Next Article in Journal
Paternal Deprivation Alters Neural Stem Cells Proliferation and Epigenetic Histone Modifications in the Neurogenic Niches of Adult Prairie Voles
Previous Article in Journal
Immune Aging as a Failure of Programmed Cell Death Coordination
Previous Article in Special Issue
Novel Application of Ion Mobility Mass Spectrometry Reveals Complex Ganglioside Landscape in Diffuse Astrocytoma Peritumoral Regions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Special Issue “Invasion and Metastasis in Brain Cancer”

by
Aleksandra Glogowska
1,* and
Saeid Ghavami
1,2,3,4,*
1
Department of Human Anatomy and Cell Science, Faculty of Health Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T4, Canada
2
Paul Albrechtsen Research Institute Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
3
Children Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0Z3, Canada
4
Faculty of Medicine, Akademia Śląska, Rolna 43, 40-555 Katowice, Poland
*
Authors to whom correspondence should be addressed.
Int. J. Mol. Sci. 2026, 27(3), 1555; https://doi.org/10.3390/ijms27031555
Submission received: 27 January 2026 / Accepted: 29 January 2026 / Published: 5 February 2026
(This article belongs to the Special Issue Invasion and Metastasis in Brain Cancer)
Graphical Abstract
Brain tumors, whether primary gliomas or metastases from breast, lung, melanoma, or other systemic malignancies, share a unique biological feature: the ability to infiltrate brain parenchyma and adapt to the unique microenvironment of the central nervous system [1,2,3,4,5,6]. This invasive capacity renders complete surgical resection impossible and underlies recurrence and resistance to current therapies [7,8,9,10]. This Special Issue underlines that invasion is not a secondary phenomenon but a core driver of poor outcome, and that meaningful therapeutic progress will require mechanistic insights into how tumor-intrinsic programs intersect with microenvironmental cues to promote dissemination, survival, and treatment failure [8,11,12,13]. Advances in understanding extracellular matrix remodeling, cell–cell and cell–matrix interactions, metabolic rewiring, and bidirectional tumor–microenvironment signaling are therefore essential for biomarker discovery and the development of precision, mechanism-based therapies [14,15,16,17,18].
All contributions emphasize that the peritumoral brain zone is a biologically active and permissive niche rather than a passive boundary. Spatial and molecular profiling studies demonstrate that invasive margins harbor distinct lipidomic, metabolic, and regulatory programs that differ from tumor cores [19,20,21,22]. Ica et al. (contribution 1) identify region-specific ganglioside enrichment at astrocytoma margins using ion mobility mass spectrometry, reinforcing the concept that lipid remodeling contributes to migration and local adaptation [19]. These findings are consistent with broader metabolomic and miRNA studies showing that peritumoral regions support invasion through altered metabolism, immune modulation, and glial interactions [20,21,22]. Complementing this, De Fazio et al. (contribution 2) synthesize current knowledge on glioblastoma invasion, highlighting how cytoskeletal dynamics, integrin signaling, extracellular matrix remodeling, and neuronal and immune interactions converge to enable diffuse infiltration and therapy resistance [23,24]. Together, these studies emphasize that targeting invasion will require strategies that address both tumor-intrinsic heterogeneity and dynamic microenvironmental support.
The Special Issue further underscores that inflammatory and genetic regulators critically shape invasive and metastatic behavior. Jablonska et al. (contribution 3) reveal persistent STAT3 activation in post-radiation necrosis, highlighting how treatment-induced microenvironmental remodeling may promote immune suppression and recurrence [25,26]. At the genetic level, Boix De Jesus et al. (contribution 4) identify the Δ133p53β isoform as a consistent marker of brain metastatic competence across tumor types, linking it to AKT and MAPK activation and enhanced endothelial transmigration [27,28,29]. Similarly, UBE2C emerges as a multifunctional driver of proliferation, epithelial–mesenchymal transition, and motility in intracranial tumors (contribution 5) [30,31]. Finally, breast cancer brain metastasis exemplifies how tumors exploit blood–brain barrier signaling, vascular co-option, metabolic adaptation, and immune evasion to establish lethal secondary lesions (contribution 6) [32,33].
This volume communicates that invasion and brain colonization are dictated and controlled by tumor genetics and a specialized developed microenvironment. Effective therapies should therefore integrate molecular targeting with strategies that disrupt tumor–microenvironment crosstalk with tumor components. By diverging insights from spatial profiling, signaling cell biology approaches, and translational research, this Special Issue highlights actionable/targetable pathways and conceptual frameworks that can guide next-generation interventions aimed at limiting invasion, preventing recurrence, and improving outcomes for patients with primary and metastatic brain cancers [21,22,23,24,25,26,27,28,29,30,31,32,33].

