Metabolic Compartmentation – A System Level Property of Muscle Cells
Abstract
:“A new scientific theory does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it”Max Planck Scientific autobiography and other papers, New York, 1949, pp 33–34
Introduction
The need of experimental data for theoretical analysis
Critical analysis of application of diffusion theories in cellular systems
Structural basis for diffusion restrictions and compartimentation
a) Macromolecular crowding, heterogeneity of diffusion, compartmentation and vectorial metabolism
b) Heterogeneity of intracellular diffusion, metabolic channeling
c) Compartmentation phenomenon and vectorial metabolism
Compartmentation of ATP and ADP in cardiac and brain cells – a system level property
Acknowledgments
References
- Welch, GR. On the Role of Organized Multienzyme Systems in Cellular Metabolism: a General Synthesis. Prog. Biophys. Mol. Biol. 1977, 32, 103–191. [Google Scholar] [Green Version]
- Welch, GR. Organized multienzyme systems; Academic Press: Orlando, USA, 1985; pp. 1–447. [Google Scholar]
- Saks, V. Molecular System Bioenergetics; Wiley-VCH: Weinheim, Germany, 2007; pp. 1–604. [Google Scholar]
- Fulton, AB. How Crowded is the Cytoplasm? Cell 1982, 30, 345–347. [Google Scholar] [Green Version]
- Srere, PA. Macromolecular Interactions: Tracing the Roots. Trends Biochem. Sci. 2000, 25, 150–153. [Google Scholar] [Green Version]
- Ovàdi, J. Cell Architecture and Metabolic Channeling; R.G. Landes Co.: Austin, TX, USA, 1995. [Google Scholar]
- Minton, AP. The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Biological Media. J. Biol. Chem. 2001, 276, 10577–10580. [Google Scholar] [Green Version]
- Hall, D; Minton, AP. Macromolecular Crowding: Qualitative and Semiquantitative Successes, Quantitative Challenges. Biochim. Biophys. Acta 2003, 1649, 127–139. [Google Scholar] [Green Version]
- Schliwa, M. The Evolving Complexity of Cytoplasmic Structure. Nat. Rev. Mol. Cell Boil. 2002, 3, 1–6. [Google Scholar] [Green Version]
- Schnell, S; Turner, TE. Reaction Kinetics in Intracellular Environments with Macromolecular Crowding: Simulations and Rate Laws. Progr. Biophys. Mol. Biol. 2004, 85, 235–260. [Google Scholar] [Green Version]
- Channelling in Intermediary Metabolism; Agius, L; Sherratt, HSA (Eds.) Portland Press: London, UK, 1996; pp. 237–268.
- Xia, Y; Yu, H; Jansen, R; Seringhaus, M; Baxter, S; Greenbaum, D; Zhao, H; Gerstein, M. Analyzing Cellular Biochemistry in Terms of Molecular Networks. Annu. Rev. Biochem. 2004, 73, 1051–1087. [Google Scholar] [Green Version]
- Ovàdi, J; Saks, V. On the Origin of Intracellular Compartmentation and Organized Metabolic Systems. Mol. Cell. Biochem. 2004, 256/257, 5–12. [Google Scholar] [Green Version]
- Verkman, AS. Solute and Macromolecule Diffusion in Cellular Aqueous Compartments. Trends Biochem. Sci. 2002, 27, 27–33. [Google Scholar] [Green Version]
- Alberts, B. The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists. Cell 1998, 92, 291–294. [Google Scholar] [Green Version]
- Clegg, JS. Cellular Infrastructure and Metabolic Organization. Curr. Top. Cell. Regul. 1992, 33, 3–14. [Google Scholar] [Green Version]
- Gaertner, FH. Unique Catalytic Properties of Enzyme Clusters. Trends Biochem. Sci. 1978, 3, 63–65. [Google Scholar] [Green Version]
- Ovàdi, J; Srere, AP. Macromolecular Compartmentation and Channeling. Intern. Rev. Cytol. 2000, 192, 255–280. [Google Scholar] [Green Version]
