Friedländer-Type Reaction of 4-Cholesten-3-one with 2′-Aminoacetophenone: Angular versus Linear Quinoline-Fused Steroids
Abstract
:1. Introduction
2. Results and Discussion
Synthesis
3. Materials and Methods
3.1. General Information
3.2. Materials
3.3. General Procedure for the Synthesis of Compound 3 and 4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, K.; Kumar, N.; Singh, J.V.; Bedi, P.M.S.; Singh, H. Recent Development of Quinoline Derivatives as Anticancer Agents: 2015–2022. In Interdisciplinary Cancer Research; Springer: Cham, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Elebiju, O.F.; Ajani, O.O.; Oduselu, G.O.; Ogunnupebi, T.A.; Adebiyi, E. Recent advances in functionalized quinoline scaffolds and hybrids-Exceptional pharmacophore in therapeutic medicine. Front. Chem. 2023, 10, 1074331. [Google Scholar] [CrossRef] [PubMed]
- Ilakiyalakshmi, M.; Napoleon, A.A. Review on recent development of quinoline for anticancer activities. Arab. J. Chem. 2022, 15, 104168. [Google Scholar] [CrossRef]
- Concepción, A.; Fuertes, M.; Martín-Encinas, E.; Selas, A.; Rubiales, G.; Tesauro, C.; Knudssen, B.K.; Palacios, F. Novel topoisomerase I inhibitors. Syntheses and biological evaluation of phosphorus substituted quinoline derivates with antiproliferative activity. Eur. J. Med. Chem. 2018, 148, 225–237. [Google Scholar] [CrossRef]
- Hassner, A.; Haddalin, M.J. Synthesis of Quinolino Steroids. J. Org. Chem. 1962, 27, 1911–1914. [Google Scholar] [CrossRef]
- Ilovaisky, A.I.; Scherbakov, A.M.; Merkulova, V.M.; Chernoburova, E.I.; Shchetinina, M.A.; Andreeva, O.E.; Salnikova, D.I.; Zavarzin, I.V.; Terent’ev, A.O. Secosteroid–quinoline hybrids as new anticancer agents. J. Steroid Biochem. Mol. Biol. 2023, 228, 106245. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-T.; Du, S.; Wang, S.; Jia, X.; Wang, X.; Zhang, X. Synthesis of new steroidal quinolines with antitumor properties. Steroids 2019, 151, 108465. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Jin, X.-Y.; Li, D.-D.; Wang, S.-F.; Tao, X.-B.; Chen, H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett. 2017, 27, 4128–4132. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-Q.; Ma, X.; Zhang, C.; Liu, Z.-P. Design, synthesis, and biological evaluation of 4-substituted-3,4-dihydrobenzo[h]quinoline-2,5,6(1H)-triones as NQO1-directed antitumor agents. Eur. J. Med. Chem. 2020, 198, 112396. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; De Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; et al. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem. 2020, 28, 115511. [Google Scholar] [CrossRef] [PubMed]
- Desroches, J.; Kieffer, C.; Primas, N.; Hutter, S.; Gellis, A.; El-Kashef, H.; Rathelot, P.; Verhaeghe, P.; Azas, N.; Vanelle, P. Discovery of new hit-molecules targeting Plasmodium falciparum through a global SAR study of the 4-substituted-2-trichloromethylquinazoline antiplasmodial scaffold. Eur. J. Med. Chem. 2017, 125, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Sivalingam, K.; Jayarampillai, R.P.K.; Wang, W.-L.; Salas, C.O. Friedlӓnder’s synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry. Chem. Biol. Drug Des. 2022, 100, 1042–1085. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, H.M.T.; Da Silva, R.N.; Pereira, M.; Maia, A.; Guieu, S.; Soares, A.R.; Santos, C.M.M.; Vieira, S.I.; Silva, A.M.S. Steroid–Quinoline Hybrids for Disruption and Reversion of Protein Aggregation Processes. ACS Med. Chem. Lett. 2022, 13, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Sequential Amination/Annulation/Aromatization Reaction of Carbonyl Compounds and Propargylamine: A New One-Pot Approach to Functionalized Pyridines. J. Org. Chem. 2003, 68, 6959–6966. [Google Scholar] [CrossRef] [PubMed]
- Marsicano, V.; Chiarini, M.; Marinelli, F.; Arcadi, A. Synthesis of Polycyclic Quinolines by Means of Brønsted Acid Mediated Reaction of β-(2-Aminophenyl)-α,β-Ynones with Ketones. Adv. Synth. Catal. 2019, 361, 2365–2370. [Google Scholar] [CrossRef]
- Bancet, A.; Raingeval, C.; Lomberget, T.; Le Borgne, M.; Guichou, J.-F.; Krimm, I. Fragment Linking Strategies for Structure-Based Drug Design. J. Med. Chem. 2020, 63, 11420–11435. [Google Scholar] [CrossRef]
- Diedrich, C.L.; Haase, D.; Saak, W.; Christoffers, J. Regioselectivity of Friedländer Quinoline Syntheses. Eur. J. Org. Chem. 2008, 2008, 1811–1816. [Google Scholar] [CrossRef]
- Li, Z.; Brouwer, C.; He, C. Gold-Catalyzed Organic Transformations. Chem. Rev. 2008, 108, 3239–3265. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst (%) | T (°C) | Solvent | Time (h) | 2 a Conversion (%) a | 3 Yield (%) b | 4 Yield (%) b |
---|---|---|---|---|---|---|---|
1 c | NaAuCl4·2H2O (5%) | 80 | EtOH | 24 | 54 | 13 | 27 |
2 | NaAuCl4·2H2O (5%) | 110 | EtOH | 5 | 62 | 15 | 30 |
3 | p-TsOH·H2O (20%) | 110 | EtOH | 2 | Quantitative | 60 | 30 |
4 d | p-TsOH·H2O (20%) | 80 | Toluene | 24 | 55 | 45 | Traces |
5 | p-TsOH·H2O (20%) | 80 | Toluene | 48 | 85 | 67 | Traces |
6 | p-TsOH·H2O (20%) | 110 | Toluene | 5 | Quantitative | 76 | 7 |
7 | p-TsOH·H2O (1 eq) | 110 | Toluene | 5 | Quantitative | 81 | 14 |
8 e | p-TsOH·H2O (1 eq) | 80 | Toluene | 5 | Quantitative | >98 | Traces |
9 | NaAuCl4·2H2O (5%) | 110 | Toluene | 24 | 75 | 12 | <3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momoli, C.; Morlacci, V.; Chiarini, M.; Palombi, L.; Arcadi, A. Friedländer-Type Reaction of 4-Cholesten-3-one with 2′-Aminoacetophenone: Angular versus Linear Quinoline-Fused Steroids. Molbank 2023, 2023, M1712. https://doi.org/10.3390/M1712
Momoli C, Morlacci V, Chiarini M, Palombi L, Arcadi A. Friedländer-Type Reaction of 4-Cholesten-3-one with 2′-Aminoacetophenone: Angular versus Linear Quinoline-Fused Steroids. Molbank. 2023; 2023(3):M1712. https://doi.org/10.3390/M1712
Chicago/Turabian StyleMomoli, Caterina, Valerio Morlacci, Marco Chiarini, Laura Palombi, and Antonio Arcadi. 2023. "Friedländer-Type Reaction of 4-Cholesten-3-one with 2′-Aminoacetophenone: Angular versus Linear Quinoline-Fused Steroids" Molbank 2023, no. 3: M1712. https://doi.org/10.3390/M1712
APA StyleMomoli, C., Morlacci, V., Chiarini, M., Palombi, L., & Arcadi, A. (2023). Friedländer-Type Reaction of 4-Cholesten-3-one with 2′-Aminoacetophenone: Angular versus Linear Quinoline-Fused Steroids. Molbank, 2023(3), M1712. https://doi.org/10.3390/M1712