Acknowledgments

The graphical abstract was prepared using supervised prompting with ChatGPT 5.2 (Premium+). The text was also edited for English language clarity and consistency using the same tool.

Conflicts of Interest

The authors declare no conflict of interest.

List of Contributions

  • Ica, R.; Sarbu, M.; Biricioiu, R.; Fabris, D.; Vukelić, Ž.; Zamfir, A.D. Novel Application of Ion Mobility Mass Spectrometry Reveals Complex Ganglioside Landscape in Diffuse Astrocytoma Peritumoral Regions. Int. J. Mol. Sci. 2025, 26, 8433. https://doi.org/10.3390/ijms26178433
  • De Fazio, E.; Pittarello, M.; Gans, A.; Ghosh, B.; Slika, H.; Alimonti, P.; Tyler, B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int. J. Mol. Sci. 2024, 25, 2563. https://doi.org/10.3390/ijms25052563.
  • Jablonska, P.A.; Galán, N.; Barranco, J.; Leon, S.; Robledano, R.; Echeveste, J.I.; Calvo, A.; Aristu, J.; Serrano, D. Presence of Activated (Phosphorylated) STAT3 in Radiation Necrosis Following Stereotactic Radiosurgery for Brain Metastases. Int. J. Mol. Sci. 2023, 24, 14219. https://doi.org/10.3390/ijms241814219.
  • Boix De Jesus, A.N.; Taha, A.; Wang, D.; Mehta, P.M.; Mehta, S.; Reily-Bell, A.; Lekamlage, S.P.; Saraiva, A.M.; Tahmeedzaman, T.; Ziad, F.; et al. Increased expression of the Δ133p53β isoform enhances brain metastasis. Int. J. Mol. Sci. 2023, 24, 1267.
  • Domentean, S.; Paisana, E.; Cascão, R.; Faria, C.C. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int. J. Mol. Sci. 2023, 24, 15792. https://doi.org/10.3390/ijms242115792.
  • Terceiro, L.E.L.; Ikeogu, N.M.; Lima, M.F.; Edechi, C.A.; Nickel, B.E.; Fischer, G.; Leygue, E.; McManus, K.J.; Myal, Y. Navigating the Blood–Brain Barrier: Challenges and Therapeutic Strategies in Breast Cancer Brain Metastases. Int. J. Mol. Sci. 2023, 24, 12034. https://doi.org/10.3390/ijms241512034.