- Penman, S. Rethinking Cell Structure. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 5251–5257. [Google Scholar] [Green Version]
- Clegg, JS. Properties and Metabolism of the Aqueous Cytoplasm and Its Boundaries. Am. J. Physiol. 1984, 246, R133–R151. [Google Scholar] [Green Version]
- Hudder, A; Nathanson, L; Deutscher, MP. Organization of Mammalian Cytoplasm. Mol. Cell. Biol. 2003, 23, 9318–9326. [Google Scholar] [Green Version]
- Srere, PA. The Metabolon. Trends Biochem. Sci. 1985, 10, 109–110. [Google Scholar] [Green Version]
- Saks, V; Kuznetsov, A; Andrienko, T; Usson, Y; Appaix, F; Guerrero, K; Kaambre, T; Sikk, P; Lemba, M; Vendelin, M. Heterogeneity of ADP Diffusion and Regulation of Respiration in Cardiac Cells. Biophys. J. 2003, 84, 3436–3456. [Google Scholar] [Green Version]
- Wallimann, T; Tokarska-Schlattner; Neumann, D; Epand, R; Andres, RH; Widmer, HR; Hornemann, T; Saks, V; Agarkova, I; Schlattner, U. The Phosphocreatine Circuit: Molecular and Cellular Physiology of Creatine Kinases, Sensitivity to Free Radicals, and Enhancement by Creatine Supplementation. In Molecular System Bioenergetics. Energy for Life; Saks, V, Ed.; Wiley-VCH: Weinheim, Germany, 2007; pp. 195–264. [Google Scholar]
- Saks, VA; Vendelin, M; Aliev, MK; Kekelidze, T; Engelbrecht, J. Mechanisms and Modeling of Energy Transfer Between and Among Intracellular Compartments. In Handbook of Neurochemistry and Molecular Neurobiology, 3rd Ed; Dienel, G, Gibson, G, Eds.; Springer Science and Business Media: New York-Boston, USA, 2007; Volume 5, pp. 815–860. [Google Scholar] [Green Version]
- Saks, V; Anmann, T; Guzun, R; Kaambre, T; Sikk, P; Schlattner, U; Wallimann, T; Aliev, M; Vendelin, M. The Creatine Kinase Phosphotransfer Network: Thermodynamic and Kinetic Considerations, the Impact of the Mitochondrial Outer Membrane and Modelling Approaches. In Creatine and Creatine Kinase in Health and Disease; Wyss, M, Salomons, G, Eds.; Springer: Dordrecht, Netherlands, 2007; pp. 27–66. [Google Scholar]
- Saks, V; Monge, C; Anmann, T; Dzeja, P. Integrated and Organized Cellular Energetic Systems: Theories of Cell Energetics, Compartmentation and Metabolic Channeling. In Molecular System Bioenergetics. Energy for Life; Saks, V, Ed.; Wiley-VCH: Weinheim, Germany, 2007; pp. 59–110. [Google Scholar]
- Selivanov, VA; Krause, S; Roca, J; Cascante, M. Modeling of Spatial Metabolite Distribution in the Cardiac Sarcomere. Biophysical J. 2007, 92, 3492–3500. [Google Scholar] [Green Version]
- Barros, LF; Martinez, C. An enquiry into metabolite domains. Biophys. J. 2007, 92, 3878–3884. [Google Scholar] [Green Version]
- Noble, D. The music of life. Biology beyond the genome; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Kitano, H. Systems Biology: a Brief Overview. Science 2002, 295, 1662–1664. [Google Scholar] [Green Version]
- Noble, D. Modeling the Heart-from Genes to Cells to the Whole Organ. Science 2002, 295, 1678–1682. [Google Scholar] [Green Version]
- Hunter, P; Nielsen, P. A Strategy for Integrative Computational Physiology. Physiology 2005, 20, 316–325. [Google Scholar] [Green Version]
- Saks, V; Dzeja, P; Schlattner, U; Vendelin, M; Terzic, A; Wallimann, T. Cardiac System Bioenergetics: Metabolic Basis of Frank-Starling Law. J. Physiol. 2006, 571, 253–273. [Google Scholar] [Green Version]
