer and Crop-Rotation Treatments Differentially Affect Soil Bacterial Community Structure. Plant Soil 2017, 413, 145–159. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, X.; Zhou, B.; Zhao, B.; Mingchao, M.; Guan, D.; Li, J.; Chen, S.; Cao, F.; Shen, D.; et al. Thirty Four Years of Nitrogen Fertilization Decreases Fungal Diversity and Alters Fungal Community Composition in Black Soil in Northeast China. Soil Biol. Biochem. 2016, 95, 135–143. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, M.; Kwack, Y.B.; Kwak, Y.S. First Report of Nigrospora sp. Causing Kiwifruit Postharvest Black Rot. N. Z. J. Exp. Agric. 2016, 45, 75–79. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Burger, M.; Yang, L.; Gong, P.; Wu, Z. Changes in Soil Carbon and Enzyme Activity as a Result of Different Long-Term Fertilization Regimes in a Greenhouse Field. PLoS ONE 2015, 10, e0118371. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct Effects of Soil Organic Matter on Productivity Mirror Those Observed with Organic Amendments. Plant Soil 2017, 423, 1–11. [Google Scholar] [CrossRef]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Guo, S.; Shen, Q. Insight into How Organic Amendments Can Shape the Soil Microbiome in Long-Term Field Experiments as Revealed by Network Analysis. Soil Biol. Biochem. 2016, 99, 137–149. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Brzezińska, M.; Siwik-Ziomek, A.; Koper, J. Activity of Selected Enzymes and Phosphorus Content in Soils of Former Sulphur Mines. Sci. Total Environ. 2019, 708, 134545. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of Fertilizers for Enhanced Nitrogen Use Efficiency—Trends and Perspectives. Sci. Total Environ. 2020, 731, 139113. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ma, H.; Zhao, Q.; Zhang, S.; Wei, W.; Ding, X. Changes in Soil Bacterial Community and Enzyme Activity under Five Years Straw Returning in Paddy Soil. Eur. J. Soil Biol. 2020, 100, 103215. [Google Scholar] [CrossRef]
- Biswas, T.; Kole, S.C. Soil Organic Matter and Microbial Role in Plant Productivity and Soil Fertility. In Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 2: Soil-Microbe-Plant Interaction; Adhya, T.K., Mishra, B.B., Annapurna, K., Verma, D.K., Kumar, U., Eds.; Springer: Singapore, 2017; pp. 219–238. [Google Scholar] [CrossRef]
- Grandy, A.S.; Strickland, M.S.; Lauber, C.L.; Bradford, M.A.; Fierer, N. The Influence of Microbial Communities, Management, and Soil Texture on Soil Organic Matter Chemistry. Geoderma 2009, 150, 278–286. [Google Scholar] [CrossRef]
- Wu, T. Can Ectomycorrhizal Fungi Circumvent the Nitrogen Mineralization for Plant Nutrition in Temperate Forest Ecosystems? Soil Biol. Biochem. 2011, 43, 1109–1117. [Google Scholar] [CrossRef]
- Guo, J.; Liu, W.; Zhu, C.; Luo, G.; Kong, Y.; Ling, N.; Wang, M.; Dai, J.; Shen, Q.; Guo, S. Bacterial Rather Than Fungal Community Composition Is Associated with Microbial Activities and Nutrient-Use Efficiencies in a Paddy Soil with Short-Term Organic Amendments. Plant Soil 2018, 424, 335–349. [Google Scholar] [CrossRef]
- Edwards, A.H. The Semi-Micro Kjeldahl Method for the Determination of Nitrogen in Coal. J. Appl. Chem. 1954, 4, 330–340. [Google Scholar] [CrossRef]
- Barrow, N.J.; Shaw, T.C. Sodium Bicarbonate as an Extractant for Soil Phosphate III. Effects of the Buffering Capacity of a Soil for Phosphate. Geoderma 1976, 16, 273–283. [Google Scholar] [CrossRef]