References

  1. Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507, Erratum in N. Engl. J. Med. 2008, 359, 877. [Google Scholar] [PubMed]
  2. Lu, Y.; Huang, Y.; Zhu, C.; Li, Z.; Zhang, B.; Sheng, H.; Li, H.; Liu, X.; Xu, Z.; Wen, Y.; et al. Cancer Brain Metastasis: Molecular Mechanisms and Therapeutic Strategies. Mol. Biomed. 2025, 6, 12. [Google Scholar] [CrossRef]
  3. Klemm, F.; Maas, R.R.; Bowman, R.L.; Kornete, M.; Soukup, K.; Nassiri, S.; Brouland, J.-P.; Iacobuzio-Donahue, C.A.; Brennan, C.; Tabar, V.; et al. Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020, 181, 1643–1660.e17. [Google Scholar] [CrossRef]
  4. Jacome, M.A.; Wu, Q.; Chen, J.; Sidi Mohamed, Z.; Mokhtari, S.; Piña, Y.; Etame, A.B. Molecular Underpinnings of Brain Metastases. Int. J. Mol. Sci. 2025, 26, 2307. [Google Scholar] [CrossRef]
  5. So, K.; Kim, Y. Mechanisms of invasion in glioblastoma: Extracellular matrix, Ca2+ signaling, and glutamate. Brain Tumor Res. Treat. 2021, 9, 53–63. [Google Scholar]
  6. Erices, J.I.; Bizama, C.; Niechi, I.; Uribe, D.; Rosales, A.; Fabres, K.; Navarro-Martínez, G.; Torres, Á.; San Martín, R.; Roa, J.C.; et al. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. Int. J. Mol. Sci. 2023, 24, 7047. [Google Scholar] [CrossRef] [PubMed]
  7. Seker-Polat, F.; Pinarbasi Degirmenci, N.; Solaroglu, I.; Bagci-Onder, T. Tumor cell infiltration into the brain in glioblastoma: Mechanisms and clinical perspectives. Cancers 2021, 14, 443. [Google Scholar]
  8. Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Jill, P.; Alexe, G.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef]
  9. Percuoco, V.; Herlin, E.; Prada, F.; Riva, M.; Pessina, F.; Staartjes, V.E.; Della Pepa, G.M.; Menna, G. Glioblastoma invasion patterns from a clinical perspective—A systematic review. Neurosurg. Rev. 2024, 47, 4. [Google Scholar] [CrossRef]
  10. Oishi, T.; Koizumi, S.; Kurozumi, K. Molecular Mechanisms and Clinical Challenges of Glioma Invasion. Brain Sci. 2022, 12, 291. [Google Scholar] [CrossRef]
  11. Doroszko, M.; Stockgard, R.; Yildirim, I.; Ballester Bravo, M.; Millner, T.O.; Kundu, S.; Heinold, J.; Elgendy, R.; Berglund, M.; Elfineh, L.; et al. The Invasion Phenotypes of Glioblastoma Depend on Plastic and Reprogrammable Cell States. Nat. Commun. 2025, 16, 6662. [Google Scholar] [CrossRef]
  12. Campbell, B.K.; Gao, Z.; Corcoran, N.M.; Stylli, S.S.; Hovens, C.M. Molecular Mechanisms Driving the Formation of Brain Metastases. Cancers 2022, 14, 4963. [Google Scholar] [CrossRef]
  13. Kannan, S.; Murugan, A.K.; Balasubramanian, S.; Munirajan, A.K.; Alzahrani, A.S. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem. Pharmacol. 2022, 201, 115090. [Google Scholar] [CrossRef]
  14. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
  15. Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
  16. Tripathy, D.K.; Panda, L.P.; Biswal, S.; Barhwal, K. Insights into the glioblastoma tumor microenvironment: Current and emerging therapeutic approaches. Front. Pharmacol. 2024, 15, 1355242. [Google Scholar] [CrossRef]
  17. Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef]
  18. Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364. [Google Scholar] [CrossRef] [PubMed]
  19. Trevisi, G.; Mangiola, A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma. Cancers 2023, 15, 5460. [Google Scholar] [CrossRef]
  20. Wood, J.; Smith, S.J.; Castellanos-Uribe, M.; Lourdusamy, A.; May, S.T.; Barrett, D.A.; Grundy, R.G.; Kim, D.H.; Rahman, R. Metabolomic characterisation of the glioblastoma invasive margin reveals a region-specific signature. Heliyon 2025, 11, e12345. [Google Scholar]