- Iancu, RV; Jones, SW; Harvey, RD. Compartmentation of cAMP Signaling in Cardiac Myocytes: a Computational Study. Biophys J. 2007, 92, 3317–3331. [Google Scholar] [Green Version]
- Karpen, JW; Rich, TC. Resolution of cAMP Signals in Three-dimensional Microdomains Using Novel, Real-time Sensors. Proc. West. Pharmacol. Soc. 2004, 47, 1–5. [Google Scholar] [Green Version]
- Zaccolo, M; Pozzan, T. Discrete Microdomains with High Concentration of cAMP in Stimulated Rat Neonatal Cardiac Myocytes. Science 2002, 295, 1711–1715. [Google Scholar] [Green Version]
- Agutter, PS; Malone, PC; Wheatley, DN. Diffusion Theory in Biology: a Relic of Mechanistic Materialism. J. Hist Biol. 2000, 33, 71–111. [Google Scholar] [Green Version]
- Wheatley, DN. Diffusion Theory, the Cell and the Synapse. Biosystems 1998, 45, 151–63. [Google Scholar] [Green Version]
- Agutter, PS; Malone, PC; Wheatley, DN. Intracellular Transport Mechanisms: a Critique of Diffusion Theory. J. Theor Biol. 1995, 176, 261–72. [Google Scholar] [Green Version]
- Fick, A. Über Diffusion. Ann. Phys. Leipzig 1855, 94, 59–86. [Google Scholar] [Green Version]
- Einstein, A. Von der Molerulärkinetichen Theorie der Wärme Gefordete Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Ann. der Physik 1905, 17, 549–554. [Google Scholar] [Green Version]
- Smoluchowski, M. von Zür Kinetichen Theorie der Brownschen Molekulärbewegung und der Suspensionen. Ann. der Physik 1906, 21, 756–780. [Google Scholar] [Green Version]
- Renn, J. Einstein's Invention of Brownin Motion. Ann. Phys. (Leipzig) 2005, 14, Supplement. 23–37. [Google Scholar] [Green Version]
- West, IC. Molecular and Physicochemical Aspects. In Channelling in Intermediary metabolism; Agius, L, Sherratt, HSA, Eds.; Portland Press: London, UK, 1997; pp. 13–39. [Google Scholar]
- Islam, MA. Einstein-Smoluchowski Diffusion Equation: a Discussion. Physica Scripta 2004, 70, 120–125. [Google Scholar] [Green Version]
- Philbert, J. One and Half Century of Diffusion: Fick, Einstein, Before and Beyond. Diffusion Fundamentals 2006, 4, 6.1–6.19. [Google Scholar] [Green Version]
- Srivastava, DK; Bernhard, SA. Metabolite Transfer via Enzyme-Enzymz Complexes. Science 1986, 234, 1081–1086. [Google Scholar] [Green Version]
- Qian, H; Elson, EL. Single-molecule Enzymology: Stochastic Michaelis-Menten Kinetics. Biophys. Chem. 2002, 101/102, 565–576. [Google Scholar] [Green Version]
- Vendelin, M; Eimre, M; Seppet, E; Peet, N; Andrienko, T; Lemba, M; Engelbrecht, J; Seppet, EK; Saks, VA. Intracellular Diffusion of Adenosine Phosphates is Locally Restricted in Cardiac muscle. Mol. Cell. Biochem. 2004, 256/257, 229–241. [Google Scholar] [Green Version]
- Abraham, MR; Selivanov, VA; Hodgson, DM; Pucar, D; Zingman, LV; Wieringa, B; Dzeja, P; Alekseev, AE; Terzic, A. Coupling of Cell Energetics with Membrane Metabolic Sensing. Integrative Signaling through Creatine Kinase Phosphotransfer Disrupted by M-CK Gene Knock-out. J. Biol. Chem. 2002, 277, 24427–24434. [Google Scholar] [Green Version]
- Selivanov, VA; Alekseev, AE; Hodgson, DM; Dzeja, PP; Terzic, A. Nucleotide-gated KATP Channels Integrated with Creatine and Adenylate Kinases: Amplification, Tuning and Sensing of Energetics Signals in the Compartmentalized Cellular Environment. Mol. Cell. Biol. 2004, 256/257, 243–256. [Google Scholar] [Green Version]
