Modification of 1-Hexene Vinylidene Dimer into Primary and Tertiary Alkanethiols
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
General Procedures
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pronin, V.A.; Usol’tseva, M.V.; Trofimov, B.A.; Vyalykh, E.P.; Shastina, Z.N. Extractive power of certain mercaptans with respect to Au (III), Ag (I), Pt (IV), and Pd (II). J. Appl. Chem. USSR 1973, 46, 2758–2760. [Google Scholar]
- Chen, D.; Cui, P.; Cao, H.; Yang, J. A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase. J. Environ. Sci. 2015, 29, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Holmlin, R.E.; Haag, R.; Chabinyc, M.L.; Ismagilov, R.F.; Cohen, A.E.; Terfort, A.; Rampi, M.A.; Whitesides, G.M. Electron Transport through Thin Organic Films in Metal−Insulator−Metal Junctions Based on Self-Assembled Monolayers. J. Am. Chem. Soc. 2001, 123, 5075–5085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urcuyo, R.; Cortés, E.; Rubert, A.A.; Benitez, G.; Montero, M.L.; Tognalli, N.G.; Fainstein, A.; Vela, M.E.; Salvarezza, R.C. Aromatic and Aliphatic Thiol Self-Assembled Monolayers on Au: Anchoring and Delivering Copper Specie. J. Phys. Chem. C 2011, 115, 24707–24717. [Google Scholar] [CrossRef]
- Denayer, J.; Delhalle, J.; Mekhalif, Z. Comparative study of copper surface treatment with self-assembled monolayers of aliphatic thiol, dithiol and dithiocarboxylic acid. J. Electroanal. Chem. 2009, 637, 43–49. [Google Scholar] [CrossRef]
- Goswami, N.; Yao, Q.; Chen, T.; Xie, J. Mechanistic exploration and controlled synthesis of precise thiolate-gold Nanoclusters. Coord. Chem. Rev. 2016, 329, 1–15. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Rambukwella, M.; Sakthivel, N.A.; Delcamp, J.H.; Sementa, L.; Fortunelli, A.; Dass, A. Ligand Structure Determines Nanoparticles’ Atomic Structure, Metal-Ligand Interface and Properties. Front. Chem. 2018, 6, 330. [Google Scholar] [CrossRef]
- Wardell, J.L. Preparation of thiols. In The Thiol Group; Patai, S., Ed.; John Wiley & Sons Ltd: Bristol, UK, 1974. [Google Scholar] [CrossRef]
- Hoyle, C.; Bowman, C. Thiol–Ene Click Chemistry. Angew. Chem. Int. Ed. 2010, 49, 1540–1573. [Google Scholar] [CrossRef]
- Lowe, A.B. Thiol-ene ‘‘click’’ reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17–36. [Google Scholar] [CrossRef]
- Snow, A.W.; Foos, E.E. Conversion of Alcohols to Thiols via Tosylate Intermediates. Synthesis 2003, 4, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Maurya, C.K.; Gupta, P.K. Phosphorus Pentasulfide Mediated Conversion of Primary Carbamates into Thiols. Synlett 2017, 28, 1649–1651. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P.; Tavtorkin, A.; Vinogradov, A.; Vinogradov, A. Non-traditional Ziegler-Natta Catalysis in a-Olefin Transformations: Reaction Mechanisms and Product Design. Pure Appl. Chem. 2017, 89, 1017–1032. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P. Fair Look at Coordination Oligomerization of Higher α-Olefins. Polymers 2020, 12, 1082. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Vinogradov, A.A.; Vinogradov, A.A.; Ivchenko, P.V. Zirconocene-Catalyzed Dimerization of 1-Hexene: Two-stage Activation and Structure–Catalytic Performance Relationship. Cat. Comm. 2016, 79, 6–10. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Vinogradov, A.A.; Vinogradov, A.A.; Sedov, I.V.; Dorokhov, V.G.; Lyadov, A.S.; Ivchenko, P.V. Structurally Uniform 1-Hexene, 1-Octene, and 1-Decene Oligomers: Zirconocene/MAO-Catalyzed Preparation, Characterization, and Prospects of Their Use as low-viscosity Low-temperature Oil Base Stocks. Appl. Catal. A Gen. 2018, 549, 40–50. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Vinogradov, A.; Vinogradov, A.; Karchevsky, S.; Ivchenko, P. Experimental and Theoretical Study of Zirconocene-Catalyzed Oligomerization of 1-Octene. Polymers 2020, 12, 1590. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Kovyazin, P.V.; Bikmeeva, A.K. Bimetallic Zr,Zr-Hydride Complexes in Zirconocene Catalyzed Alkene Dimerization. Molecules 2020, 25, 2216. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Kovyazin, P.V.; Bikmeeva, A.K.; Palatov, E.R. Catalytic Systems Based on Cp2ZrX2 (X = Cl, H), Organoaluminum Compounds and Perfluorophenylboranes: Role of Zr,Zr- and Zr,Al-Hydride Intermediates in Alkene Dimerization and Oligomerization. Catalysts 2021, 11, 39. [Google Scholar] [CrossRef]
- Kovyazin, P.V.; Bikmeeva, A.K.; Islamov, D.N.; Yanybin, V.M.; Tyumkina, T.V.; Parfenova, L.V. Ti subgroup metallocene-catalyzed synthesis of 1-hexene dimers and tetramers. Molecules 2021, 26, 2775. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Ibragimov, A.G.; Zolotarev, A.P.; Tolstikov, G.A. Nontraditional approach to the synthesis of 3-substituted tetrahydrothiophenes and tetrahydroselenophenes. Russ. Chem. Bull. 1989, 38, 1324. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Ibragimov, A.G.; Azhgaliev, M.N.; Muslukhov, R.R. Synthesis and transformations of metallocycles. Russ. Chem. Bull. 1994, 43, 255–257. [Google Scholar] [CrossRef]
Entry | Substrate | OAC | Solvent | Thiolation Reagent | Substrate:HAlBu i2:Reagent | t, °C | Time, h | Product, Yield |
---|---|---|---|---|---|---|---|---|
1 | 4 | toluene | P2S5 | 1:0:1 | 60 | 16 | 6, <3% | |
2 | 5 | EtOH | (H2N)2C=S | 1:0:1 | 60 | 8 | 6, 41% | |
3 | 2 | HAlBui2 | toluene | (H2N)2C=S | 1:1:(1–3) | 80 | 16 | |
4 | 2 | HAlBui2 | toluene | P2S5 | 1:1:(1–3) | 60 | 16 | 6, <5% |
5 | 2 | HAlBui2 | toluene | Me2S2 | 1:1:(1–3) | 20 | 16 | 7, 63% |
6 | 2 | toluene | P2S5 | 1:0:1 | 80 | 16 | ||
7 | 2 | toluene | P2S5 a | 1:0:1 | 60 | 16 | 8, 77% | |
8 | 2 | toluene | P2S5 a | 1:0:0.5 | 60 | 16 | 8, 40% | |
9 | 2 | hexane | P2S5 a | 1:0:1 | 60 | 16 | 8, 37% | |
10 | 2 | CHCl3 | P2S5 a | 1:0:1 | 60 | 16 | 8, 29% | |
11 | 2 | CH2Cl2 | P2S5 a | 1:0:1 | 20 | 16 | 8, 41% | |
12 | 2 | Et2O | P2S5 a | 1:0:1 | 20 | 16 | 8, 33% | |
13 | 2 | THF b | P2S5 a | 1:0:1 | 60 | 16 | 8, 27% b | |
14 | 2 | H2O | P2S5 a | 1:0:1 | 60 | 16 | 8, 30% | |
15 | 2 | 10% HCl | P2S5 a | 1:0:1 | 60 | 16 | 8, 54% | |
16 | 2 | EtOH | P2S5 a | 1:0:1 | 60 | 16 | 8, 9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovyazin, P.V.; Bikmeeva, A.K.; Palatov, E.R.; Parfenova, L.V. Modification of 1-Hexene Vinylidene Dimer into Primary and Tertiary Alkanethiols. Molbank 2022, 2022, M1379. https://doi.org/10.3390/M1379
Kovyazin PV, Bikmeeva AK, Palatov ER, Parfenova LV. Modification of 1-Hexene Vinylidene Dimer into Primary and Tertiary Alkanethiols. Molbank. 2022; 2022(2):M1379. https://doi.org/10.3390/M1379
Chicago/Turabian StyleKovyazin, Pavel V., Almira Kh. Bikmeeva, Eldar R. Palatov, and Lyudmila V. Parfenova. 2022. "Modification of 1-Hexene Vinylidene Dimer into Primary and Tertiary Alkanethiols" Molbank 2022, no. 2: M1379. https://doi.org/10.3390/M1379
APA StyleKovyazin, P. V., Bikmeeva, A. K., Palatov, E. R., & Parfenova, L. V. (2022). Modification of 1-Hexene Vinylidene Dimer into Primary and Tertiary Alkanethiols. Molbank, 2022(2), M1379. https://doi.org/10.3390/M1379