Poria cocos Attenuates LPS/D-Galactosamine-Induced Acute Liver Failure in Rats: An Integrative Exploratory Study Combining Network Pharmacology and In Vivo Validation
Abstract
1. Introduction
2. Results
2.1. Network Pharmacology and Molecular Docking
2.1.1. Identification of Active Components, Predicted Targets, and Network Construction
2.1.2. Core Target Screening and GO/KEGG Enrichment Analysis
2.1.3. Molecular Docking of Active Components with Core Proteins
2.2. In Vivo Validation
2.2.1. Poria cocos Extract Reduces LPS/D-GalN-Induced Mortality
2.2.2. Poria cocos Extract Improves Liver Injury Biomarkers
2.2.3. Histopathological and Immunohistochemical Evidence of Hepatoprotective Effects
2.2.4. Effects of Poria cocos Extract on Serum IL-6 Levels
2.2.5. Effects of Poria cocos Extract on PI3K/AKT-Related Gene and Protein Expression
3. Discussion
4. Materials and Methods
4.1. Network Pharmacology Analysis
4.1.1. Screening of Bioactive Components and Identification of Disease-Related Targets
4.1.2. Construction of Drug–Disease Target Network and Functional Enrichment Analysis
4.1.3. Molecular Docking of Bioactive Components with Key Target Proteins
4.2. Experimental Validation
4.2.1. Preparation of Poria cocos Extract
4.2.2. Animal Experiments and Establishment of Acute Liver Failure Model
4.2.3. Serum Biochemical Analysis, Histopathological Examination and Immunohistochemistry (IHC)
4.2.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR) and Western Blot Analysis
4.2.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALF | Acute Liver Failure |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| Tbil | Total Bilirubin |
| INR | International Normalized Ratio |
| IL-6 | Interleukin-6 |
| TNF-α | Tumor Necrosis Factor-alpha |
| NF-κB | Nuclear Factor-kappa B |
| PI3K | Phosphoinositide 3-Kinase |
| AKT1 | Protein Kinase B |
| PI3K/AKT | Phosphoinositide 3-Kinase/Protein Kinase B |
| p38 | p38 Mitogen-Activated Protein Kinase |
| MMP2 | Matrix Metalloproteinase-2 |
| Caspase-3 | Cysteine-aspartic Acid Protease-3 |
| GO | Gene Ontology |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| LPS | Lipopolysaccharide |
| D-GalN | D-Galactosamine |
| qPCR | Quantitative Polymerase Chain Reaction |
| OB | Oral Bioavailability |
| DL | Drug-Likeness |
| PPI | Protein–Protein Interaction |
| TCMs | Traditional Chinese Medicines |
| SPF | Specific Pathogen-Free |
| Control | Control Group |
| Positive | 50 mg/kg Bifendate Group |
| Low Poria | Low-Dose Poria cocos Extract (50 mg/kg) Group |
| High Poria | High-Dose Poria cocos Extract (200 mg/kg) Group |
| H&E | Hematoxylin and eosin |
| TCM | Traditional Chinses Medicine |
| TCMSP | Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform |
| LC-MS | Liquid Chromatography-Mass Spectrometry |
| BP | Biological Process |
| CC | Cellular Component |
| MF | Molecular Function |
| Elisa | Enzyme-Linked Immunosorbent Assay |
| IHC | Immunohistochemistry |
| DAB | diaminobenzidine |
| SD | Sprague-Dawley |
References
- Maiwall, R.; Kulkarni, A.V.; Arab, J.P.; Piano, S. Acute Liver Failure. Lancet 2024, 404, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.M.; Lewis, J.H. Nonacetaminophen Drug-Induced Acute Liver Failure. Clin. Liver Dis. 2018, 22, 301–324. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, H.; Zhong, H.; Yang, S.; Wang, Q. Lactate and Blood Ammonia on Admission as Biomarkers to Predict the Prognosis of Patients with Acute Mushroom Poisoning and Liver Failure: A Retrospective Study. Toxicol. Res. 2021, 10, 850–855. [Google Scholar] [CrossRef]