- Scalettar, BA; Abney, JR; Hackenbrock, CR. Dynamics, Structure, and Function are Coupled in the Mitochondrial Matrix. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 8057–8061. [Google Scholar] [Green Version]
- Medalia, O; Weber, I; Frangakis, AS; Nicastro, D; Gerish, G; Baumeister, W. Macromolecular archtecture in eukariotic cells visualized by cryoelectron tomography. Science 2002, 298, 1209–1213. [Google Scholar] [Green Version]
- Ridgway, D; Broderick, G; Lopez-Campistrous, A; Ru’aini, M; Winter, P; Hamilton, M; Boulanger, P; Kovalenko, A; Ellison, MJ. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophys. J. 2008, 94, 3748–3759. [Google Scholar] [Green Version]
- Xia, Y; Yu, H; Jansen, R; Seringhaus, M; Baxter, S; Greenbaum, D; Zhao, H; Gerstein, M. Analyzing Cellular Biochemistry in Terms of Molecular Networks. Annu. Rev. Biochem. 2004, 73, 1051–1087. [Google Scholar] [Green Version]
- de Graaf, RA; Van Kranenburg, A; Nicolay, K. In vivo 31P-NMR Spectroscopy of ATP and Phosphocreatine in Rat Skeletal Muscle. Biophys. J. 2000, 78, 1657–1664. [Google Scholar] [Green Version]
- Kinsey, ST; Locke, BR; Benke, B; Moerland, TS. Diffusional Anisotropy is Induced by Subcellular Barriers in Skeletal Muscle. NMR Biomed. 1999, 12, 1–7. [Google Scholar] [Green Version]
- Kaldis, P; Kamp, G; Piendl, T; Wallimann, T. Functions of Creatine Kinase Isoenzymes in Spermatozoa. Advances in Developmental Biochemistry 1997, 5, 275–312. [Google Scholar] [Green Version]
- Huang, X; Holden, HM; Raushel, FM. Channeling of Substrates and Intermediates in Enzyme-catalyzed Reactions. Annu. Rev. Biochem. 2001, 70, 149–180. [Google Scholar] [Green Version]
- Saks, VA; Khuchua, ZA; Vasilyeva, EV; Belikova, Yu, O; Kuznetsov, A. Metabolic Compartmentation and Substrate Channeling in Muscle Cells. Role of Coupled Creatine Kinases in vivo Regulation of Cellular Respiration-a Synthesis. Mol. Cell. Biochem. 1994, 133/134, 155–192. [Google Scholar] [Green Version]
- Friedrich, P. Dynamic Compartmentation in Soluble Multienzyme System. Organized multienzyme systems. In Catalytic properties; Welch, GR, Ed.; Academic Press: New-York-London, 1985; pp. 141–176. [Google Scholar]
- Ottaway, JH; Mowbray, J. The Role of Compartmentation in the Control of Glycolysis. Curr. Top. Cell Regul. 1977, 12, 107–208. [Google Scholar] [Green Version]
- Maughan, DW; Henkin, JA; Vigoreaux, JO. Concentrations of Glycolytic Enzymes and Other Glycolytic Proteins in the Diffusible Fraction of a Vertebrate Muscle Proteome. Mol. Cell. Proteomics 2005, 4, 1541–1549. [Google Scholar] [Green Version]
- Waingeh, VF; Gustafson, CD; Kozliak, EI; Lowe, SL; Knull, HR; Thomasson, KA. Glycolytic Enzyme Interactions with Yeast and Skeletal Muscle F-actin. Biophys. J. 2006, 90, 1371–1384. [Google Scholar] [Green Version]
- Arnold, H; Pette, D. Binding of Glycolytic Enzymes to Structure Proteins in Muscle. Eur. J. Biochem. 1968, 6, 163–171. [Google Scholar] [Green Version]
- Kurganov, BI; Sugrobova, NP; Mil’man, LS. Supramolecular Organization of Glycolytic Enzymes. J. Theor. Biol. 1985, 116, 509–526. [Google Scholar] [Green Version]
- Saier, MH. Vectorial Metabolism and the Evolution of Transport Systems. J. Bacteriol. 2000, 182, 5029–5035. [Google Scholar] [Green Version]
- Vélot, C; Mixon, MB; Teige, M; Srere, P. Model of a Quinary Structure between Krebs TCA Cycle Enzymes: a Model for Metabolon. Biochemistry 1997, 36, 14271–14276. [Google Scholar] [Green Version]
- Haggie, PM; Verkman, AS. Diffusion of Tricarboxylic Acid Cycle Enzymes in the Mitochondrial Matrix in vivo. J. Biol. Chem. 2002, 277, 40782–40788. [Google Scholar] [Green Version]
- Eaton, S; Bursby, T; Middleton, B; Pourfarzam, M; Mills, K; Johnson, AW; Bartlett, K. The Mitochondrial Trifunctional Protein: Centre of a β-oxidation Metabolon? Biochem. Soc. Transactions 2000, 28, 177–182. [Google Scholar] [Green Version]
- Edwards, MR. Metabolite Channeling in the Origin of Life. J. Theor. Biol. 1996, 179, 313–322. [Google Scholar] [Green Version]
- Aliev, MK; Saks, VA. Quantitative Analysis of the “Phosphocreatine Shuttle”. I. A Probability Approach to the Description of Phosphocreatine Production in the Coupled Creatine Kinase-ATP/ADP Translocase-oxidative Phosphorylation Reaction in Heart Mitochondria. Biochim. Biophys. Acta 1993, 1143, 291–300. [Google Scholar] [Green Version]
- Mitchell, P. The Ninth Sir Hans Krebs Lecture. Compartmentation and Communication in Living Systems. Ligand Conduction: a General Catalytic Principle in Chemical, Osmotic and Chemiosmotic Reaction Systems. Eur. J. Biochem. 1979, 95, 1–20. [Google Scholar] [Green Version]
- Mitchell, P. Coupling of Phosphorylation to Electron Transfer by a Chemiosmotic Type of Mechanism. Nature 1961, 191, 144–148. [Google Scholar] [Green Version]
- Neely, JR; Rovetto, MJ; Whitmer, JT; Morgan, H. Effects of Ischemia on Function and Mtabolism of the Isolated Working Rat Heart. Am. J. Physiol. 1973, 22, 651–658. [Google Scholar] [Green Version]
- Neely, JR; Grotyohann, LW. Role of Glycolytic Products in Damage to Ischemic Myocardium. Dissociation of Adenosine Triphosphate Levels and Recovery of Function of Reperfused Ischemic Myocardium. Circ. Res. 1984, 55, 816–824. [Google Scholar] [Green Version]
- Gudbjarnason, S; Mathes, P; Raven, KG. Functional Compartmentation of ATP and Creatine Phosphate in Heart Muscle. J. Mol. Cell. Cardiol. 1970, 1, 325–339. [Google Scholar] [Green Version]
- Neubauer, S. The Failing Heart-an Engine out of Fuel. New Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [Green Version]
- Bricknell, OL; Opie, LH. A Relationship between Adenosine Triphosphate, Glycolysis and Ischemic Contracture in the Isolated Rat Heart. J. Mol. Cell. Card. 1981, 13, 941–945. [Google Scholar] [Green Version]
- Miller, DS; Horowitz, SB. Intracellular Compartmentalization of Adenosine Triphosphate. J. Biol Chem. 1986, 261, 13911–13915. [Google Scholar] [Green Version]
- Kennedy, HJ; Pouli, AE; Ainscow, EK; Jouaville, LS; Rizzuto, R; Rutter, GA. Glucose Generates Sub-plasma Membrane ATP Microdomains in Single Islet -cells. J. Biol. Chem. 1999, 274, 13291–13291. [Google Scholar] [Green Version]
- Bessman, SP; Geiger, PJ. Transport of Energy in Muscle: the Phosphorylcreatine Shuttle. Science 1981, 21, 448–452. [Google Scholar] [Green Version]
- Wallimann, T; Wyss, M; Brdiczka, D; Nicolay, K; Eppenberger, HM. Intracellular Compartmentation, Structure and Function of Creatine Kinase Isoenzymes in Tissues with High and Fluctuating Energy Demands: the ‘Phosphocreatine Circuit’ for Cellular Energy Homeostasis. Biochem. J. 1992, 281, 21–40. [Google Scholar] [Green Version]
- Cellular Bioenergetics. Role of coupled creatine kinases; Saks, VA; Ventura-Clapier, R (Eds.) Kluver Academic Publishers: Dordrecht-Boston, 1994; pp. 1–348.
