AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration
Abstract
1. Introduction—Toward a Multiphysics Understanding of Neuronal Failure
2. Protein Energy Landscapes as Early Determinants of Neuronal Destabilization
2.1. AI-Based Reconstruction of Neuronal Protein Energy Landscapes
2.2. Phase Behavior, Liquid–Liquid Phase Separation, and Mesoscale Proteome Organization
2.3. Energy-Barrier Erosion and Early Physicochemical Signatures of Instability
3. Electrodynamics of the Diseased Neuron
3.1. Nanoscale Ionic Thermodynamics and Evolving Dielectric Microdomains
3.2. Electromechanical Field Propagation, Resonance Drift, and Dielectric Heterogeneity
3.3. Extracellular Anisotropy, Ephaptic Interactions, and Progressive Coherence Loss
4. Fluidic Microcircuits and Hydrodynamic Instabilities Across Intracellular and Perivascular Domains
4.1. Quantum-Informed Intracellular Hydrodynamics and Viscoelastic Transport
4.2. Lipid Surface Microflows, Organelle-Driven Fluid Mechanics, and Mechano-Chemical Feedback
4.3. Perivascular Hydrodynamics, Extracellular Fluid Architecture, and Multiscale Flow-Field Drift
5. A Multiphysics Failure Framework: Coupled Instabilities Across Molecular, Electrical, and Fluidic Domains
5.1. The High-Dimensional Stability Manifold of the Neuron
5.2. Cross-Domain Coupling and the Emergence of Instability Modes
5.3. Predicting Collapse Through Multiphysics Bifurcation Dynamics
6. AI Multiphysics Digital Twins for Forecasting Neuronal Failure Trajectories
6.1. Digital Twins as Co-Evolving Representations of Neuronal Physics
6.2. Learning Across Scales: From Quantum Potentials to Network-Level Field Evolution
6.3. Predictive Bifurcation Diagnostics and Intervention-Sensitivity Maps
7. Translational and Therapeutic Implications of Multiphysics Digital Twins
7.1. Early Diagnostics Through Deformation Signatures of the Neuronal Stability Manifold
- -
- Reduced curvature of the manifold’s stabilizing directions;
- -
- Shorter cycles of oscillations in metabolic–mechanical fluctuations;
- -
- Longer dwelling times in unstable saddle areas;
- -
- Reduced synchronicity between intracellular hydrodynamics, extracellular ionic stability, and membrane electromechanical activity.
7.2. Mapping Intervention Windows Through Multiphysics Sensitivity Fields
7.3. Multiphysics-Guided Therapeutic Design: New Classes of Interventions
- (a)
- Hydrodynamic Re-coherence Therapies
- (b)
- Electromechanical Harmonization
- (c)
- Energetic Phase Synchronization
- (d)
- Phase State Modulators for LLPS Systems
- (e)
- AI-Optimized Control Policies
7.4. Toward Precision Neurophysics: Clinical Integration of Digital Twin Frameworks
- -
- When a patient enters a bifurcation corridor;
- -
- What type of intervention(s) will increase the curvature of the stability manifold;
- -
- When metabolic–hydrodynamic ergodicity decreases;
- -
- When there is a trend toward de-synchronization between dielectric-mechanical dynamics;
- -
- And what type(s) of modulation of specific domains will provide the greatest stabilization of the overall system.
8. Conclusions—Toward a Predictive and Physically Coherent Framework for Neuronal Resilience
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marroux, H.J.B.; Fidler, A.P.; Ghosh, A.; Kobayashi, Y.; Gokhberg, K.; Kuleff, A.I.; Leone, S.R.; Neumark, D.M. Attosecond Spectroscopy Reveals Alignment Dependent Core-Hole Dynamics in the ICl Molecule. Nat. Commun. 2020, 11, 5810. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Marrufo, M.; Caballero-Díaz, R.; Sarrias-Arrabal, E.; Martín-Clemente, R. Decoupling Alpha Desynchronization from Neural Resource Use: Evidence from Cognitive Load Modulation. NeuroSci 2025, 6, 32. [Google Scholar] [CrossRef]
- Stofella, M.; Seetaloo, N.; St John, A.N.; Paci, E.; Phillips, J.J.; Sobott, F. Recalibrating Protection Factors Using Millisecond Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2025, 97, 2648–2657. [Google Scholar] [CrossRef]
- Kovács, D.P.; Moore, J.H.; Browning, N.J.; Batatia, I.; Horton, J.T.; Pu, Y.; Kapil, V.; Witt, W.C.; Magdău, I.-B.; Cole, D.J.; et al. MACE-OFF: Short-Range Transferable Machine Learning Force Fields for Organic Molecules. J. Am. Chem. Soc. 2025, 147, 17598–17611. [Google Scholar] [CrossRef]