  21. Basov, N.V.; Adamovskaya, A.V.; Rogachev, A.D.; Gaisler, E.V.; Demenkov, P.S.; Ivanisenko, T.V.; Venzel, A.S.; Mishinov, S.V.; Stupak, V.V.; Cheresiz, S.V.; et al. Investigation of metabolic features of glioblastoma tissue and the peritumoral environment using targeted metabolomics screening by LC MS/MS and gene network analysis. Vavilovskii Zhurnal Genet. Sel. 2024, 28, 345–360. [Google Scholar]
  22. Altieri, R.; Barbagallo, D.; Certo, F.; Broggi, G.; Ragusa, M.; Di Pietro, C.; Caltabiano, R.; Magro, G.; Peschillo, S.; Purrello, M.; et al. Peritumoral microenvironment in high grade gliomas: miRNA patterns and cross talk between GBM and microenvironment. Brain Sci. 2021, 11, 200. [Google Scholar] [PubMed]
  23. Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
  24. Thoppey Manoharan, V.; Abdelkareem, A.; Gill, G.; Brown, S.; Gillmor, A.; Hall, C.; Seo, H.; Narta, K.; Grewal, S.; Dang, N.H.; et al. Spatiotemporal Modeling Reveals High-Resolution Invasion States in Glioblastoma. Genome Biol. 2024, 25, 264. [Google Scholar] [CrossRef]
  25. Quail, D.F.; Joyce, J.A. The microenvironmental landscape of brain tumors. Cancer Cell 2017, 31, 326–341. [Google Scholar] [CrossRef]
  26. Chang, N.; Ahn, S.H.; Kong, D.S.; Lee, H.W.; Nam, D.H. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment. Mol. Cell Endocrinol. 2017, 451, 53–65. [Google Scholar] [CrossRef]
  27. Bourdon, J.-C. p53 and Its Isoforms in Cancer. Br. J. Cancer 2007, 97, 277–282. [Google Scholar] [CrossRef]
  28. Zhai, X.; Li, Y.; Liang, P.; Li, L.; Zhou, Y.; Zhang, W.; Wang, D.; Wei, G. PI3K/AKT/Afadin Signaling Pathway Contributes to Pathological Vascularization in Glioblastomas. Oncol. Lett. 2017, 15, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
  29. Peleli, M.; Moustakas, A.; Papapetropoulos, A. Endothelial–Tumor Cell Interaction in Brain and CNS Malignancies. Int. J. Mol. Sci. 2020, 21, 7371. [Google Scholar] [CrossRef]
  30. Ma, R.; Kang, X.; Zhang, G.; Fang, F.; Du, Y.; Lv, H. High expression of UBE2C is associated with the aggressive progression and poor outcome of malignant glioma. Oncol. Lett. 2016, 11, 2300–2304. [Google Scholar] [CrossRef] [PubMed]
  31. Xie, C.; Powell, C.; Yao, M.; Wu, J.; Dong, Q. Ubiquitin-conjugating enzyme E2C: A potential cancer biomarker. Int. J. Biochem. Cell Biol. 2014, 54, 182–187. [Google Scholar] [CrossRef] [PubMed]
  32. Zhang, X.; Wang, X.; Shi, S.; Guo, D. Decoding the Mechanisms Underlying Breast Cancer Brain Metastasis: Paving the Way for Precision Therapeutics. Biomark. Res. 2025, 13, 144. [Google Scholar] [CrossRef] [PubMed]
  33. Lockman, P.R.; Mittapalli, R.K.; Taskar, K.S.; Rudraraju, V.; Gril, B.; Bohn, K.A.; Adkins, C.E.; Roberts, A.; Thorsheim, H.R.; Gaasch, J.A.; et al. Heterogeneous Blood–Tumor Barrier Permeability Determines Drug Efficacy in Experimental Brain Metastases of Breast Cancer. Clin. Cancer Res. 2010, 16, 5664–5678. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Glogowska, A.; Ghavami, S. Special Issue “Invasion and Metastasis in Brain Cancer”. Int. J. Mol. Sci. 2026, 27, 1555. https://doi.org/10.3390/ijms27031555

AMA Style

Glogowska A, Ghavami S. Special Issue “Invasion and Metastasis in Brain Cancer”. International Journal of Molecular Sciences. 2026; 27(3):1555. https://doi.org/10.3390/ijms27031555

Chicago/Turabian Style

Glogowska, Aleksandra, and Saeid Ghavami. 2026. "Special Issue “Invasion and Metastasis in Brain Cancer”" International Journal of Molecular Sciences 27, no. 3: 1555. https://doi.org/10.3390/ijms27031555

APA Style

Glogowska, A., & Ghavami, S. (2026). Special Issue “Invasion and Metastasis in Brain Cancer”. International Journal of Molecular Sciences, 27(3), 1555. https://doi.org/10.3390/ijms27031555

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop