Aza-Diphosphido-Bridged Di-Iron Complexes Related to the [FeFe]-Hydrogenases
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hogarth, G. An unexpected leading role for [Fe2(CO)6(μ-pdt)] in our understanding of [FeFe]-H2ases and the search for clean hydrogen production. Coord. Chem. Rev. 2023, 490, 215174. [Google Scholar] [CrossRef]
- Kleinhaus, J.T.; Wittkamp, F.; Yadav, S.; Siegmund, D.; Apfel, U.-P. [FeFe]-Hydrogenases: Maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem. Soc. Rev. 2021, 50, 1668–1784. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rauchfuss, T.B. Synthesis of di-iron(I) dithiolato carbonyl complexes. Chem. Rev. 2016, 116, 7043–7077. [Google Scholar] [CrossRef] [PubMed]
- Apfel, U.-P.; Pétillon, F.Y.; Schollhammer, P.; Talarmin, J.; Weigand, W. Chapter 4 [FeFe] Hydrogenase Models an Overview. In Bioinspired Catalysis; Weigand, W., Schollhammer, P., Eds.; Wiley-VCH: Weinheim, Germany, 2015; pp. 79–103. ISBN 978-3-527-33308-0. [Google Scholar]
- Elleouet, C.; Pétillon, F.Y.; Schollhammer, P. Chapter 17 [FeFe]-Hydrogenases Models. In Advances in Bioorganometallic Chemistry; Hirao, T., Moriuchi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 347–364. [Google Scholar] [CrossRef]
- Agarwal, T.; Kaur-Ghumaan, S. HER catalyzed by iron complexes without a Fe2S2 core: A review. Coord. Chem. Rev. 2019, 397, 188–219. [Google Scholar] [CrossRef]
- Cheah, M.H.; Borg, S.J.; Bondin, M.I.; Best, S.P. Electrocatalytic proton reduction by phosphido-bridged diiron carbonyl compounds: Distant relations to the H-cluster? Inorg. Chem. 2004, 43, 5635–5644. [Google Scholar] [CrossRef] [PubMed]
- Cheah, M.H.; Best, S.P. XAFS and DFT characterisation of protonated reduced Fe-hydrogenase analogues and their implications for electrocatalytic proton reduction. Eur. J. Inorg. Chem. 2011, 2011, 1128–1137. [Google Scholar] [CrossRef]
- Gimbert-Suriñach, C.; Bhadbhade, M.; Colbran, S.B. Bridgehead hydrogen atoms are important: Unusual electrochemistry and poton reduction at iron dimers with ferrocenyl-substituted phosphido bridges. Organometallics 2012, 31, 3480–3491. [Google Scholar] [CrossRef]
- Rahaman, A.; Gimbert-Suriñach, C.; Ficks, A.; Ball, G.E.; Bhadbhade, M.; Haukka, M.; Higham, L.; Nordlander, E.; Colbran, S.B. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts. Dalton Trans. 2017, 46, 3207–3222. [Google Scholar] [CrossRef]
- Das, P.; Capon, J.-F.; Gloaguen, F.; Pétillon, F.Y.; Schollhammer, P.; Talarmin, J.; Muir, K.W. Di-iron aza diphosphido complexes: Mimics for the active site of Fe-only hydrogenase, and effects of changing the coordinating atoms of the bridging ligand in [Fe2{µ-(ECH2)2NR}(CO)6]. Inorg. Chem. 2004, 43, 8203–8205. [Google Scholar] [CrossRef]
- Cheah, M.H.; Borg, S.J.; Best, S.P. Steps along the path to dihydrogen activation at [FeFe] hydrogenase structural models: Dependence of the core geometry on electrocatalytic proton reduction. Inorg. Chem. 2007, 46, 1741–1750. [Google Scholar] [CrossRef]