- Gracia, P.; Polanco, D.; Tarancón-Díez, J.; Serra, I.; Bracci, M.; Oroz, J.; Laurents, D.V.; García, I.; Cremades, N. Molecular Mechanism for the Synchronized Electrostatic Coacervation and Co-Aggregation of Alpha-Synuclein and Tau. Nat. Commun. 2022, 13, 4586. [Google Scholar] [CrossRef]
- Forrest, M.D. Can the Thermodynamic Hodgkin-Huxley Model of Voltage-Dependent Conductance Extrapolate for Temperature? Computation 2014, 2, 47–60. [Google Scholar] [CrossRef]
- Vitkova, V.; Yordanova, V.; Staneva, G.; Petkov, O.; Stoyanova-Ivanova, A.; Antonova, K.; Popkirov, G. Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. Membranes 2021, 11, 847. [Google Scholar] [CrossRef]
- Xu, Y.; Erdjument Bromage, H.; Phoon, C.K.L.; Neubert, T.A.; Ren, M.; Schlame, M. Cardiolipin Remodeling Enables Protein Crowding in the Inner Mitochondrial Membrane. EMBO J. 2021, 40, e108428. [Google Scholar] [CrossRef] [PubMed]
- Sauvola, C.W.; Littleton, J.T. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front. Mol. Neurosci. 2021, 14, 733138. [Google Scholar] [CrossRef]
- Adrian, M.; Kusters, R.; Storm, C.; Hoogenraad, C.C.; Kapitein, L.C. Probing the Interplay between Dendritic Spine Morphology and Membrane-Bound Diffusion. Biophys. J. 2017, 113, 2261–2270. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.K.; Jara, C.; Llanquinao, J.; Lira, M.; Cortés-Díaz, D.; Tapia-Rojas, C. Mitochondrial Bioenergetics, Redox Balance, and Calcium Homeostasis Dysfunction with Defective Ultrastructure and Quality Control in the Hippocampus of Aged Female C57BL/6J Mice. Int. J. Mol. Sci. 2023, 24, 5476. [Google Scholar] [CrossRef] [PubMed]
- Filchenko, I.; Blochet, C.; Buscemi, L.; Price, M.; Badaut, J.; Hirt, L. Caveolin-1 Regulates Perivascular Aquaporin-4 Expression After Cerebral Ischemia. Front. Cell Dev. Biol. 2020, 8, 371. [Google Scholar] [CrossRef]
- Rosu, G.-C.; Catalin, B.; Balseanu, T.A.; Laurentiu, M.; Claudiu, M.; Kumar-Singh, S.; Daniel, P. Inhibition of Aquaporin 4 Decreases Amyloid Aβ40 Drainage Around Cerebral Vessels. Mol. Neurobiol. 2020, 57, 4720–4734. [Google Scholar] [CrossRef]
- Toader, C.; Brehar, F.M.; Radoi, M.P.; Serban, M.; Covache-Busuioc, R.-A.; Aljboor, G.S.; Gorgan, R.M. The Management of a Giant Convexity En Plaque Anaplastic Meningioma with Gerstmann Syndrome: A Case Report of Surgical Outcomes in a 76-Year-Old Male. Diagnostics 2024, 14, 2566. [Google Scholar] [CrossRef]
- Li, Y.; Fu, J.; Wang, H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals 2024, 17, 1462. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Gao, J.; Zhang, G.; Guo, S.; Zhang, X.; Han, S.; Feng, X.; Chen, X.; Hu, J. ROS-DRP1-Mediated Excessive Mitochondrial Fission and Autophagic Flux Inhibition Contribute to Heat Stress-Induced Apoptosis in Goat Sertoli Cells. J. Anim. Sci. Biotechnol. 2025, 16, 58. [Google Scholar] [CrossRef]
- Farea, A.; Yli-Harja, O.; Emmert-Streib, F. Understanding Physics-Informed Neural Networks: Techniques, Applications, Trends, and Challenges. AI 2024, 5, 1534–1557. [Google Scholar] [CrossRef]
- Bárkányi, Á.; Chován, T.; Németh, S.; Abonyi, J. Modelling for Digital Twins—Potential Role of Surrogate Models. Processes 2021, 9, 476. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery. Int. J. Mol. Sci. 2025, 26, 7364. [Google Scholar] [CrossRef] [PubMed]
- Duignan, T.T. The Potential of Neural Network Potentials. ACS Phys. Chem. Au 2024, 4, 232–241. [Google Scholar] [CrossRef]
- Shah, S.J.A.; Zhang, Q.; Guo, J.; Liu, H.; Liu, H.; Villà-Freixa, J. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling. ACS Chem. Neurosci. 2023, 14, 3959–3971. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, B.; Li, Q.; Shi, R.; Cao, Y.; Wang, W.; Li, J. Sequence Tendency for the Interaction between Low-Complexity Intrinsically Disordered Proteins. JACS Au 2023, 3, 93–104. [Google Scholar] [CrossRef]
- Czajkowski, A.; Udayabanu, A.; Raj, M.; Pulibandla, L.C.P.; Tursunović, M.; Jahnel, M.; Adams, E.M. Protein Modifications and Ionic Strength Show the Difference between Protein-Mediated and Solvent-Mediated Regulation of Biomolecular Condensation. Front. Nanotechnol. 2025, 7, 1556384. [Google Scholar] [CrossRef]
- Wuyun, Q.; Chen, Y.; Shen, Y.; Cao, Y.; Hu, G.; Cui, W.; Gao, J.; Zheng, W. Recent Progress of Protein Tertiary Structure Prediction. Molecules 2024, 29, 832. [Google Scholar] [CrossRef]
- Róg, T.; Girych, M.; Bunker, A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14, 1062. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Han, S.; Ju, S.; Ranbhise, J.S.; Ha, J.; Yeo, S.G.; Kim, S.S.; Kang, I. Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease. Cells 2025, 14, 509. [Google Scholar] [CrossRef] [PubMed]
