Synthesis and Characterization of New Monosubstituted Pillar[5]arene with Terminal Carboxyl Group
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
General
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trucillo, P. Drug carriers: Classification, administration, release profiles, and industrial approach. Processes 2021, 9, 470. [Google Scholar] [CrossRef]
- Rajoriya, V.; Gupta, R.; Vengurlekar, S.; Singh, U.S. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int. J. Pharm. 2024, 655, 123986. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, Z.; Liu, H.; Man, J.; Oladejo, A.O.; Ibrahim, S.; Shengyi, W.; Hao, B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024, 16, 674. [Google Scholar] [CrossRef] [PubMed]
- Yakimova, L.; Padnya, P.; Tereshina, D.; Kunafina, A.; Nugmanova, A.; Osin, Y.; Evtugyn, V.; Stoikov, I. Interpolyelectrolyte mixed nanoparticles from anionic and cationic thiacalix[4]arenes for selective recognition of model biopolymers. J. Mol. Liq. 2019, 279, 9–17. [Google Scholar] [CrossRef]
- Puris, E.; Fricker, G.; Gynther, M. The role of solute carrier transporters in efficient anticancer drug delivery and therapy. Pharmaceutics 2023, 15, 364. [Google Scholar] [CrossRef]
- Vishwakarma, M.; Agrawal, P.; Soni, S.; Tomar, S.; Haider, T.; Kashaw, S.K.; Soni, V. Cationic nanocarriers: A potential approach for targeting negatively charged cancer cell. Adv. Colloid Interface Sci. 2024, 327, 103160. [Google Scholar] [CrossRef]
- Cheng, X.; Xie, Q.; Sun, Y. Advances in nanomaterial-based targeted drug delivery systems. Front. Bioeng. Biotechnol. 2023, 11, 1177151. [Google Scholar] [CrossRef]
- Ghaemi, A.; Khanizadeh, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Rahdar, A.; Fathi-karkan, S. Targeted Nano-Delivery of Flutamide with polymeric and lipid nanoparticles. Eur. Polym. J. 2024, 213, 113124. [Google Scholar] [CrossRef]
- Cao, Z.; Zuo, X.; Liu, X.; Xu, G.; Yong, K.T. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv. Colloid Interface Sci. 2024, 330, 103206. [Google Scholar] [CrossRef]
- Rahimkhoei, V.; Alzaidy, A.H.; Abed, M.J.; Rashki, S.; Salavati-Niasari, M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv. Colloid Interface Sci. 2024, 329, 103204. [Google Scholar] [CrossRef]
- Agiba, A.M.; Arreola-Ramírez, J.L.; Carbajal, V.; Segura-Medina, P. Light-responsive and dual-targeting liposomes: From mechanisms to targeting strategies. Molecules 2024, 29, 636. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2024, 15, 1593. [Google Scholar] [CrossRef] [PubMed]
- Galukhin, A.; Erokhin, A.; Imatdinov, I.; Osin, Y. Investigation of DNA binding abilities of solid lipid nanoparticles based on p-tert-butylthiacalix[4]arene platform. RSC Adv. 2015, 5, 33351–33355. [Google Scholar] [CrossRef]
- Huang, Z.; Hua, S.; Yang, Y.; Fang, J. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol. Sin. 2008, 29, 1094–1102. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, S.; Liu, C.; Zhang, H.; Zhao, Y. Pillar[n]arene-based polymeric systems for biomedical applications. Coord. Chem. Rev. 2023, 491, 215260. [Google Scholar] [CrossRef]
- Nazarova, A.; Yakimova, L.; Filimonova, D.; Stoikov, I. Surfactant effect on the physicochemical characteristics of solid lipid nanoparticles based on pillar[5]arenes. Int. J. Mol. Sci. 2022, 23, 779. [Google Scholar] [CrossRef]
- Yakimova, L.S.; Shurpik, D.N.; Guralnik, E.G.; Evtugyn, V.G.; Osin, Y.N.; Stoikov, I.I. Fluorescein-loaded solid lipid nanoparticles based on monoamine pillar[5]arene: Synthesis and interaction with DNA. ChemNanoMat 2018, 4, 919–923. [Google Scholar] [CrossRef]
- Li, X.; Shen, M.; Yang, J.; Liu, L.; Yang, Y.W. Pillararene-based stimuli-responsive supramolecular delivery systems for cancer therapy. Adv. Mater. 2024, 36, 2313317. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Wang, S.; Dai, N.-N.; Xiao, Y.; Zhou, Y.; Tian, W.-C.; Sun, D.; Li, Q.; Wang, Y.; Wei, W.-T. Carbon-carbon triple bond cleavage and reconstitution to achieve aryl amidation using nitrous acid esters. Nat. Commun. 2025, 16, 993. [Google Scholar] [CrossRef]
- Han, Y.; Huo, G.-F.; Sun, J.; Yan, C.-G.; Lu, Y.; Lin, C.; Wang, L. Axle length- and solvent-controlled construction of (pseudo)[1]rotaxanes from mono-thiourea-functionalised pillar[5]arene derivatives. Supramol. Chem. 2017, 29, 547–552. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, D.; Wang, L.; He, M.; Zhou, L.; Shollmeyer, D.; Meier, H. Monoester copillar[5]arenes: Synthesis, unusual self-inclusion behavior, and molecular recognition. Chem.–Eur. J. 2013, 19, 7064–7070. [Google Scholar] [CrossRef] [PubMed]
- Nazarova, A.; Padnya, P.; Cragg, P.J.; Stoikov, I. [1]Rotaxanes based on phosphorylated pillar[5]arenes. New J. Chem. 2022, 46, 2033–2037. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakimova, L.; Filimonova, D.; Nazarova, A.; Stoikov, I. Synthesis and Characterization of New Monosubstituted Pillar[5]arene with Terminal Carboxyl Group. Molbank 2025, 2025, M2004. https://doi.org/10.3390/M2004
Yakimova L, Filimonova D, Nazarova A, Stoikov I. Synthesis and Characterization of New Monosubstituted Pillar[5]arene with Terminal Carboxyl Group. Molbank. 2025; 2025(2):M2004. https://doi.org/10.3390/M2004
Chicago/Turabian StyleYakimova, Luidmila, Darya Filimonova, Anastasia Nazarova, and Ivan Stoikov. 2025. "Synthesis and Characterization of New Monosubstituted Pillar[5]arene with Terminal Carboxyl Group" Molbank 2025, no. 2: M2004. https://doi.org/10.3390/M2004
APA StyleYakimova, L., Filimonova, D., Nazarova, A., & Stoikov, I. (2025). Synthesis and Characterization of New Monosubstituted Pillar[5]arene with Terminal Carboxyl Group. Molbank, 2025(2), M2004. https://doi.org/10.3390/M2004