- Zaffaroni, R.; Rauchfuss, T.B.; Fuller, A.; De Gioia, L.; Zampella, G. Contrasting protonation behavior of diphosphido vs dithiolato diiron(I) carbonyl complexes. Organometallics 2013, 32, 232–238. [Google Scholar] [CrossRef]
- Arrigoni, F.; Rizza, F.; Vertemara, J.; Breglia, R.; Greco, C.; Bertini, L.; Zampella, G.; De Gioia, L. Rational design of Fe2(μ-PR2)2(L)6 coordination compounds featuring tailored potential inversion. ChemPhysChem 2020, 21, 2279–2292. [Google Scholar] [CrossRef] [PubMed]
- Selan, O.T.E.; Cheah, M.H.; Abrahams, B.F.; Gable, R.W.; Best, S.P. Impact of the 2Fe2P core geometry on the reduction chemistry of phosphido-bridged diiron hexacarbonyl compounds. Austr. J. Chem. 2022, 75, 649–659. [Google Scholar] [CrossRef]
- Shimamura, T.; Maeno, Y.; Kubo, K.; Kume, S.; Greco, C.; Mizuta, T. Protonation and electrochemical properties of a bisphosphide diiron hexacarbonyl complex bearing amino groups on the phosphide bridge. Dalton Trans. 2019, 48, 16595–16603. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, Y.; Kubo, K.; Kume, S.; Mizuta, T. Formation of a hexacarbonyl diiron complex having a naphthalene-1,8-bis(phenylphosphido) bridge and the Electrochemical Behavior of Its Derivatives. Organometallics 2013, 32, 7011–7024. [Google Scholar] [CrossRef]
- Shi, Y.S.; Yang, W.; Shi, Y.; Cheng, D.-C. Syntheses, crystal structures, and electrochemical studies of Fe2(CO)6(μ-PPh2)(μ-L) (L = OH, OPPh2, PPh2). J. Coord. Chem. 2014, 67, 2330–2343. [Google Scholar] [CrossRef]
- Mai, Y.; Balzen, A.K.; Torres, R.K.; Callahan, M.P.; Colson, A.C. A modular strategy for expanding electron-sink capacity in noncanonical cluster assemblies. Inorg. Chem. 2021, 60, 17733–17743. [Google Scholar] [CrossRef]
- Hayter, R.G. Phosphorus- and arsenic—Bridged complexes of metal carbonyls. VI. Reactions of tetrasubstituted biphosphines and a biarsine with monomeric metal carbonyls. Inorg. Chem. 1964, 3, 711–717. [Google Scholar] [CrossRef]
- Treichel, P.M.; Douglas, W.M.; Dean, W.K. Deprotonation and subsequent alkylation of phosphine-metal carbonyl complexes. Inorg. Chem. 1972, 7, 1615–1618. [Google Scholar] [CrossRef]
- Clegg, W. Crystal structure of bis(µ-bis(trifluoromethyl)phosphido)-hexacarbonyldiiron, Fe2(CO)6[µ-P(CF3)2]2. Inorg. Chem. 1976, 15, 1609–1613. [Google Scholar] [CrossRef]
- Ginsburg, R.E.; Rothrock, R.K.; Finke, R.G.; Coliman, J.P.; Dahl, L.F. The (metal-metal)-nonbonding [Fe2(CO)6(µ2-PPh)2]2− dianion. Synthesis, structural analysis of its unusual dimeric geometry, and stereochemical-bonding implications. J. Am. Chem. Soc. 1979, 101, 6550–6552. [Google Scholar] [CrossRef]
- Collman, J.P.; Rothrock, R.K.; Finke, R.G.; Moore, E.J.; Rose-Munch, F. Role of the metal-metal bond in transition-metal clusters. Phosphido-bridged diiron carbonyl complexes. Inorg. Chem. 1982, 21, 146–156. [Google Scholar] [CrossRef]
