Synthesis and Antibacterial Studies of a New Au(III) Complex with 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Spectral Measurements
3.2. Antimicrobial Assay
4. Experimental Part
4.1. Synthesis and Characterization
4.1.1. Synthesis of Au(III) Complex of 6-Methyl-2-thioxo-2,3-dihydropyrimidin-4(1H)-one—General Procedure
4.1.2. Spectral Data of the Free Ligand and Its Metal Complex
- UV-Vis (DMSO) of L: λmax= 257, 292 nm
- UV-Vis (DMSO) of Au(III) complex: λmax= 257, 272, 292 nm
4.1.3. Microwave Plasma—Atomic Emission Spectrometry (MP-AES) Determination of Au in the Complex
4.2. Antimicrobial Activity of Au(III) Complex of 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrett, R.H.; Grisham, C.M. Principles of Biochemistry with a Human Focus; Brooks/Cole Thomson Learning: Pacific Grove, CA, USA, 2001; p. 939. ISBN 0-03-097369-4. [Google Scholar]
- Astwood, E.B. The chemical nature of compounds which inhibit the function of the thyroid gland. J. Pharmacol. Exp. Ther. 1943, 78, 79–89. [Google Scholar]
- Oladipo, M.A.; Isola, K.T. Coordination Possibility of Uracil and Applications of Some of Its Complexes: A Review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 386–394. [Google Scholar] [CrossRef]
- Masoud, M.S.; Ramadana, M.S.; Ramadana, A.M.; Al-Saify, M.H. Complexing Properties and Applications of Some Biologically Active Nucleic Acid Constituents. Int. J. Innov. Res. Technol. Sci. Eng. 2020, 6, 23–39. Available online: https://ijisset.org/storage/Volume6/Issue6/IJISSET-060524.pdf (accessed on 14 May 2024).
- Marinova, P.E.; Tamahkyarova, K.D. Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review. Compounds 2024, 4, 186–213. [Google Scholar] [CrossRef]
- Bomfim, L.M.; de Araujo, F.A.; Dias, R.B.; Sales, C.B.S.; Gurgel Rocha, C.A.; Correa, R.S.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. Ruthenium(II) complexes with 6-methyl-2-thiouracil selectively reduce cell proliferation, cause DNA double-strand break and trigger caspase-mediated apoptosis through JNK/p38 pathways in human acute promyelocytic leukemia cells. Sci. Rep. 2019, 9, 11483–11500. [Google Scholar] [CrossRef] [PubMed]
- Marinova, P.; Tsoneva, S.; Frenkeva, M.; Blazheva, D.; Slavchev, A.; Penchev, P. New Cu(II), Pd(II) and Au(III) complexes with 2-thiouracil: Synthesis, Characteration and Antibacterial Studies. Russ. J. Gen. Chem. 2022, 92, 1578–1584. [Google Scholar] [CrossRef]
- Marinova, P.; Hristov, M.; Tsoneva, S.; Burdzhiev, N.; Blazheva, D.; Slavchev, A.; Varbanova, E.; Penchev, P. Synthesis, Characterization, and Antibacterial Studies of New Cu(II) and Pd(II) Complexes with 6-Methyl-2-Thiouracil and 6-Propyl-2-Thiouracil. Appl. Sci. 2023, 13, 13150–13168. [Google Scholar] [CrossRef]
- Skrobanska, M.; Zabiszak, M.; Taras-Goslinska, K.; Nowak, M.; Kaczmarek, M.T.; Frymark, J.; Michalska, D.; Jastrzab, R. Potentiometric and spectroscopic studies of the complex formation in the 6-methyl-2-thiouracil and copper(II) ion system. Polyhedron 2022, 223, 115964–115970. [Google Scholar] [CrossRef]