- Elshafey, S.A.; Brown, R.S. Nonviral or Drug-Induced Etiologies of Acute-on-Chronic Liver Failure (Autoimmune, Vascular, and Malignant). Clin. Liver Dis. 2023, 27, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Hameed, H.; Farooq, M.; Vuillier, C.; Piquet-Pellorce, C.; Hamon, A.; Dimanche-Boitrel, M.-T.; Samson, M.; Le Seyec, J. RIPK1 in Liver Parenchymal Cells Limits Murine Hepatitis during Acute CCl4-Induced Liver Injury. Int. J. Mol. Sci. 2022, 23, 7367. [Google Scholar] [CrossRef]
- Yamazaki, T.; Schnabl, B. Acute Alcohol-Associated Hepatitis: Latest Findings in Non-Invasive Biomarkers and Treatment. Liver Int. 2025, 45, e15608. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, H.; Chen, Y.; Zheng, Y.; Du, Y.; Ma, C.; Zhang, Q. PANoptosis-like Death in Acute-on-Chronic Liver Failure Injury. Sci. Rep. 2024, 14, 392. [Google Scholar] [CrossRef]
- Husain, I.; Luo, X. Novel Approaches to Immunomodulation for Solid Organ Transplantation. Annu. Rev. Med. 2024, 75, 369–380. [Google Scholar] [CrossRef]
- Lemmer, P.; Sowa, J.; Bulut, Y.; Strnad, P.; Canbay, A. Mechanisms and Aetiology-dependent Treatment of Acute Liver Failure. Liver Int. 2023, 45, e15739. [Google Scholar] [CrossRef]
- Rovegno, M.; Vera, M.; Ruiz, A.; Benítez, C. Current Concepts in Acute Liver Failure. Ann. Hepatol. 2019, 18, 543–552. [Google Scholar] [CrossRef]
- Lu, J.; Liu, X.; Fan, K.; Lin, X. Traditional Chinese Medicine as a Tool for the Treatment of Hepatocellular Carcinoma by Targeting Pathophysiological Mechanism. Cancer Manag. Res. 2025, 17, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Tang, S.; Xie, D.; Gu, G.; Gan, L. The Protective Effect of Traditional Chinese Medicine on Liver Ischemia-Reperfusion Injury. Evid. Based Complement. Altern. Med. 2021, 2021, 5564401. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, Y.; Qin, Y.; Xu, R.; Yang, Z.; Peng, H. Untargeted Metabolomics and Targeted Quantitative Analysis of Temporal and Spatial Variations in Specialized Metabolites Accumulation in Poria cocos (Schw.) Wolf (Fushen). Front. Plant Sci. 2021, 12, 713490. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, H.; Sun, X.; Bai, Z.; Wang, J.; Bai, G.; Yao, Q.; Xu, Y.; Zhang, L. Pharmacological Profiles and Therapeutic Applications of Pachymic Acid (Review). Exp. Ther. Med. 2022, 24, 547. [Google Scholar] [CrossRef]
- Wang, D.; Huang, C.; Zhao, Y.; Wang, L.; Yang, Y.; Wang, A.; Zhang, Y.; Hu, G.; Jia, J. Comparative Studies on Polysaccharides, Triterpenoids, and Essential Oil from Fermented Mycelia and Cultivated Sclerotium of a Medicinal and Edible Mushroom, Poria cocos. Molecules 2020, 25, 1269. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Zhang, L. Molecular Basis for Poria cocos Mushroom Polysaccharide Used as an Antitumor Drug in China. Prog. Mol. Biol. Transl. Sci. 2019, 163, 263–296. [Google Scholar] [CrossRef]
- Doyle, S.J.; Strich, R. Modeling the Role of Cyclin C in Connecting Stress-Induced Mitochondrial Fission to Apoptosis. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Ding, X.; Li, S.; Huang, H.; Shen, J.; Ding, Y.; Chen, T.; Ma, L.; Liu, J.; Lai, Y.; Chen, B.; et al. Bioactive Triterpenoid Compounds of Poria cocos (Schw.) Wolf in the Treatment of Diabetic Ulcers via Regulating the PI3K-AKT Signaling Pathway. J. Ethnopharmacol. 2024, 325, 117812. [Google Scholar] [CrossRef]
- Nie, A.; Chao, Y.; Zhang, X.; Jia, W.; Zhou, Z.; Zhu, C. Phytochemistry and Pharmacological Activities of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. Front. Pharmacol. 2020, 11, 505249. [Google Scholar] [CrossRef]