- Yu, Y.-F.; Gallucci, J.; Wojcicki, A. Novel mode of reduction of phosphido-bridged, metal-metal-bonded binuclear complexes. Synthesis and reactivity of an unsymmetrical anion from Fe2(CO)6(µ-PPh2)2. J. Am. Chem. Soc. 1983, 105, 4826–4828. [Google Scholar] [CrossRef]
- Walther, B.; Hartung, H.; Reinhold, J.; Jones, P.G.; Mealli, C.; Böttcher, H.-C.; Baumelster, U.; Krug, A.; Möckel, A. Structure and bonding of the coordinatively unsaturated complexes [Fe2(CO)5(µ-PR2)(µ-PR’2)](Fe=Fe) (R = R’ = But; R = Ph, R’ = But). Reaction of Na[Fe2(μ-CO)(CO)6(µ-PR2)] with R’2PCl (R, R’ = Ph, Cy, Me, But). Organometallics 1992, 11, 1542–1549. [Google Scholar] [CrossRef]
- Walther, B.; Hartung, H.; Bambirra, S.; Krug, A.; Böttcher, H.-C. Coordinatively unsaturated complexes [Fe2(CO)5(μ-PBut2)(μ-PR2)](Fe=Fe) (R = Cy, Ph): Addition of PBun3, Ph2PH, and dppm (dppm = bis(diphenylphosphino)methane). The unprecedented complex [Fe2(CO)3(µ-PBut2)(µ-PCy2)(µ-dppm)](Fe—Fe). Organometallics 1994, 13, 172–179. [Google Scholar] [CrossRef]
- Van der Linden, J.G.M.; Heck, J.; Walther, B.; Böttcher, H.-C. Electrochemical investigation of the electron-poor/precise (n = 5/6) complexes [Fe2(CO)n(µ-PR2)(µ-PR’2)] (n = 5, R = R’ = But; n = 6, R = R’ = Ph; R= But, R’ = Ph; R= But, R’ = Cy). EPR study of the radical anion [Fe2(µ-PBut2)2(CO)5]−. Inorg. Chim. Acta 1994, 217, 29–32. [Google Scholar] [CrossRef]
- Flood, T.C.; DiSanti, F.J.; Campbell, K.D. Stereochemical Lability of (CO)3Fe(µ-ER2)2Fe(CO)2PR3. Evidence for two distinct CO averaging arocesses without bridge opening. Inorg. Chem. 1978, 17, 1643–1646. [Google Scholar] [CrossRef]
- McKennis, J.S.; Kyba, E.P. Linked bis(µ-phosphido) and related ligands for metallic clusters. 1. Application to the hexacarbonyldiiron moiety. Organometallics 1983, 2, 1249–1251. [Google Scholar] [CrossRef]
- Seyferth, D.; Wood, T.G.; Fackler, J.P., Jr.; Mazany, A.M. Intramolecular nucleophilic attack at iron in an anionic phosphido-bridged Fe2(CO)6 complex. Organometallics 1984, 3, 1121–1123. [Google Scholar] [CrossRef]
- Rheingold, A.L. A linked diphosphido iron carbonyl complex, μ-P,P’-diphenyltrimethylenebis(phosphido)-μ-P:μ-P’-bis(tricarbonyliron)(Fe–Fe), [Fe2(C15H16P2)(CO)6]. Acta Crystallogr. 1985, C41, 1043–1045. [Google Scholar] [CrossRef]
- King, R.B.; Wu, F.-J.; Sadani, N.D.; Holt, E.M. (Carbonylbis((dialkylamino)phosphido))hexacarbonyldiiron complexes: Migration of a carbonyl group from iron to phosphorus. Inorg. Chem. 1985, 24, 4449–4450. [Google Scholar] [CrossRef]
- King, R.B.; Wu, F.-J.; Holt, E.M. Novel ((diisopropylamino)triphosphine)hexacarbonyldiiron complexes. Inorg. Chem. 1986, 25, 1733–1734. [Google Scholar] [CrossRef]
- Kyba, E.P.; Davis, R.E.; Clubb, C.N.; Liu, S.-T.; Aldaz Palacio, H.O.; McKennis, J.S. Linked bis(µ-phosphido) and related ligands for metallic clusters. 5. Evidence for a highly selective backside attack by strong nucleophiles on a μ-phosphido center. Organometallics 1986, 5, 869–877. [Google Scholar] [CrossRef]
- Kyba, E.P.; Kerby, M.C.; Rines, S.P. A Convenient synthesis of symmetrical and unsymmetrical 1,2-bis(phosphino)benzenes as ligands for transition metals. Organometallics 1986, 5, 1189–1194. [Google Scholar] [CrossRef]
- De, R.L.; Wolters, D.; Vahrenkamp, H. Darstellung und reaktionen des tetrahedran-moleküls Fe2(CO)6(P-tert-C4H9)2/Preparation and reactions of the tetrahedrane molecule Fe2(CO)6(P-tert-C4H9)2. Z. Naturforsch. B 1986, 41, 283–291. [Google Scholar] [CrossRef]
- Seyferth, D.; Wood, T.G. Michael-type addition reactions of bis(µ-phenylphosphido)bis(tricarbonyliron) with olefinic α,β-unsaturated carbonyl compounds. Construction of chelating bis(phosphido) ligands. Organometallics 1987, 6, 2563–2567. [Google Scholar] [CrossRef]
- King, R.B.; Wu, F.-J.; Holt, E.M. Dialkylamino phosphorus metal carbonyls. 4. Novel phosphorus-bridging carbonyl derivatives and triphosphine derivatives from reactions of tetracarbonylferrate(-II) with (dialkylamino)dichlorophosphines. J. Am. Chem. Soc. 1987, 109, 7764–7775. [Google Scholar] [CrossRef]
- King, R.B.; Wu, F.-J.; Holt, E.M. Dialkylamino phosphorus metal carbonyls. 5. Chemical reactivity of the phosphorus-bridging carbonyl group in carbonylbis[(diisopropylamino)phosphido]hexacarbonyldi-iron. J. Am. Chem. Soc. 1988, 110, 2775–2782. [Google Scholar] [CrossRef]
- Seyferth, D.; Wood, T.G.; Henderson, R.S. Reactions of lithium bis(µ-phenylphosphido)-bis(tricarbonyliron),(µ-PhPLi)2Fe2(CO)6, with organic halides. A novel anionic rearrangement of a chelating diphosphido ligand. J. Organomet. Chem. 1987, 336, 163–182. [Google Scholar] [CrossRef]
- Seyferth, D.; Wood, T.G. Michael-type addition reactions of bis(phenylphosphido)bis(tricarbonyliron) with acetylenic α,β-unsaturated carbonyl compounds: Multiple reaction pathways. Organometallics 1988, 7, 714–718. [Google Scholar] [CrossRef]
- Kumar, V.; Newton, M.G.; King, R.B. Insertion of a carbenoid unit into an Fe2P2 cluster. J. Organomet. Chem. 1994, 472, C13–C14. [Google Scholar] [CrossRef]
- Baik, M.-H.; Ziegler, T.; Schauer, C.K. Density functional theory study of redox pairs. 1. Dinuclear iron complexes that undergo multielectron redox reactions accompanied by a reversible structural change. J. Am. Chem. Soc. 2000, 122, 9143–9154. [Google Scholar] [CrossRef]
- Burdett, J.K. A molecular-orbital study of some di-phosphido-bis(tricarbony1iron) complexes. The importance of metal-bridging ligand interactions in determining molecular geometry. J. Chem. Soc. Dalton Trans. 1977, 5, 423–428. [Google Scholar] [CrossRef]
- Garrou, P.E. ΔR-ring contributions to phosphorus-31NMR parameters of transition-metal-phosphorus chelate complexes. Chem. Rev. 1981, 81, 229–266. [Google Scholar] [CrossRef]
- Bartsch, R.; Hietkamp, S.; Morton, S.; Stelzer, O. Reaktionen koordinierter liganden: X. Reaktivität zweikerniger eisencarbonylkomplexe mit sekundären phosphidobrüken μ-rph. J. Organomet. Chem. 1981, 222, 263–273. [Google Scholar] [CrossRef]