- Fernández-Moreira, V.; Herrera, R.P.; Concepción Gimeno, M. Anticancer properties of gold complexes with biologically relevant ligands. Pure Appl. Chem. 2018, 91, 247–269. [Google Scholar] [CrossRef]
- Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules 2023, 28, 4453–4466. [Google Scholar] [CrossRef] [PubMed]
- Goitia, H.; Villacampa, M.D.; Laguna, A.; Gimeno, M.C. Cytotoxic Gold(I) Complexes with Amidophosphine Ligands Containing Thiophene Moieties. Inorganics 2019, 7, 13–26. [Google Scholar] [CrossRef]
- Novakov, I.A.; Orlinson, B.S.; Navrotskii, M.B. Desulfurization of 2-Thioxo-1,2,3,4-tetrahydropyrimidin-4-ones with Oxiranes and 2-Haloacetonitriles. Russ. J. Org. Chem. 2005, 41, 607–609. [Google Scholar] [CrossRef]
- Golubyatnikova, L.G.; Khisamutdinov, R.A.; Grabovskii, S.A.; Kabal’nova, N.N.; Murinov, Y.I. Complexes of Palladium(II) and Platinum(II) with 6-tert-Butyl-2-thiouracil. Russ. J. Gen. Chem. 2017, 87, 117–121. [Google Scholar] [CrossRef]
- Shareena Dasari, T.P.; Zhang, Y.; Yu, H. Antibacterial Activity and Cytotoxicity of Gold(I) and (III) Ions and Gold Nanoparticles. Biochem. Pharmacol. 2015, 4, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dasari, T.; Deng, H.; Yu, H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2015, 3, 286–327. [Google Scholar] [CrossRef] [PubMed]
- Shaban, N.Z.; Masoud, M.S.; Awad, D.; Mawlawia, M.A.; Sadek, O.M. Effect of Cd, Zn and Hg complexes of barbituric acid and thiouracil on rat brain monoamine oxidase-B (in vitro). Chem.-Biol. Interact. 2014, 208, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Lusty, J.R.; Peeling, J.; Abdel-Aal, M.A. Complexes of 6-Methyl-2-thiouracil with Rhodium, Iridium, Platinum and Palladium. Inorg. Chim. Acta 1981, 56, 21–26. [Google Scholar] [CrossRef]
- Teleb, S.M.; Askar, M.E.; El-Kalyoubi, S.A.; Gaballa, A.S. Synthesis, characterization and antimicrobial activities of some 5-bromouracil−metal ion complexes. Bull. Chem. Soc. Ethiop. 2019, 33, 255–268. [Google Scholar] [CrossRef]
Assignment | L | AuL |
---|---|---|
ν(OH) | - | |
ν(NH) | 3115 sh | 3109 |
ν(NH) | 3080 | 3089 |
ν(=CH) | 3014 | |
ν(C=O) | 1676 m | 1642 |
1560 w | 1557 | |
ν(C=S) | 1242 | 1272 |
1167 s | 1167 |
Compound | Colour | Yield (%) | Melting Point (°C) | Solubility |
---|---|---|---|---|
L | colorless | 330 | soluble in DMSO | |
AuL | yellow-orange | 56 | >350 °C | limited solubility in DMSO and DMF; insoluble in H2O, EtOH, THF, EtOAc and C6H12. |
Atom | δ (13C) ppm | DEPT-135 | δ (1H) ppm | Multiplicity (J, Hz) | 1H-1H COSY | HMBC |
---|---|---|---|---|---|---|
1 (NH) | 12.29 | s | ||||
2 (C=S) | 175.87 | C | ||||
3 (NH) | 12.29 | s | ||||
4 (C=O) | 161.06 | C | ||||
5 | 103.72 | CH | 5.68 | d (0.9) | 1′ | 4 b, 6, 1′ |
6 | 153.20 | C | ||||
