Structural Modification of Epigallocatechin-3-gallate to (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl l-valinate in Four Steps
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl 3,4,5-trimethoxybenzoate (1)
3.3. Synthesis of (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-ol (2)
3.4. Synthesis of (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl (tert-butoxycarbonyl)-l-valinate (3)
3.5. Synthesis of (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl l-valinate (4)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Li, W.; Chen, Z.; Guo, Q.; Wang, C.; Santhanam, R.K.; Chen, H. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. Int. J. Biol. Macromol. 2019, 125, 605–611. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ma, R.; Sun, W.; Ji, Z. Antibacterial Activity of Epigallocatechin Gallate (EGCG) against Shigella flexneri. Int. J. Environ. Res. Public Health 2023, 20, 4676. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Li, Q.-S.; Zheng, X.-Q.; Lu, J.-L.; Liang, Y.-R. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules 2021, 26, 3962. [Google Scholar] [CrossRef]
- Messire, G.; Serreau, R.; Berteina-Raboin, S. Antioxidant Effects of Catechins (EGCG), Andrographolide, and Curcuminoids Compounds for Skin Protection, Cosmetics, and Dermatological Uses: An Update. Antioxidants 2023, 12, 1317. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.-Z.; Wu, Y.; Wang, R.-Q.; Chen, J.-W.; Chen, J.; Zhang, Y.; Chen, Y.-J.; Geng, M.; Xu, Z.-D.; et al. (–)-Epigallocatechin-3-Gallate Ameliorates Atherosclerosis and Modulates Hepatic Lipid Metabolic Gene Expression in Apolipoprotein E Knockout Mice: Involvement of TTC39B. Front. Pharmacol. 2018, 9, 195. [Google Scholar] [CrossRef]
- Luo, K.-W.; Zhu, X.-H.; Zhao, T.; Zhong, J.; Gao, H.-C.; Luo, X.-L.; Huang, W.-R. EGCG Enhanced the Anti-tumor Effect of Doxorubicine in Bladder Cancer via NF-κB/MDM2/p53 Pathway. Front. Cell Dev. Biol. 2020, 8, 606123. [Google Scholar] [CrossRef]
- Payne, A.; Taka, E.; Adinew, G.M.; Soliman, K.F.A. Molecular Mechanisms of the Anti-Inflammatory Effects of Epigallocatechin 3-Gallate (EGCG) in LPS-Activated BV-2 Microglia Cells. Brain Sci. 2023, 13, 632. [Google Scholar] [CrossRef]
- Nikoo, M.; Regenstein, J.M.; Ahmadi Gavlighi, H. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 732–753. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Shivaji, K.; Mani, S.; Balasubramanian Mythili, G. Tea Polyphenols Chemistry for Pharmaceutical Applications. In Tea; Gonçalo, J., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef]
- Ji, F.; Liu, H.; Wang, C.; Guo, N.; Shen, Y.; Luo, S.; Jiang, S.; Zheng, Z. Remodeling the structure of soy protein fibrils to hydrogels for co-encapsulation of (−)-epigallocatechin gallate (EGCG) and curcumin: Role of EGCG. Food Hydrocoll. 2024, 147, 109439. [Google Scholar] [CrossRef]
- Cerbin-Koczorowska, M.; Waszyk-Nowaczyk, M.; Bakun, P.; Goslinski, T.; Koczorowski, T. Current View on Green Tea Catechins Formulations, Their Interactions with Selected Drugs, and Prospective Applications for Various Health Conditions. Appl. Sci. 2021, 11, 4905. [Google Scholar] [CrossRef]
- Song, X.; Du, J.; Zhao, W.; Guo, Z. Epigallocatechin-3-gallate(EGCG): Mechanisms and the Combined Applications. Comb. Chem. High Throughput Screen. 2017, 20, 872–885. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Hu, J.-M.; Huang, Y.-W.; Wu, X.-Y.; Zi, C.-T.; Wang, X.-J.; Sheng, J. Synthesis and Biological Testing of Novel Glucosylated Epigallocatechin Gallate (EGCG) Derivatives. Molecules 2016, 21, 620. [Google Scholar] [CrossRef]
- Liu, B.; Yan, W. Lipophilization of EGCG and effects on antioxidant activities. Food Chem. 2019, 272, 663–669. [Google Scholar] [CrossRef]
- Wang, S.; Jin, R.; Wang, R.; Hu, Y.; Dong, X.; Xu, A.e. The design, synthesis and biological evaluation of pro-EGCG derivatives as novel anti-vitiligo agents. RSC Adv. 2016, 6, 106308–106315. [Google Scholar] [CrossRef]
- Xu, Q.; Deng, H.; Li, X.; Quan, Z.-S. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front. Chem. 2021, 9, 650569. [Google Scholar] [CrossRef]
- Sun, S.; Fu, J. Methyl-containing pharmaceuticals: Methylation in drug design. Bioorg. Med. Chem. Lett. 2018, 28, 3283–3289. [Google Scholar] [CrossRef]
- Pinheiro, P.d.S.M.; Franco, L.S.; Fraga, C.A.M. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals 2023, 16, 1157. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V.A. Boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Kitade, M.; Ohno, Y.; Tanaka, H.; Takahashi, T. An Efficient Synthesis of (±)-Epigallocatechin Gallate by Reductive Intramolecular Etherification. Synlett 2006, 2006, 2827–2829. [Google Scholar] [CrossRef]
- Liu, Z.; Fukagawa, Y.; Yamano, M.; Tago, T.; Iwai, K.; Hirano, K.; Kumazoe, M.; Tachibana, H.; Toyohara, J.; Tanaka, H. A gold-complex initiated functionalization of biologically active polyphenols applied to a 18F-labeled chemical probe. Org. Biomol. Chem. 2023, 21, 5990–5996. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Ren, Z.; Coghi, P.; Ng, J.P.L. Structural Modification of Epigallocatechin-3-gallate to (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl l-valinate in Four Steps. Molbank 2024, 2024, M1826. https://doi.org/10.3390/M1826
Yu X, Ren Z, Coghi P, Ng JPL. Structural Modification of Epigallocatechin-3-gallate to (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl l-valinate in Four Steps. Molbank. 2024; 2024(2):M1826. https://doi.org/10.3390/M1826
Chicago/Turabian StyleYu, Xiaoman, Zimo Ren, Paolo Coghi, and Jerome P. L. Ng. 2024. "Structural Modification of Epigallocatechin-3-gallate to (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl l-valinate in Four Steps" Molbank 2024, no. 2: M1826. https://doi.org/10.3390/M1826
APA StyleYu, X., Ren, Z., Coghi, P., & Ng, J. P. L. (2024). Structural Modification of Epigallocatechin-3-gallate to (2R,3R)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)chroman-3-yl l-valinate in Four Steps. Molbank, 2024(2), M1826. https://doi.org/10.3390/M1826