- Lawrence, J.D.; Li, H.; Rauchfuss, T.B. Beyond Fe-only hydrogenases: N-functionalized 2-aza-1,3-dithiolates Fe2[(SCH2)2NR](CO)x (x = 5, 6). Chem. Commun. 2001, 16, 1482–1483. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX suite for small molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. [Google Scholar] [CrossRef]
1 | 2 | 3 | |
---|---|---|---|
Fe(1)—Fe(2) | 2.6361(5) | 2.6693(5) | 2.6242(8) |
P(1)—Fe(1) | 2.2129(7) | 2.2198(7) | 2.1957(11) |
P(2)—Fe(1) | 2.2108(7) | 2.2151(7) | 2.2005(11) |
P(1)—Fe(2) | 2.1939(7) | 2.2240(7) | 2.1938(11) |
P(2)—Fe(2) | 2.1979(7) | 2.2313(7) | 2.1836(11) |
P(1)—P(2) | 2.6880(9) | 2.8899 | 2.6816(14) |
C(7)—P(1) | 1.848(2) | 1.846(3) | 1.857(4) |
C(13)—P(1) | 1.825(2) | 1.834(2) | 1.816(4) |
C(8)—P(2) | 1.863(3) | 1.859(2) | 1.839(4) |
C(19)—P(2) | 1.820(2) | 1.827(2) | 1.809(4) |
N(1)—C(7) | 1.453(3) | 1.457(3) | 1.482(5) |
N(1)—C(8) | 1.455(3) | 1.486(5) | |
N(1)—C(9) | 1.504(3) | 1.489(3) | 1.559(5) |
N(2)—C(8) | 1.442(3) | ||
Fe(1)—Fe(2)—C(1) | 144.79(9) | 142.18(8) | 152.48(16) |
Fe(1)—P(1)—Fe(2) | 73.48(2) | 73.84(2) | 73.43(4) |
Fe(1)—P(2)—Fe(2) | 73.44(2) | 73.79(2) | 73.53(4) |
P(1)—Fe(1)—P(2) | 74.84(3) | 81.33 (3) | 75.18(4) |
P(1)—Fe(2)—P(2) | 75.48(3) | 80.88(3) | 75.56(4) |
C(13)—P(1)—Fe(1) | 127.38(8) | 117.89(9) | 125.89(14) |
C(13)—P(1)—Fe(2) | 121.82(9) | 122.98(8) | 120.25(13) |
C(19)—P(2)—Fe(1) | 125.90(8) | 122.61(8) | 123.34(12) |
C(19)—P(2)—Fe(2) | 118.26(8) | 126.87(8) | 123.92(13) |
C(7)—P(1)—Fe(1) | 115.55(8) | 123.29(8) | 123.93(14) |
C(7)—P(1)—Fe(2) | 119.27(8) | 117.32(8) | 115.56(14) |
C(8)—P(2)—Fe(1) | 115.94(8) | 116.36(8) | 123.21(14) |
C(8)—P(2)—Fe(2) | 121.33(9) | 119.35(9) | 116.33(14) |
C(7)—N(1)—C(8) | 111.1(2) | 119.1(3) | |
C(7)—N(1)—C(9) | 112.77(19) | 115.8(2) | 112.8(3) |
C(8)—N(1)—C(9) | 116.69(19) | 113.3(3) | |
C(8)—N(2)—C(25) | 117.2 (2) | ||
N(1)—C(7)—P(1) | 113.03(17) | 111.34(17) | 119.1(3) |
N(1)—C(8)—P(2) | 111.44(16) | 120.1(3) | |
N(2)—C(8)—P(2) | 111.84(17) | ||
C(19)—P(2)—P(1) | 170.23(8) | 174.05(12) | |
C(13)—P(1)—P(2) | 174.1(9) | 171.98(13) | |
C(13)—P(1)—C(7) | 99.89(11) | 101.65(11) | 98.18(17) |
C(19)—P(2)—C(8) | 101.92(11) | 98.62(11) | 97.87(17) |
H(1W)—O(1W)—H(2W) | 110(4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, P.; Elleouet, C.; Pétillon, F.Y.; Schollhammer, P. Aza-Diphosphido-Bridged Di-Iron Complexes Related to the [FeFe]-Hydrogenases. Molbank 2024, 2024, M1797. https://doi.org/10.3390/M1797
Das P, Elleouet C, Pétillon FY, Schollhammer P. Aza-Diphosphido-Bridged Di-Iron Complexes Related to the [FeFe]-Hydrogenases. Molbank. 2024; 2024(2):M1797. https://doi.org/10.3390/M1797
Chicago/Turabian StyleDas, Pankaj, Catherine Elleouet, François Y. Pétillon, and Philippe Schollhammer. 2024. "Aza-Diphosphido-Bridged Di-Iron Complexes Related to the [FeFe]-Hydrogenases" Molbank 2024, no. 2: M1797. https://doi.org/10.3390/M1797
APA StyleDas, P., Elleouet, C., Pétillon, F. Y., & Schollhammer, P. (2024). Aza-Diphosphido-Bridged Di-Iron Complexes Related to the [FeFe]-Hydrogenases. Molbank, 2024(2), M1797. https://doi.org/10.3390/M1797