- Kehm, R.; Baldensperger, T.; Raupbach, J.; Höhn, A. Protein Oxidation—Formation Mechanisms, Detection and Relevance as Biomarkers in Human Diseases. Redox Biol. 2021, 42, 101901. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Huang, Z.; Liu, Z.; Zhang, Y. Biomolecular Phase Separation in Tumorigenesis: From Aberrant Condensates to Therapeutic Vulnerabilities. Mol. Cancer 2025, 24, 220. [Google Scholar] [CrossRef]
- Holehouse, A.S.; Ginell, G.M.; Griffith, D.; Böke, E. Clustering of Aromatic Residues in Prion-like Domains Can Tune the Formation, State, and Organization of Biomolecular Condensates. Biochemistry 2021, 60, 3566–3581. [Google Scholar] [CrossRef]
- Krainer, G.; Welsh, T.J.; Joseph, J.A.; Espinosa, J.R.; Wittmann, S.; de Csilléry, E.; Sridhar, A.; Toprakcioglu, Z.; Gudiškytė, G.; Czekalska, M.A.; et al. Reentrant Liquid Condensate Phase of Proteins Is Stabilized by Hydrophobic and Non-Ionic Interactions. Nat. Commun. 2021, 12, 1085. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Munteanu, O.; Covache-Busuioc, R.-A.; Enyedi, M.; Ciurea, A.V.; Tataru, C.P. From Synaptic Plasticity to Neurodegeneration: BDNF as a Transformative Target in Medicine. Int. J. Mol. Sci. 2025, 26, 4271. [Google Scholar] [CrossRef]
- Bera, M.; Grushin, K.; Kalyana Sundaram, R.V.; Hinzen, J.S.; Chen, J.; Chatterjee, A.; Radhakrishnan, A.; Lee, S.; Padmanarayana, M.; Coleman, J.; et al. Two Successive Oligomeric Munc13 Assemblies Scaffold Vesicle Docking and SNARE Assembly to Support Neurotransmitter Release. Nat. Commun. 2025, 16, 7222. [Google Scholar] [CrossRef]
- Abyzov, A.; Blackledge, M.; Zweckstetter, M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem. Rev. 2022, 122, 6719–6748. [Google Scholar] [CrossRef]
- Shang, L.; Xu, K.; Lu, P.J.; Abbaspourrad, A.; Zhao, Y.; Weitz, D.A. Dramatic Droplet Deformation through Interfacial Particles Jamming. Proc. Natl. Acad. Sci. USA 2024, 121, e2403953121. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Jeon, Y.; Lim, J.-Y.; Kim, Y.; Cha, B.; Kim, W. Emerging Regulatory Mechanisms and Functions of Biomolecular Condensates: Implications for Therapeutic Targets. Signal Transduct. Target. Ther. 2025, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, R.J.; van Teijlingen, A.; Tuttle, T. ANI Neural Network Potentials for Small Molecule pKa Prediction. Phys. Chem. Chem. Phys. 2024, 26, 23934–23943. [Google Scholar] [CrossRef] [PubMed]
- Alshareedah, I.; Borcherds, W.M.; Cohen, S.R.; Singh, A.; Posey, A.E.; Farag, M.; Bremer, A.; Strout, G.W.; Tomares, D.T.; Pappu, R.V.; et al. Sequence-Specific Interactions Determine Viscoelasticity and Aging Dynamics of Protein Condensates. Nat. Phys. 2024, 20, 1482–1491. [Google Scholar] [CrossRef]
- Gottschalk, B.; Koshenov, Z.; Malli, R.; Graier, W.F. Implications of Mitochondrial Membrane Potential Gradients on Signaling and ATP Production Analyzed by Correlative Multi-Parameter Microscopy. Sci. Rep. 2024, 14, 14784. [Google Scholar] [CrossRef]
- Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; et al. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2021, 9, 71. [Google Scholar] [CrossRef]
- Miserez, A.; Yu, J.; Mohammadi, P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem. Rev. 2023, 123, 2049–2111. [Google Scholar] [CrossRef]
- Kuzu, O.F.; Granerud, L.J.T.; Saatcioglu, F. Navigating the Landscape of Protein Folding and Proteostasis: From Molecular Chaperones to Therapeutic Innovations. Signal Transduct. Target. Ther. 2025, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Anjo, S.I.; He, Z.; Hussain, Z.; Farooq, A.; McIntyre, A.; Laughton, C.A.; Carvalho, A.N.; Finelli, M.J. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants 2024, 13, 681. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration. Int. J. Mol. Sci. 2025, 26, 7498. [Google Scholar] [CrossRef]
- Dutta, P.; Roy, P.; Sengupta, N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS Omega 2022, 7, 44556–44572. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, A. Enhanced Sampling of Protein Conformational Changes via True Reaction Coordinates from Energy Relaxation. Nat. Commun. 2025, 16, 786. [Google Scholar] [CrossRef]
- Castelletto, V.; Seitsonen, J.; Pollitt, A.; Hamley, I.W. Minimal Peptide Sequences That Undergo Liquid–Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP. Biomacromolecules 2024, 25, 5321–5331. [Google Scholar] [CrossRef]
- MacTaggart, B.; Kashina, A. Posttranslational Modifications of the Cytoskeleton. Cytoskelet. Hoboken 2021, 78, 142–173. [Google Scholar] [CrossRef]
- Meinhold, D.W.; Wright, P.E. Measurement of Protein Unfolding/Refolding Kinetics and Structural Characterization of Hidden Intermediates by NMR Relaxation Dispersion. Proc. Natl. Acad. Sci. USA 2011, 108, 9078–9083. [Google Scholar] [CrossRef] [PubMed]
- Kayal, C.; Tamayo-Elizalde, M.; Adam, C.; Ye, H.; Jerusalem, A. Voltage-Driven Alterations to Neuron Viscoelasticity. Bioelectricity 2022, 4, 31–38. [Google Scholar] [CrossRef]
- Mosgaard, L.D.; Zecchi, K.A.; Heimburg, T.; Budvytyte, R. The Effect of the Nonlinearity of the Response of Lipid Membranes to Voltage Perturbations on the Interpretation of Their Electrical Properties. A New Theoretical Description. Membranes 2015, 5, 495–512. [Google Scholar] [CrossRef]
- Zhang, X.C.; Li, H. Interplay between the Electrostatic Membrane Potential and Conformational Changes in Membrane Proteins. Protein Sci. Publ. Protein Soc. 2019, 28, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Knotts, G.M.; Lile, S.K.; Campbell, E.M.; Agee, T.A.; Liyanage, S.D.; Gwaltney, S.R.; Johnson, C.N. An All-Atom Model of the Human Cardiac Sodium Channel in a Lipid Bilayer. Sci. Rep. 2024, 14, 26857. [Google Scholar] [CrossRef] [PubMed]
- Son, A.; Park, J.; Kim, W.; Yoon, Y.; Lee, S.; Park, Y.; Kim, H. Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence. Molecules 2024, 29, 4626. [Google Scholar] [CrossRef] [PubMed]
- Krepkiy, D.; Gawrisch, K.; Swartz, K.J. Structural Interactions between Lipids, Water and S1–S4 Voltage-Sensing Domains. J. Mol. Biol. 2012, 423, 632–647. [Google Scholar] [CrossRef]
- Cartes-Saavedra, B.; Ghosh, A.; Hajnóczky, G. The Roles of Mitochondria in Global and Local Intracellular Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2025, 26, 456–475. [Google Scholar] [CrossRef]
- Wijesinghe, W.C.B.; Min, D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J. Mol. Biol. 2023, 435, 167975. [Google Scholar] [CrossRef]
- Chao, Z.; Mei, Q.; Yang, C.; Luo, J.; Liu, P.; Peng, H.; Guo, X.; Yin, Z.; Li, L.; Wang, Z. Immunological Synapse: Structures, Molecular Mechanisms and Therapeutic Implications in Disease. Signal Transduct. Target. Ther. 2025, 10, 254. [Google Scholar] [CrossRef]
- Yang, S.; Xue, J.; Li, Z.; Zhang, S.; Zhang, Z.; Huang, Z.; Yung, K.K.L.; Lai, K.W.C. Deep Learning-Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording. Adv. Sci. 2025, 12, e2404166. [Google Scholar] [CrossRef]
- Handlin, L.J.; Dai, G. Direct Regulation of the Voltage Sensor of HCN Channels by Membrane Lipid Compartmentalization. Nat. Commun. 2023, 14, 6595. [Google Scholar] [CrossRef]
- Wirt, R.A.; Crew, L.A.; Ortiz, A.A.; McNeela, A.M.; Flores, E.; Kinney, J.W.; Hyman, J.M. Altered Theta Rhythm and Hippocampal-Cortical Interactions Underlie Working Memory Deficits in a Hyperglycemia Risk Factor Model of Alzheimer’s Disease. Commun. Biol. 2021, 4, 1036. [Google Scholar] [CrossRef]
- Vallat, J.-M.; Yuki, N.; Sekiguchi, K.; Kokubun, N.; Oka, N.; Mathis, S.; Magy, L.; Sherman, D.L.; Brophy, P.J.; Devaux, J.J. Paranodal Lesions in Chronic Inflammatory Demyelinating Polyneuropathy Associated with Anti-Neurofascin 155 Antibodies. Neuromuscul. Disord. 2017, 27, 290–293. [Google Scholar] [CrossRef]
- Hogan, K.A.; Zeidler, J.D.; Beasley, H.K.; Alsaadi, A.I.; Alshaheeb, A.A.; Chang, Y.-C.; Tian, H.; Hinton, A.O.; McReynolds, M.R. Using Mass Spectrometry Imaging to Visualize Age-Related Subcellular Disruption. Front. Mol. Biosci. 2023, 10, 906606. [Google Scholar] [CrossRef]
- Toader, C.; Dumitru, A.V.; Eva, L.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int. J. Mol. Sci. 2024, 25, 13302. [Google Scholar] [CrossRef] [PubMed]
- Bedard, C.; Piette, C.; Venance, L.; Destexhe, A. Extracellular and Intracellular Components of the Impedance of Neural Tissue. Biophys. J. 2022, 121, 869–885. [Google Scholar] [CrossRef]
- Lee, M.B.; Kim, H.J.; Kwon, O.I. Decomposition of High-Frequency Electrical Conductivity into Extracellular and Intracellular Compartments Based on Two-Compartment Model Using Low-to-High Multi-b Diffusion MRI. Biomed. Eng. OnLine 2021, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Covache-Busuioc, R.-A.; Serban, M.; Ciurea, A.V.; Enyedi, M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int. J. Mol. Sci. 2024, 25, 13614. [Google Scholar] [CrossRef]
- Ren, Z.; Zhou, S.; Liu, D.; Liu, Q. Physics-Informed Neural Networks: A Review of Methodological Evolution, Theoretical Foundations, and Interdisciplinary Frontiers Toward Next-Generation Scientific Computing. Appl. Sci. 2025, 15, 8092. [Google Scholar] [CrossRef]
- Nordentoft, M.S.; Takahashi, N.; Heltberg, M.S.; Jensen, M.H.; Rasmussen, R.N.; Papoutsi, A. Local Changes in Potassium Ions Regulate Input Integration in Active Dendrites. PLoS Biol. 2024, 22, e3002935. [Google Scholar] [CrossRef]
- Covache-Busuioc, R.-A.; Toader, C.; Rădoi, M.P.; Șerban, M. Precision Recovery After Spinal Cord Injury: Integrating CRISPR Technologies, AI-Driven Therapeutics, Single-Cell Omics, and System Neuroregeneration. Int. J. Mol. Sci. 2025, 26, 6966. [Google Scholar] [CrossRef]
- Guo, W.; Cheng, C.; Huang, C.; Lu, Z.; Chen, K.; Ding, J. A Spatio-Temporal Graph Neural Network for Predicting Flow Fields on Unstructured Grids with the SUBOFF Benchmark. J. Mar. Sci. Eng. 2025, 13, 1647. [Google Scholar] [CrossRef]
- Eliahoo, P.; Setayesh, H.; Hoffman, T.; Wu, Y.; Li, S.; Treweek, J.B. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS Mater. Au 2024, 4, 354–384. [Google Scholar] [CrossRef]
- Atsango, A.O.; Morawietz, T.; Marsalek, O.; Markland, T.E. Developing Machine-Learned Potentials to Simultaneously Capture the Dynamics of Excess Protons and Hydroxide Ions in Classical and Path Integral Simulations. J. Chem. Phys. 2023, 159, 074101. [Google Scholar] [CrossRef]
- Thakur, S.; Mitra, H.; Ardekani, A.M. Physics-Informed Neural Network-Based Inverse Framework for Time-Fractional Differential Equations for Rheology. Biology 2025, 14, 779. [Google Scholar] [CrossRef]
- Voicu, V.; Toader, C.; Șerban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS. Biomedicines 2025, 13, 2025. [Google Scholar] [CrossRef]
- Chang, X.; Yin, P.; Xin, J.; Shi, F.; Wan, L. Wake Structures and Hydrodynamic Characteristics of Flows around Two Near-Wall Cylinders in Tandem and Parallel Arrangements. J. Mar. Sci. Eng. 2024, 12, 832. [Google Scholar] [CrossRef]
- Niazi, S.K. Protein Catalysis Through Structural Dynamics: A Comprehensive Analysis of Energy Conversion in Enzymatic Systems and Its Computational Limitations. Pharmaceuticals 2025, 18, 951. [Google Scholar] [CrossRef]
- Różycki, B.; Lipowsky, R. Spontaneous Curvature of Bilayer Membranes from Molecular Simulations: Asymmetric Lipid Densities and Asymmetric Adsorption. J. Chem. Phys. 2015, 142, 054101. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, H.; Qin, Y.; Xiong, H.; Shi, C.; Zhou, Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules 2023, 13, 1772. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, Z.; Huang, J.; Wang, H.; Zhang, X.; Zhou, X.; Xu, Y.; Pan, S.; Liu, D.; Liu, Z.; et al. Mitochondria-Associated Endoplasmic Reticulum Membranes in Human Health and Diseases. MedComm 2025, 6, e70259. [Google Scholar] [CrossRef]
- Wohl, I.; Sherman, E. Reducing Myosin II and ATP-Dependent Mechanical Activity Increases Order and Stability of Intracellular Organelles. Int. J. Mol. Sci. 2021, 22, 10369. [Google Scholar] [CrossRef]
- Shichkova, P.; Coggan, J.S.; Markram, H.; Keller, D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024, 13, 1714. [Google Scholar] [CrossRef]
- Eslami, H.; Darvishi, A. Extracellular Matrix Viscoelasticity: A Dynamic Regulator of Cellular Behavior. Ann. Biomed. Eng. 2025, 53, 2029–2046. [Google Scholar] [CrossRef]
- Yi, B.; Xu, Q.; Liu, W. An Overview of Substrate Stiffness Guided Cellular Response and Its Applications in Tissue Regeneration. Bioact. Mater. 2022, 15, 82–102. [Google Scholar] [CrossRef]
- Yun, C.-S.; Sohn, C.-H.; Yeon, J.; Chung, K.-J.; Min, B.-J.; Yun, C.-H.; Han, B.S. Feasibility of Observing Glymphatic System Activity During Sleep Using Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) Index. Diagnostics 2025, 15, 1798. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Aljboor, G.S.R.; Costin, H.P.; Corlatescu, A.D.; Glavan, L.-A.; Gorgan, R.M. Cerebellar Cavernoma Resection: Case Report with Long-Term Follow-Up. J. Clin. Med. 2024, 13, 7525. [Google Scholar] [CrossRef]
- Toader, C.; Brehar, F.-M.; Radoi, M.P.; Serban, M.; Covache-Busuioc, R.-A.; Glavan, L.-A.; Ciurea, A.V.; Dobrin, N. The Microsurgical Resection of an Arteriovenous Malformation in a Patient with Thrombophilia: A Case Report and Literature Review. Diagnostics 2024, 14, 2613. [Google Scholar] [CrossRef]
- Yang, T.; Lin, Z.; Yu, M.; Li, Y.; Chen, J.; Liu, Y.; Huang, K.; Pan, S. SUR1-TRPM4 Regulates Aquaporin-4 Subcellular Localization by Astrocytic Endfeet Calcium Signals Following Status Epilepticus. Glia 2025, 73, 2057–2076. [Google Scholar] [CrossRef]
- Li, Y.-J.; Yu, M.; Xue, C.-D.; Zhang, H.-J.; Wang, G.-Z.; Chen, X.-M.; Qin, K.-R. Modeling of Endothelial Calcium Responses within a Microfluidic Generator of Spatio-Temporal ATP and Shear Stress Signals. Micromachines 2021, 12, 161. [Google Scholar] [CrossRef]
- Costea, D.; Dobrin, N.; Tataru, C.-I.; Toader, C.; Șerban, M.; Covache-Busuioc, R.-A.; Munteanu, O.; Diaconescu, I.B. The Glymphatic–Venous Axis in Brain Clearance Failure: Aquaporin-4 Dysfunction, Biomarker Imaging, and Precision Therapeutic Frontiers. Int. J. Mol. Sci. 2025, 26, 10546. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Aljboor, G.S.R.; Costin, H.P.; Ilie, M.-M.; Popa, A.A.; Gorgan, R.M. Single-Stage Microsurgical Clipping of Multiple Intracranial Aneurysms in a Patient with Cerebral Atherosclerosis: A Case Report and Review of Surgical Management. J. Clin. Med. 2025, 14, 269. [Google Scholar] [CrossRef]
- Gomez, A.; Thompson, W.H.; Laage, D. Neural-Network-Based Molecular Dynamics Simulations Reveal That Proton Transport in Water Is Doubly Gated by Sequential Hydrogen-Bond Exchange. Nat. Chem. 2024, 16, 1838–1844. [Google Scholar] [CrossRef]
- Afonso, O.; Dumoulin, L.; Kruse, K.; Gonzalez-Gaitan, M. Cytoplasmic Flow Is a Cell Size Sensor That Scales Anaphase. Nat. Cell Biol. 2025, 27, 273–282. [Google Scholar] [CrossRef]
- Mironov, A.A.; Mironov, A.; Derganc, J.; Beznoussenko, G.V. Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry. Int. J. Mol. Sci. 2020, 21, 7594. [Google Scholar] [CrossRef]
- Syková, E.; Voříšek, I.; Starčuk, Z.; Kratochvíla, J.; Pavlova, I.; Ichikawa, Y.; Kwok, J.C.F.; Kmoníčková, E.; Myronchenko, S.; Hromádka, T.; et al. Disruption of Extracellular Matrix and Perineuronal Nets Modulates Extracellular Space Volume and Geometry. J. Neurosci. 2025, 45, e0517242024. [Google Scholar] [CrossRef]
- Szczygielski, J.; Kopańska, M.; Wysocka, A.; Oertel, J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front. Neurol. 2021, 12, 767470. [Google Scholar] [CrossRef]
- Kollert, M.R.; Krämer, M.; Brisson, N.M.; Schemenz, V.; Tsitsilonis, S.; Qazi, T.H.; Fratzl, P.; Vogel, V.; Reichenbach, J.R.; Duda, G.N. Water and Ions Binding to Extracellular Matrix Drives Stress Relaxation, Aiding MRI Detection of Swelling-Associated Pathology. Nat. Biomed. Eng. 2025, 9, 772–786. [Google Scholar] [CrossRef]
- Bączyńska, E.; Zaręba-Kozioł, M.; Ruszczycki, B.; Krzystyniak, A.; Wójtowicz, T.; Bijata, K.; Pochwat, B.; Magnowska, M.; Roszkowska, M.; Figiel, I.; et al. Stress Resilience Is an Active and Multifactorial Process Manifested by Structural, Functional, and Molecular Changes in Synapses. Neurobiol. Stress 2024, 33, 100683. [Google Scholar] [CrossRef]
- Ju, X.; Chen, C.; Oral, C.M.; Sevim, S.; Golestanian, R.; Sun, M.; Bouzari, N.; Lin, X.; Urso, M.; Nam, J.S.; et al. Technology Roadmap of Micro/Nanorobots. ACS Nano 2025, 19, 24174–24334. [Google Scholar] [CrossRef]
- Pegoraro, A.F.; Janmey, P.; Weitz, D.A. Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harb. Perspect. Biol. 2017, 9, a022038. [Google Scholar] [CrossRef]
- Barabinot, Y.; Speich, S.; Carton, X. Insights into Mesoscale Eddy Dynamics: A Three-Dimensional Perspective on Potential Density Anomalies. Ocean Sci. 2025, 21, 2527–2553. [Google Scholar] [CrossRef]
- Kafashan, M.; Jaffe, A.W.; Chettih, S.N.; Nogueira, R.; Arandia-Romero, I.; Harvey, C.D.; Moreno-Bote, R.; Drugowitsch, J. Scaling of Sensory Information in Large Neural Populations Shows Signatures of Information-Limiting Correlations. Nat. Commun. 2021, 12, 473. [Google Scholar] [CrossRef]
- Morales-Gregorio, A.; Kurth, A.C.; Ito, J.; Kleinjohann, A.; Barthélemy, F.V.; Brochier, T.; Grün, S.; van Albada, S.J. Neural Manifolds in V1 Change with Top-down Signals from V4 Targeting the Foveal Region. Cell Rep. 2024, 43, 114371. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS. Int. J. Mol. Sci. 2025, 26, 8072. [Google Scholar] [CrossRef]