1′ | 18.11 | CH3 | 2.06 | d (0.7) | 5 | 5, 6 |
Atom | δ (13C) ppm 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One | δ (13C) ppm AuL | δ (13C) ppm 6-MeU | δ (1H) ppm 6-MeU |
---|---|---|---|---|
1 (NH) | - | - | - | 10.86 |
2 (C=S)/C=O | 175.87 | 174.09 | 151.43 | |
3 (NH) | - | - | - | 10.80 |
4 (C=O) | 161.06 | 160.60 | 163.98 | |
5 | 103.72 | 104.84 | 98.58 | 5.31 |
6 | 153.20 | 153.28 | 152.74 | |
1′ | 18.11 | 18.11 | 2.01 | |
DMSO | 40.31 |
Atom | L | AuL |
---|---|---|
1 (NH) | - | - |
2 (C=S) | 174.6 | 171.7; 173.6; 174.7 |
3 (NH) | - | - |
4 (C=O) | 163.0 | 160.1; 162.0; 163.0; 166.5 |
5 | 104.7 | 100.4; 104.7; 108.9; 109.9; 111.5 |
6 | 156.2 | 154.3; 154.7; 156.3; 157.2; 157.8 |
1′ | 20.2 | 19.3; 20.2; 20.4 |
DMSO-H6 | - | 40.7; 41.2 |
Metal Complex | Composition * | Formula | Molecular Weight | W(M)% calc./exp. |
---|---|---|---|---|
Au(III)L | [4LAu].6-MeU.DMSO.16H2O | C27H68N10O23S5Au | M = 1258.17 g/mol | 15.7/16.2 ± 1.2 |
[4LAu]. 6-MeU.2DMSO.6H2O | C29H54N10O14S6Au | M = 1156.15 g/mol | 17.0/16.2 ± 1.2 | |
[4LAu]. 6-MeU.2DMSO.5H2O | C29H52N10O13S6Au | M = 1138.14 g/mol | 17.3/16.2 ± 1.2 |
Test Microorganisms | DMSO | Compounds | |
---|---|---|---|
6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One | Au(III)L | ||
Inhibition Zone, mm | |||
Staphylococcus aureus ATCC 25923 | - | - | 16 |
Escherichia coli ATCC 8739 | - | - | 8 |
Enterococcus faecalis ATCC 19433 | - | 11 | 11 |
Salmonella enterica ssp. enterica ser. Enetritidis ATCC 13076 | - | - | 11 |
Pseudomonas aeruginosa ATCC 9027 | - | 9 | 9 |
Proteus vulgaris G | - | 9 * | - |
Bacillus subtilis ATCC 6633 | - | 9 * | 8 |
Bacillus cereus ATCC 11778 | - | 9 * | 9 |
Listeria monocytogenes ATCC 8787 | - | 9 * | - |
Klebsiella pneumoniae ATCC 13883 | - | 9 * | 12 * |
Candida albicans ATCC 10231 | - | 11 | 10 |
Saccharomyces cerevisiae | - | - | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinova, P.; Burdzhiev, N.; Blazheva, D.; Slavchev, A. Synthesis and Antibacterial Studies of a New Au(III) Complex with 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One. Molbank 2024, 2024, M1827. https://doi.org/10.3390/M1827
Marinova P, Burdzhiev N, Blazheva D, Slavchev A. Synthesis and Antibacterial Studies of a New Au(III) Complex with 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One. Molbank. 2024; 2024(2):M1827. https://doi.org/10.3390/M1827
Chicago/Turabian StyleMarinova, Petya, Nikola Burdzhiev, Denica Blazheva, and Aleksandar Slavchev. 2024. "Synthesis and Antibacterial Studies of a New Au(III) Complex with 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One" Molbank 2024, no. 2: M1827. https://doi.org/10.3390/M1827
APA StyleMarinova, P., Burdzhiev, N., Blazheva, D., & Slavchev, A. (2024). Synthesis and Antibacterial Studies of a New Au(III) Complex with 6-Methyl-2-Thioxo-2,3-Dihydropyrimidin-4(1H)-One. Molbank, 2024(2), M1827. https://doi.org/10.3390/M1827