(3,5-Di-tert-butylphenyl)(1H-pyrazol-1-yl)methanone
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Preparation of (3,5-Di-tert-butylphenyl)(1H-pyrazol-1-yl)methanone (6)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, T.E.G.; Reihill, J.A.; Martin, S.L.; Walker, B. Novel Inhibitors and Activity-Based Probes Targeting Trypsin-Like Serine Proteases. Front. Chem. 2022, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Otrubova, K.; Chatterjee, S.; Ghimire, S.; Cravatt, B.F.; Boger, D.L. N-Acyl pyrazoles: Effective and tunable inhibitors of serine hydrolases. Bioorg. Med. Chem. 2019, 27, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Tokumasu, K.; Yazaki, R.; Ohshima, T. Direct Catalytic Chemoselective α-Amination of Acylpyrazoles: A Concise Route to Unnatural α-Amino Acid Derivatives. J. Am. Chem. Soc. 2016, 138, 2664–2669. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ding, X.; Hu, Y.; Huang, Y.; Gong, L.; Meggers, E. Metal-templated chiral Brønsted base organocatalysis. Nat. Commun. 2014, 5, 4531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovian, J.M.; Kelly, C.B.; Pistritto, V.A.; Leadbeater, N.E. Accessing N-Acyl Azoles via Oxoammonium Salt-Mediated Oxidative Amidation. Org. Lett. 2017, 19, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Oldenhuis, N.J.; Whittaker, A.M.; Dong, V.M. Greener Methods for Amide Bond Synthesis. In Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology; Richardson, P.F., Ed.; Humana: New York, NY, USA, 2021; pp. 35–96. [Google Scholar] [CrossRef]
- Montalbetti, C.A.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827–10852. [Google Scholar] [CrossRef]
- Lee, W.; Jeon, H.J.; Jung, H.; Kim, D.; Seo, S.; Chang, S. Controlled Relay Process to Access N-Centered Radicals for Catalyst-free Amidation of Aldehydes under Visible Light. Chem 2020, 7, 495–508. [Google Scholar] [CrossRef]
- Tan, B.; Toda, N.; Barbas, C.F. Organocatalytic Amidation and Esterification of Aldehydes with Activating Reagents by a Cross-Coupling Strategy. Angew. Chem. Int. Ed. 2012, 51, 12538–12541. [Google Scholar] [CrossRef] [PubMed]
- Ekoue-Kovi, K.; Wolf, C. One-Pot Oxidative Esterification and Amidation of Aldehydes. Chem. A Eur. J. 2008, 14, 6302–6315. [Google Scholar] [CrossRef] [PubMed]
- Nandi, J.; Vaughan, M.Z.; León Sandoval, A.; Paolillo, J.M.; Leadbeater, N.E. Oxidative Amidation of Amines in Tandem with Transamidation: A Route to Amides Using Visible-Light Energy. J. Org. Chem. 2020, 85, 9219–9229. [Google Scholar] [CrossRef] [PubMed]
- Politano, F.; León Sandoval, A.; Witko, M.L.; Doherty, K.E.; Schroeder, C.M.; Leadbeater, N.E. Nitroxide-Catalyzed Oxi-dative Amidation of Aldehydes to Yield N-Acyl Azoles Using Sodium Persulfate. Eur. J. Org. Chem. 2022, 2022, e202101239. [Google Scholar] [CrossRef]
- Nandi, J.; Ovian, J.M.; Kelly, C.B.; Leadbeater, N.E. Oxidative functionalisation of alcohols and aldehydes via the merger of oxoammonium cations and photoredox catalysis. Org. Biomol. Chem. 2017, 15, 8295–8301. [Google Scholar] [CrossRef]
- León Sandoval, A.; Doherty, K.E.; Wadey, G.P.; Leadbeater, N.E. Solvent- and additive-free oxidative amidation of aldehydes using a recyclable oxoammonium salt. Org. Biomol. Chem. 2022, 20, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Leadbeater, N.E.; Bobbitt, J.M. TEMPO-Derived Oxoammonium Salts as Versatile Oxidizing Agents. Aldrichimica Acta 2014, 47, 65–74. [Google Scholar]
- Bobbitt, J.M. Oxoammonium Salts. 6.1 4-Acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium Perchlorate: A Stable and Convenient Reagent for the Oxidation of Alcohols. Silica Gel Catalysis. J. Org. Chem. 1998, 63, 9367–9374. [Google Scholar] [CrossRef]
- Bobbitt, J.M.; Merbouh, N.; Inokuchi, T.; Ma, L.-J. 4-Acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium Tetrafluoroborate. In Encyclopedia of Reagents for Organic Synthesis; Wiley: Weinheim, Germany, 2013. [Google Scholar] [CrossRef]
- Bobbitt, J.M.; Bartelson, A.L.; Bailey, W.F.; Hamlin, T.A.; Kelly, C.B. Oxoammonium Salt Oxidations of Alcohols in the Presence of Pyridine Bases. J. Org. Chem. 2014, 79, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Mammino, L. Green Chemistry: Chemistry Working for Sustainability. In Green Chemistry and Computational Chemistry: Shared Lessons in Sustainability; Mammino, L., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 41–54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doherty, K.E.; Wadey, G.P.; León Sandoval, A.; Leadbeater, N.E. (3,5-Di-tert-butylphenyl)(1H-pyrazol-1-yl)methanone. Molbank 2022, 2022, M1468. https://doi.org/10.3390/M1468
Doherty KE, Wadey GP, León Sandoval A, Leadbeater NE. (3,5-Di-tert-butylphenyl)(1H-pyrazol-1-yl)methanone. Molbank. 2022; 2022(4):M1468. https://doi.org/10.3390/M1468
Chicago/Turabian StyleDoherty, Katrina E., Geoffrey P. Wadey, Arturo León Sandoval, and Nicholas E. Leadbeater. 2022. "(3,5-Di-tert-butylphenyl)(1H-pyrazol-1-yl)methanone" Molbank 2022, no. 4: M1468. https://doi.org/10.3390/M1468
APA StyleDoherty, K. E., Wadey, G. P., León Sandoval, A., & Leadbeater, N. E. (2022). (3,5-Di-tert-butylphenyl)(1H-pyrazol-1-yl)methanone. Molbank, 2022(4), M1468. https://doi.org/10.3390/M1468