- Siregar, A.S.; Nyiramana, M.M.; Kim, E.-J.; Cho, S.B.; Woo, M.S.; Lee, D.K.; Hong, S.-G.; Han, J.; Kang, S.S.; Kim, D.R.; et al. Oyster-Derived Tyr-Ala (YA) Peptide Prevents Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure by Suppressing Inflammatory, Apoptotic, Ferroptotic, and Pyroptotic Signals. Mar. Drugs 2021, 19, 614. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network Pharmacology, a Promising Approach to Reveal the Pharmacology Mechanism of Chinese Medicine Formula. J. Ethnopharmacol. 2023, 309, 116306. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Tsang, M.S.-M.; He, R.; Lam, C.W.-K.; Quan, Z.B.; Wong, C.K. The Active Compounds and Therapeutic Mechanisms of Pentaherbs Formula for Oral and Topical Treatment of Atopic Dermatitis Based on Network Pharmacology. Plants 2020, 9, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, X.; Gu, L.; Li, S.; Tang, J.; Ma, R.; Yang, H.; Peng, Z. Mefunidone Ameliorates Acute Liver Failure in Mice by Inhibiting MKK4-JNK Pathway. Biochem. Pharmacol. 2024, 225, 116267. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Feng, J.; Chen, Y.; Huang, S.; Shi, X.; Liu, X.; Sun, Y. Traditional Chinese Medicine in Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives. Chin. Med. 2021, 16, 68. [Google Scholar] [CrossRef]
- Li, J.; Guo, H.; Dong, Y.; Yuan, S.; Wei, X.; Zhang, Y.; Dong, L.; Wang, F.; Bai, T.; Yang, Y. Polysaccharides from Chinese Herbal Medicine: A Review on the Hepatoprotective and Molecular Mechanism. Chin. J. Nat. Med. 2024, 22, 4–14. [Google Scholar] [CrossRef]
- He, K.; Chen, H.; Cao, T.; Lin, J. Elucidation of the Mechanisms and Molecular Targets of Shuanglian Decoction for the Treatment of Hepatocellular Carcinoma Based on Network Pharmacology. ACS Omega 2021, 6, 917–924. [Google Scholar] [CrossRef]
- Liu, D.D.; Han, C.C.; Wan, H.F.; He, F.; Xu, H.Y.; Wei, S.H.; Du, X.H.; Xu, F. Effects of Inhibiting PI3K-Akt-mTOR Pathway on Lipid Metabolism Homeostasis in Goose Primary Hepatocytes. Animal 2016, 10, 1319–1327. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Hou, J.; Hui, M.; Qi, H.; Lei, T.; Zhang, X.; Zhao, L.; Du, H. Induction of Autophagy via the PI3K/Akt/mTOR Signaling Pathway by Pueraria Flavonoids Improves Non-Alcoholic Fatty Liver Disease in Obese Mice. Biomed. Pharmacother. 2023, 157, 114005. [Google Scholar] [CrossRef]
- Zhao, H.-M.; Zhang, X.-Y.; Lu, X.-Y.; Yu, S.-R.; Wang, X.; Zou, Y.; Zuo, Z.-Y.; Liu, D.-Y.; Zhou, B.-G. Erzhi Pill® Protected Experimental Liver Injury Against Apoptosis via the PI3K/Akt/Raptor/Rictor Pathway. Front. Pharmacol. 2018, 9, 283. [Google Scholar] [CrossRef]
- Zhou, Y.-D.; Hou, J.-G.; Liu, W.; Ren, S.; Wang, Y.-P.; Zhang, R.; Chen, C.; Wang, Z.; Li, W. 20(R)-Ginsenoside Rg3, a Rare Saponin from Red Ginseng, Ameliorates Acetaminophen-Induced Hepatotoxicity by Suppressing PI3K/AKT Pathway-Mediated Inflammation and Apoptosis. Int. Immunopharmacol. 2018, 59, 21–30. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Sun, Y.; Ma, S.; Ma, C.; Zhou, H.; Chen, G.; Liu, L.; Cai, D. Study on the Mechanism of Yupingfeng Powder in the Treatment of Immunosuppression Based on UPLC⁃QTOF⁃MS, Network Pharmacology and Molecular Biology Verification. Life Sci. 2022, 289, 120211. [Google Scholar] [CrossRef]
- Tao, Y.; Tian, K.; Chen, J.; Tan, D.; Liu, Y.; Xiong, Y.; Chen, Z.; Tian, Y. Network Pharmacology-Based Prediction of the Active Compounds, Potential Targets, and Signaling Pathways Involved in Danshiliuhao Granule for Treatment of Liver Fibrosis. Evid. Based Complement. Altern. Med. 2019, 2019, 2630357. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper Server: A Web Server for Potential Drug Target Identification Using Pharmacophore Mapping Approach. Nucleic Acids Res. 2010, 38, W609–W614. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating Protein Pharmacology by Ligand Chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Zhang, Y.; Wang, Y.-Y.; Zhang, W.-X.; Wang, M.-W.; Liu, C.-Q.; Peng, D.-Y.; Yu, N.-J.; Wang, L.; Chen, W.-D. Extracts of Poria cocos polysaccharides improves alcoholic liver disease in mice via CYP2E1 and NF-κB inflammatory pathways. Zhongguo Zhong Yao Za Zhi 2022, 47, 134–140. [Google Scholar] [CrossRef]





| MolID (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) | Molecule Name | Molecular Weight (MW) | Oral Bioavailability (OB, %) | Drug-Likeness (DL) | PubChem ID |
|---|---|---|---|---|---|
| Mol000273 | (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy-4,4,10,13,14-pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-enoic acid | 470.76 | 30.93 | 0.81 | 10743008 |
| Mol000275 | trametenolic acid | 456.78 | 38.71 | 0.8 | 12309443 |
| Mol000276 | 7,9(11)-dehydropachymic acid | 526.83 | 35.11 | 0.81 | 15226717 |
| Mol000279 | Cerevisterol | 430.74 | 37.96 | 0.77 | 10181133 |
| Mol000280 | (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy-4,4,10,13,14-pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-isopropyl-hex-5-enoic acid | 484.79 | 31.07 | 0.82 | 15225964 |
| Mol000282 | ergosta-7,22E-dien-3beta-ol | 398.74 | 43.51 | 0.72 | 5283628 |
| Mol000283 | Ergosterol peroxide | 430.74 | 40.36 | 0.81 | 5351516 |
| Mol000285 | (2R)-2-[(5R,10S,13R,14R,16R,17R)-16-hydroxy-3-keto-4,4,10,13,14-pentamethyl-1,2,5,6,12,15,16,17-octahydrocyclopenta[a]phenanthren-17-yl]-5-isopropyl-hex-5-enoic acid | 482.77 | 38.26 | 0.82 | 9805290 |
| Mol000287 | 3beta-Hydroxy-24-methylene-8-lanostene-21-oic acid | 470.81 | 38.7 | 0.81 | 73402 |
| Mol000289 | pachymic acid | 528.85 | 33.63 | 0.81 | 5484385 |
| Mol000290 | Poricoic acid A | 498.77 | 30.61 | 0.76 | 5471851 |
| Mol000291 | Poricoic acid B | 484.74 | 30.52 | 0.75 | 5471852 |
| Mol000292 | poricoic acid C | 482.77 | 38.15 | 0.75 | 56668274 |
| Mol000296 | hederagenin | 414.79 | 36.91 | 0.75 | 73299 |
| Mol000300 | dehydroeburicoic acid | 453.75 | 44.17 | 0.83 | 15250826 |
| Score | Congestion | Vacuole Degeneration | Necrosis |
|---|---|---|---|
| 0 | None | None | None |
| 1 | Slight | Slight | Single cell |
| 2 | Mild | Mild | <30% |
| 3 | Moderate | Moderate | 31–60% |
| 4 | Severe | Severe | >60% |
| Gene | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
|---|---|---|
| AKT1 | CAAGGACTGCAGGAACGAGT | ACAAGGTGTTCCGAGCTGTT |
| MAPK14(p38) | TCGGCACACTGATGACGAAA | GTCCCCGTCAGACGCATTAT |
| MMP2 | GGTGGCAATGGAGATGGACA | CCGGTCATAATCCTCGGTGG |
| Caspase-3 | CGGACCTGTGGACCTGAAAA | TAACCGGGTGCGGTAGAGTA |
| GAPDH | GCGAGATCCCGCTAACATCA | CTCGTGGTTCACACCCATCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wen, P.; Jian, X.; Ren, X.; Zhao, S.; Yang, Y.; Ge, H.; Li, L.; Wang, H.; Li, M.; Wang, L. Poria cocos Attenuates LPS/D-Galactosamine-Induced Acute Liver Failure in Rats: An Integrative Exploratory Study Combining Network Pharmacology and In Vivo Validation. Int. J. Mol. Sci. 2026, 27, 1403. https://doi.org/10.3390/ijms27031403
Wen P, Jian X, Ren X, Zhao S, Yang Y, Ge H, Li L, Wang H, Li M, Wang L. Poria cocos Attenuates LPS/D-Galactosamine-Induced Acute Liver Failure in Rats: An Integrative Exploratory Study Combining Network Pharmacology and In Vivo Validation. International Journal of Molecular Sciences. 2026; 27(3):1403. https://doi.org/10.3390/ijms27031403
Chicago/Turabian StyleWen, Peihua, Xinru Jian, Xiaoyu Ren, Shusen Zhao, Yuhan Yang, Haotian Ge, Longjie Li, Hongxun Wang, Maoteng Li, and Limei Wang. 2026. "Poria cocos Attenuates LPS/D-Galactosamine-Induced Acute Liver Failure in Rats: An Integrative Exploratory Study Combining Network Pharmacology and In Vivo Validation" International Journal of Molecular Sciences 27, no. 3: 1403. https://doi.org/10.3390/ijms27031403
APA StyleWen, P., Jian, X., Ren, X., Zhao, S., Yang, Y., Ge, H., Li, L., Wang, H., Li, M., & Wang, L. (2026). Poria cocos Attenuates LPS/D-Galactosamine-Induced Acute Liver Failure in Rats: An Integrative Exploratory Study Combining Network Pharmacology and In Vivo Validation. International Journal of Molecular Sciences, 27(3), 1403. https://doi.org/10.3390/ijms27031403