- Grigorean, V.T.; Dumitru, A.V.; Tataru, C.-I.; Serban, M.; Ciurea, A.V.; Munteanu, O.; Radoi, M.P.; Covache-Busuioc, R.-A.; Cosac, A.-S.; Pariza, G. Thermodynamic Biomarkers of Neuroinflammation: Nanothermometry, Energy–Stress Dynamics, and Predictive Entropy in Glial–Vascular Networks. Int. J. Mol. Sci. 2025, 26, 11022. [Google Scholar] [CrossRef]
- Kralj, S.; Kralj-Iglič, V.; Iglič, A. Continuous Symmetry Breaking and Complexity of Biological Membranes. Crystals 2025, 15, 737. [Google Scholar] [CrossRef]
- Toader, C.; Brehar, F.-M.; Radoi, M.P.; Serban, M.; Covache-Busuioc, R.-A.; Aljboor, G.S.; Gorgan, R.M. Stroke and Pulmonary Thromboembolism Complicating a Kissing Aneurysm in the M1 Segment of the Right MCA. J. Clin. Med. 2025, 14, 564. [Google Scholar] [CrossRef]
- Ren, J.; Kloker, M. Non-Ideal Gas Behavior Matters in Hydrodynamic Instability. Sci. Rep. 2022, 12, 22089. [Google Scholar] [CrossRef]
- Perich, M.G.; Narain, D.; Gallego, J.A. A Neural Manifold View of the Brain. Nat. Neurosci. 2025, 28, 1582–1597. [Google Scholar] [CrossRef]
- Taher, H.; Avitabile, D.; Desroches, M. Bursting in a next Generation Neural Mass Model with Synaptic Dynamics: A Slow–Fast Approach. Nonlinear Dyn. 2022, 108, 4261–4285. [Google Scholar] [CrossRef]
- Weron, A.; Burnecki, K.; Akin, E.J.; Solé, L.; Balcerek, M.; Tamkun, M.M.; Krapf, D. Ergodicity Breaking on the Neuronal Surface Emerges from Random Switching between Diffusive States. Sci. Rep. 2017, 7, 5404. [Google Scholar] [CrossRef]
- Arnulfo, G.; Wang, S.H.; Myrov, V.; Toselli, B.; Hirvonen, J.; Fato, M.M.; Nobili, L.; Cardinale, F.; Rubino, A.; Zhigalov, A.; et al. Long-Range Phase Synchronization of High-Frequency Oscillations in Human Cortex. Nat. Commun. 2020, 11, 5363. [Google Scholar] [CrossRef]
- Inagaki, H.K.; Fontolan, L.; Romani, S.; Svoboda, K. Discrete Attractor Dynamics Underlies Persistent Activity in the Frontal Cortex. Nature 2019, 566, 212–217. [Google Scholar] [CrossRef]
- Toader, C.; Tataru, C.P.; Munteanu, O.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V.; Enyedi, M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer’s, Parkinson’s, and ALS. Int. J. Mol. Sci. 2024, 25, 12613. [Google Scholar] [CrossRef]
- Heindl, W.; Stary, C. Structured Development of Digital Twins—A Cross-Domain Analysis towards a Unified Approach. Processes 2022, 10, 1490. [Google Scholar] [CrossRef]
- Łukaniszyn, M.; Majka, Ł.; Grochowicz, B.; Mikołajewski, D.; Kawala-Sterniuk, A. Digital Twins Generated by Artificial Intelligence in Personalized Healthcare. Appl. Sci. 2024, 14, 9404. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Ruptured Posterior Inferior Cerebellar Artery Aneurysms: Integrating Microsurgical Expertise, Endovascular Challenges, and AI-Driven Risk Assessment. J. Clin. Med. 2025, 14, 5374. [Google Scholar] [CrossRef]
- Mapelli, L.; Di Domenico, D.; Sciacca, G.; Mainardi, F.; Ottaviani, A.; Monteverdi, A.; Tedesco, M.; Battaglia, C.R.; Tritto, S.; Gandolfo, M.; et al. Enhanced Electrophysiological Recordings in Acute Brain Slices, Spheroids, and Organoids Using 3D High-Density Multielectrode Arrays. PLoS ONE 2025, 20, e0328903. [Google Scholar] [CrossRef]
- Hedayati Kia, S.; Dunai, L.; Antonino-Daviu, J.A.; Razik, H. Real-Time Digital Twins for Intelligent Fault Diagnosis and Condition-Based Monitoring of Electrical Machines. Energies 2025, 18, 4637. [Google Scholar] [CrossRef]
- Pawlik, L.; Wilk-Jakubowski, J.L.; Frej, D.; Wilk-Jakubowski, G. Applications of Computational Mechanics Methods Combined with Machine Learning and Neural Networks: A Systematic Review (2015–2025). Appl. Sci. 2025, 15, 10816. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Ciurea, A.V.; Dobrin, N. Comprehensive Management of a Giant Left Frontal AVM Coexisting with a Bilobed PComA Aneurysm: A Case Report Highlighting Multidisciplinary Strategies and Advanced Neurosurgical Techniques. J. Clin. Med. 2025, 14, 1232. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Pallis, E.; Papoutsidakis, M. From Mathematical Modeling and Simulation to Digital Twins: Bridging Theory and Digital Realities in Industry and Emerging Technologies. Appl. Sci. 2025, 15, 9213. [Google Scholar] [CrossRef]
- Iliuţă, M.-E.; Moisescu, M.-A.; Pop, E.; Ionita, A.-D.; Caramihai, S.-I.; Mitulescu, T.-C. Digital Twin—A Review of the Evolution from Concept to Technology and Its Analytical Perspectives on Applications in Various Fields. Appl. Sci. 2024, 14, 5454. [Google Scholar] [CrossRef]