- Saks, VA; Ventura-Clapier, R; Aliev, MK. Metabolic Control and Metabolic Capacity: Two Aspects of Creatine Kinase Functioning in the Cells. Biochim. Biophys. Acta 1996, 1274, 81–92. [Google Scholar] [Green Version]
- Ventura-Clapier, R; Veksler, V; Hoerter, JA. Myofibrillar Creatine Kinase and Cardiac Contraction. Mol. Cell. Biochem. 1994, 133, 125–144. [Google Scholar] [Green Version]
- Wyss, M; Smeitink, J; Wevers, RA; Wallimann, T. Mitochondrial Creatine Kinase: a Key Enzyme of Aerobic Energy Metabolism. Biochim. Biophys. Acta 1992, 1102, 119–166. [Google Scholar] [Green Version]
- Wyss, M; Kaddurah-Daouk, R. Creatine and Creatinine Metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [Green Version]
- Creatine and Creatine Kinase in Health and Disease; Wyss, M; Salomons, G (Eds.) Springer: Dordrecht, Ntherlands, 2007; pp. 1–334.
- Ishida, I; Riesinger, I; Wallimann, T; Paul, RJ. Compartmentation of ATP Synthesis and Utilization in Smooth Muscle: Roles of Aerobic Glycolysis and Creatine Kinase. Mol. Cell. Biochim. 1994, 133/134, 39–50. [Google Scholar] [Green Version]
- Bers, D. Excitation-contraction coupling and cardiac contraction; Kluwer Academic Publishers: Dordrecht, Netherlands, 2001. [Google Scholar]
- Noma, A. ATP-regulated K+ Channel in Cardiac Muscle. Nature 1983, 305, 147–148. [Google Scholar] [Green Version]
- Wang, SQ; Wei, C; Zhao, G; Brochet, D; Shen, J; Song, LS; Wang, W; Yang, D; Cheng, H. Imaging Microdomain Ca2+ in Muscle Cell. Circ. Res. 2004, 94, 1011–1022. [Google Scholar] [Green Version]
- Mannella, C. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim. Biophys. Acta 2006, 1762, 140–147. [Google Scholar] [Green Version]
- Frey, TG; Renken, CW; Perkins, GA. Insight into mitochondrial structure and function from electron tomography. Biochim. Biophys. Acta 2002, 1555, 196–203. [Google Scholar] [Green Version]
- Dzeja, P; Chung, S; Terzic, A. Integration of adenylate kinase and glycolytic and clycogenolytic circuits in cellular energetics. In Molecular System Bioenergetics. Energy for life; Saks, V, Ed.; Wiley – VCH: Weinheim, Germany, 2007; pp. 195–264. [Google Scholar]
- Dzeja, P; Terzic, A. Phosphotransfer networks and cellular energetics. J. Exp Biol. 2003, 206, 2039–2047. [Google Scholar] [Green Version]
- Joubert, F; Hoerter, JA; Mazet, JL. Discrimination of cardiac subcellular creatine kinase fluxes by NMR spectroscopy: a new method of analysis. Biophys J. 2001, 81, 2995–3004. [Google Scholar] [Green Version]
- Bittl, JA; Ingwall, JS. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J. Biol Chem. 1985, 260, 3512–3517. [Google Scholar] [Green Version]
- O’Connor, RS; Steeds, CM; Wiseman, R; Pavlath, G. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion. J. Physiol. 2008. published online Apr 17,; DOI: 10.1113/jphysiol.2008.151027. [Google Scholar]