- Tu, Z.; Chen, L.; Yu, X.; Zheng, Y. Rhizosphere Soil Enzymatic and Microbial Activities in Bamboo Forests in Southeastern China. Soil Sci. Plant Nutr. 2014, 60, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Mulvaney, R.L.; Khan, S. Diffusion Methods to Determine Different Forms of Nitrogen in Soil Hydrolysates. Soil Sci. Soc. Am. J. 2001, 65, 1284–1292. [Google Scholar] [CrossRef]
- Perrier, E.R.; Kellogg, M. Colorimetric Determination of Soil Organic Matter. Soil Sci. 1960, 90, 104–106. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, Q.; Wang, L.; Liu, W.; Liu, X.; Huang, Y.; Christie, P. Response of Soil Enzymes and Microbial Communities to Root Extracts of the Alien Alternanthera philoxeroides. Arch. Agron. Soil Sci. 2017, 64, 708–717. [Google Scholar] [CrossRef]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.; Costello, E.; Fierer, N.; Peña, A.; Goodrich, J.; Gordon, J.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczynski, J.; Stombaugh, J.; Walters, W.; González, A.; Caporaso, J.; Knight, R. Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. Curr. Protoc. Bioinform. 2011, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Price, M.; Dehal, P.; Arkin, A. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, B.; Xu, M.; Zhang, H.; He, X.; Zhang, L.; Gao, S. Intensified Soil Acidification from Chemical N Fertilization and Prevention by Manure in an 18-Year Field Experiment in the Red Soil of Southern China. J. Soils Sediments 2015, 15, 260–270. [Google Scholar] [CrossRef]
- Morugan-Coronado, A.; Garcia-Orenes, F.; McMillan, M.; Pereg, L. The Effect of Moisture on Soil Microbial Properties and Nitrogen Cyclers in Mediterranean Sweet Orange Orchards under Organic and Inorganic Fertilization. Sci. Total Environ. 2019, 655, 158–167. [Google Scholar] [CrossRef]
- Li, R.; Khafipour, E.; O Krause, D.; Entz, M.; De Kievit, T.R.; Fernando, D. Pyrosequencing Reveals the Influence of Organic and Conventional Farming Systems on Bacterial Communities. PLoS ONE 2012, 7, e51897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Zhang, X.; Xiuping, W.; Shao, H.; Jingsong, Y.; Xiangping, W. Soil Enzymes as Indicators of Saline Soil Fertility under Various Soil Amendments. Agric. Ecosyst. Environ. 2017, 237, 274–279. [Google Scholar] [CrossRef]
- Song, Z.; Zhu, P.J.; Gao, H.; Peng, C.; Deng, A.X.; Zheng, C.; Mannaf, M.; Islam, M.; Zhang, W. Effects of Long-Term Fertilization on Soil Organic Carbon Content and Aggregate Composition under Continuous Maize Cropping in Northeast China. J. Agric. Sci. 2014, 153, 1–9. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, X.; Guan, D.; Zhao, B.; Ma, M.; Zhou, B.; Cao, F.; Yang, X.; Li, L.; Li, J. Influence of Inorganic Fertilizer and Organic Manure Application on Fungal Communities in a Long-Term Field Experiment of Chinese Mollisols. Appl. Soil Ecol. 2017, 111, 114–122. [Google Scholar] [CrossRef]
- Sun, L.; Xun, W.; Huang, T.; Zhang, G.; Gao, J.; Ran, W.; Li, D.; Shen, Q.; Zhang, R. Alteration of the Soil Bacterial Community during Parent Material Maturation Driven by Different Fertilization Treatments. Soil Biol. Biochem. 2016, 96, 207–215. [Google Scholar] [CrossRef]
- Mette, V.; Frédéric, H.; Ignacio, R.C.J.; Anders, M.; Prosser, J.I.; Søren, C. Rhizosphere Bacterial Community Composition Responds to Arbuscular Mycorrhiza, but Not to Reductions in Microbial Activity Induced by Foliar Cutting. FEMS Microbiol. Ecol. 2008, 64, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Tibbett, M. Ectomycorrhizal Symbiosis Can Enhance Plant Nutrition Through Improved Access to Discrete Organic Nutrient Patches of High Resource Quality. Ann. Bot. 2002, 89, 783–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xian, F.U.; Shuqing, Y.; Deping, L.; Yue, L. Effects of Nitrogen Application on Soil Microbial Biomass Carbon and Nitrogen of Intercropping Wheat-Corn in Hetao Irrigation Area. Ecol. Environ. Sci. 2018, 27, 1652–1657. [Google Scholar] [CrossRef]
- Song, X.; Pan, Y.; Li, L.; Wu, X.; Wang, Y. Composition and Diversity of Rhizosphere Fungal Community in Coptis chinensis Franch. Continuous Cropping Fields. PLoS ONE 2018, 13, e0193811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Tao, R.; Ling, N.; Chu, G. Chemical, Organic and Bio-Fertilizer Management Practices Effect on Soil Physicochemical Property and Antagonistic Bacteria Abundance of a Cotton Field: Implications for Soil Biological Quality. Soil Tillage Res. 2017, 167, 30–38. [Google Scholar] [CrossRef]
- Miao, C.P.; Mi, Q.L.; Qiao, X.G.; Zheng, Y.K.; Zhao, L.X. Rhizospheric Fungi of Panax notoginseng: Diversity and Antagonism to Host Phytopathogens. J. Ginseng Res. 2016, 40, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, G.; Jin, J.; Liu, J.; Liu, X. Soil Microbial Communities Are Affected More by Land Use Than Seasonal Variation in Restored Grassland and Cultivated Mollisols in Northeast China. Eur. J. Soil Biol. 2011, 47, 357–363. [Google Scholar] [CrossRef]
- Maina, P.; Okoth, S.; Monda, E. Impact of Land Use on Distribution and Diversity of Fusarium spp. in Taita Taveta, Kenya. Trop. Subtrop. Agroecosyst. 2009, 11, 323–335. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; A Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities Across a pH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.; Zhang, C.; Ning, Q.; Li, W. Mortierella elongata’s Roles in Organic Agriculture and Crop Growth Promotion in a Mineral Soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Meng, T.; Yang, Y.; Cai, Z.; Ma, Y. The Control of Fusarium oxysporum in Soil Treated with Organic Material Under Anaerobic Condition Is Affected by Liming and Sulfate Content. Biol. Fertil. Soils 2018, 54, 295–307. [Google Scholar] [CrossRef]
Period of Growth | Sample | Quality Sequences | Fungal Sequences | Number of Species a | Chao 1 Richness a | Shannon’s Diversity a | PD _Whole_Tree a | Simpson’s Diversity a | Coverage a (%) |
---|---|---|---|---|---|---|---|---|---|
Seedling stage | No Fertilizer | 44,165 ± 842.0 | 43,841 ± 817.0 | 426 ± 32.0 a | 568 ± 32.0 ab | 4.91 ± 0.34 a | 103.48 ± 12.64 ab | 0.0113 ± 0.0150 a | 99.60 |
Bio-organic + Humic Acid | 42,243 ± 5929 | 41,950 ± 5852 | 490 ± 33.0 a | 666 ± 46.0 a | 5.51 ± 0.05 a | 118.05 ± 3.600 a | 0.0033 ± 0.0040 b | 99.53 | |
Bio-organic + Chemical | 40,350 ± 3217 | 40,124 ± 3183 | 406 ± 16.0 a | 515 ± 20.0 b | 5.20 ± 0.17 a | 95.53 ± 4.430 b | 0.0033 ± 0.0400 ab | 99.66 | |
Chemical Fertilizer | 42,251 ± 6977 | 41,961 ± 6914 | 407 ± 43.0 a | 511 ± 56.0 b | 5.09 ± 0.46 a | 98.01 ± 9.400 ab | 0.0216 ± 0.0310 ab | 99.67 | |
Jointing stage | No Fertilizer | 44,948 ± 2914 | 44,585 ± 2896 | 430 ± 17.0 a | 574 ± 45.0 a | 5.08 ± 0.15 a | 101.12 ± 4.080 a | 0.0001 ± 0.0001 ab | 99.60 |
Bio-organic + Humic Acid | 43,838 ± 3143 | 43,480 ± 3128 | 434 ± 19.0 a | 581 ± 35.0 a | 5.27 ± 0.14 a | 100.80 ± 3.810 ab | 0.0045 ± 0.0060 b | 99.58 | |
Bio-organic + Chemical | 44,785 ± 1227 | 44,415 ± 1153 | 425 ± 3.00 a | 569 ± 26.0 a | 4.90 ± 0.13 a | 95.86 ± 1.520 ab | 0.0153 ± 0.0200 a | 99.60 | |
Chemical Fertilizer | 41,566±2349 | 41,295 ± 2352 | 400 ± 36.0 a | 534 ± 58.0 a | 5.09 ± 0.28 a | 88.30 ± 7.630 b | 0.0065 ± 0.0090 ab | 99.62 | |
Heading period | No Fertilizer | 45,884 ± 546.0 | 45,564 ± 484.0 | 380 ± 28.0 b | 481 ± 45.0 b | 4.74 ± 0.69 a | 99.77 ± 11.03 b | 0.0706 ± 0.0920 a | 99.67 |
Bio-organic + Humic Acid | 42,116 ± 1548 | 41,801 ± 1569 | 501 ± 10.0 a | 657 ± 28.0 a | 5.33±0.38 a | 114.66 ± 2.570 ab | 0.0190 ± 0.0250 a | 99.52 | |
Bio-organic + Chemical | 44,280 ± 1429 | 43,931 ± 1402 | 587 ± 36.0 a | 776 ± 67.0 a | 5.63 ± 0.27 a | 132.97 ± 7.740 a | 0.0123 ± 0.0160 a | 99.44 | |
Chemical Fertilizer | 43,644 ± 1206 | 43,323 ± 1192 | 530 ± 68.0 a | 707 ± 76.0 a | 5.75 ± 0.49 a | 127.42 ± 14.92 a | 0.0109 ± 0.0140 a | 99.52 | |
Maturity | No Fertilizer | 44,248 ± 1426 | 43,911 ± 1445 | 562 ± 37.0 a | 747 ± 69.0 a | 5.52 ± 0.11 a | 128.34 ± 5.270 a | 0.0025 ± 0.0030 a | 99.43 |
Bio-organic + Humic Acid | 43,964 ± 1426 | 43,657 ± 2751 | 692 ± 96.0 a | 692 ± 96.0 a | 5.82 ± 0.07 a | 124.95 ± 11.35 a | 0.0014 ± 0.0020 a | 99.53 | |
Bio-organic + Chemical | 42,428 ± 2002 | 41,579 ± 1480 | 674±133 a | 674 ± 133 a | 5.31 ± 0.25 a | 133.09 ± 20.21 a | 0.0088 ± 0.0120 a | 99.50 | |
Chemical Fertilizer | 45,264 ± 4131 | 44,821 ± 4131 | 613±53.0 a | 613 ± 53.0 a | 5.31 ± 0.28 a | 107.93 ± 5.010 a | 0.0107 ± 0.0150 a | 99.58 |
Environmental Factors | r Value | p Value |
---|---|---|
pH | −0.08865 | 0.75 |
Organic matter (OM) | 0.2156 | 0.011 |
Total nitrogen (TN) | 0.1816 | 0.021 |
Total phosphorus (TP) | 0.122 | 0.112 |
Total potassium (TK) | −0.1194 | 0.854 |
Alkaline nitrogen (AN) | 0.1219 | 0.134 |
Available phosphorus (AP) | 0.3166 | 0.001 |
Available potassium (AK) | 0.1504 | 0.064 |
Phosphatase (P2O5) | 0.139 | 0.056 |
Urease (NH3+-N) | 0.125 | 0.087 |
Sucrase | −0.01976 | 0.553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Fu, H.; Kong, X.; Ma, L.; Liu, C.; Fang, Y.; Zhang, Z.; Song, F.; Yang, F. Effects of Fertilization Methods on Chemical Properties, Enzyme Activity, and Fungal Community Structure of Black Soil in Northeast China. Diversity 2020, 12, 476. https://doi.org/10.3390/d12120476
Huang M, Fu H, Kong X, Ma L, Liu C, Fang Y, Zhang Z, Song F, Yang F. Effects of Fertilization Methods on Chemical Properties, Enzyme Activity, and Fungal Community Structure of Black Soil in Northeast China. Diversity. 2020; 12(12):476. https://doi.org/10.3390/d12120476
Chicago/Turabian StyleHuang, Mingjiao, Haiyan Fu, Xiangshi Kong, Liping Ma, Chunguang Liu, Yuan Fang, Zhengkun Zhang, Fuqiang Song, and Fengshan Yang. 2020. "Effects of Fertilization Methods on Chemical Properties, Enzyme Activity, and Fungal Community Structure of Black Soil in Northeast China" Diversity 12, no. 12: 476. https://doi.org/10.3390/d12120476
APA StyleHuang, M., Fu, H., Kong, X., Ma, L., Liu, C., Fang, Y., Zhang, Z., Song, F., & Yang, F. (2020). Effects of Fertilization Methods on Chemical Properties, Enzyme Activity, and Fungal Community Structure of Black Soil in Northeast China. Diversity, 12(12), 476. https://doi.org/10.3390/d12120476