- Weiss, JN; Yang, L; Qu, Z. Network Perspectives of Cardiovascular Metabolism. J. Lipid Research 2006, 47, 2355–2366. [Google Scholar] [Green Version]
- Ravasz, E; Somera, AL; Mongru, DA; Oltvai, ZN; Barabasi, AL. Hierarchical Organization of Modularity in Metabolic Networks. Science 2002, 297, 1551–1555. [Google Scholar] [Green Version]
- Barabasi, AL; Oltvai, ZN. Network Biology: Understanding the Cell's Functional Organization. Nature Rev. Genet. 2004, 24, 101–113. [Google Scholar] [Green Version]
- McFarland, EW; Kushmerick, MJ; Moerland, TS. Activity of Creatine Kinase in a Contracting Mammalian Muscle of Uniform Fiber Type. Biophys J. 1994, 67, 1912–1924. [Google Scholar] [Green Version]
- Wiseman, RW; Kushmerick, MJ. Creatine Kinase Equilibration Follows Solution Thermodynamics in Skeletal Muscle. 31P NMR Studies Using Creatine Analogs. J. Biol Chem. 1995, 270, 12428–12438. [Google Scholar] [Green Version]
- van Deursen, J; Heerschap, A; Oerlemans, F; Ruitenbeek, W; Jap, P; ter Laak, H; Wieringa, B. Skeletal Muscles of Mice Deficient in Muscle Creatine Kinase Lack Burst Activity. Cell. 1993, 74, 621–631. [Google Scholar] [Green Version]
- van Deursen, J; Ruitenbeek, W; Heerschap, A; Jap, P; ter Laak, H; Wieringa, B. Creatine Kinase (CK) in Skeletal Muscle Energy Metabolism: a Study of Mouse Mutants with Graded Reduction in Muscle CK Expression. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 9091–9095. [Google Scholar] [Green Version]
- Wallimann, T. 31P-NMR-measured Creatine Kinase Reaction Flux in Muscle: a Caveat! J. Muscle Res. Cell Motil. 1996, 17, 177–181. [Google Scholar] [Green Version]
- Rinner, O; Seebacher, J; Walzthoeni, T; Mueller, L; Beck, M; Schmidt, A; Mueller, M; Abersold, R. Identification of cross-linked peptides from large sequence databases. Nat. Methods 2008, 4, 315–318, Epub Mar 9th 2008. [Google Scholar] [Green Version]
Share and Cite
Saks, V.; Beraud, N.; Wallimann, T. Metabolic Compartmentation – A System Level Property of Muscle Cells. Int. J. Mol. Sci. 2008, 9, 751-767. https://doi.org/10.3390/ijms9050751
Saks V, Beraud N, Wallimann T. Metabolic Compartmentation – A System Level Property of Muscle Cells. International Journal of Molecular Sciences. 2008; 9(5):751-767. https://doi.org/10.3390/ijms9050751
Chicago/Turabian StyleSaks, Valdur, Nathalie Beraud, and Theo Wallimann. 2008. "Metabolic Compartmentation – A System Level Property of Muscle Cells" International Journal of Molecular Sciences 9, no. 5: 751-767. https://doi.org/10.3390/ijms9050751
APA StyleSaks, V., Beraud, N., & Wallimann, T. (2008). Metabolic Compartmentation – A System Level Property of Muscle Cells. International Journal of Molecular Sciences, 9(5), 751-767. https://doi.org/10.3390/ijms9050751