- Mayer, A.; Greif, L.; Häußermann, T.M.; Otto, S.; Kastner, K.; El Bobbou, S.; Chardonnet, J.-R.; Reichwald, J.; Fleischer, J.; Ovtcharova, J. Digital Twins, Extended Reality, and Artificial Intelligence in Manufacturing Reconfiguration: A Systematic Literature Review. Sustainability 2025, 17, 2318. [Google Scholar] [CrossRef]
- Kabashkin, I. AI-Based Digital Twins of Students: A New Paradigm for Competency-Oriented Learning Transformation. Information 2025, 16, 846. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Li, S.; He, X.; Li, M.; Wang, Z.; Zheng, N.; Shao, B.; Liu, T.-Y. Enhancing Geometric Representations for Molecules with Equivariant Vector-Scalar Interactive Message Passing. Nat. Commun. 2024, 15, 313. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Anatomy-Guided Microsurgical Resection of a Dominant Frontal Lobe Tumor Without Intraoperative Adjuncts: A Case Report from a Resource-Limited Context. Diagnostics 2025, 15, 2393. [Google Scholar] [CrossRef]
- El Hassan, M.; Mjalled, A.; Miron, P.; Mönnigmann, M.; Bukharin, N. Machine Learning in Fluid Dynamics—Physics-Informed Neural Networks (PINNs) Using Sparse Data: A Review. Fluids 2025, 10, 226. [Google Scholar] [CrossRef]
- Rahmani, K.; Yang, Y.; Foster, E.P.; Tsai, C.-T.; Meganathan, D.P.; Alvarez, D.D.; Gupta, A.; Cui, B.; Santoro, F.; Bloodgood, B.L.; et al. Intelligent In-Cell Electrophysiology: Reconstructing Intracellular Action Potentials Using a Physics-Informed Deep Learning Model Trained on Nanoelectrode Array Recordings. Nat. Commun. 2025, 16, 657. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Dobrin, N.; Covache-Busuioc, R.-A.; Radoi, M.P.; Ciurea, A.V.; Munteanu, O. Complex Anatomy, Advanced Techniques: Microsurgical Clipping of a Ruptured Hypophyseal Artery Aneurysm. J. Clin. Med. 2025, 14, 2361. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, C. OWNC: Open-World Node Classification on Graphs with a Dual-Embedding Interaction Framework. Mathematics 2025, 13, 1475. [Google Scholar] [CrossRef]
- Vargas-Irwin, C.E.; Hynes, J.B.; Brandman, D.M.; Zimmermann, J.B.; Donoghue, J.P. Mapping the Computational Similarity of Individual Neurons within Large-Scale Ensemble Recordings Using the SIMNETS Analysis Framework. Front. Neurosci. 2025, 19, 1634652. [Google Scholar] [CrossRef]
- Onciul, R.; Tataru, C.-I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Toader, C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef]
- Bublil, T.; Cohen, R.; Kenett, R.S.; Bortman, J. Machine Health Indicators and Digital Twins. Sensors 2025, 25, 2246. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Aljboor, G.S.R.; Glavan, L.-A.; Corlatescu, A.D.; Ilie, M.-M.; Gorgan, R.M. Navigating the Rare and Dangerous: Successful Clipping of a Superior Cerebellar Artery Aneurysm Against the Odds of Uncontrolled Hypertension. J. Clin. Med. 2024, 13, 7430. [Google Scholar] [CrossRef] [PubMed]
- Brake, N.; Duc, F.; Rokos, A.; Arseneau, F.; Shahiri, S.; Khadra, A.; Plourde, G. A Neurophysiological Basis for Aperiodic EEG and the Background Spectral Trend. Nat. Commun. 2024, 15, 1514. [Google Scholar] [CrossRef]
- Hirota, M.; Murata, S.; Sakurai, T.; Ohta, H.; Takahashi, K. The Relationship Between Spin Crossover (SCO) Behaviors, Cation and Ligand Motions, and Intermolecular Interactions in a Series of Anionic SCO Fe(III) Complexes with Halogen-Substituted Azobisphenolate Ligands. Molecules 2024, 29, 5473. [Google Scholar] [CrossRef]
- Jhangeer, A.; Abdelkader, A. Noise-Induced Transitions in Nonlinear Oscillators: From Quasi-Periodic Stability to Stochastic Chaos. Fractal Fract. 2025, 9, 550. [Google Scholar] [CrossRef]
- Makarov, N.; Bordukova, M.; Quengdaeng, P.; Garger, D.; Rodriguez-Esteban, R.; Schmich, F.; Menden, M.P. Large Language Models Forecast Patient Health Trajectories Enabling Digital Twins. npj Digit. Med. 2025, 8, 588. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, C.; Zhang, C.; Ji, W. Real-Time Monitoring and Dynamic Interaction Methods Based on Digital Twin Workshop Theory. Processes 2025, 13, 685. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension. Int. J. Mol. Sci. 2025, 26, 7223. [Google Scholar] [CrossRef]
- Shahzad, M.; Shafiq, M.T.; Douglas, D.; Kassem, M. Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings 2022, 12, 120. [Google Scholar] [CrossRef]
- Madani, S.S.; Shabeer, Y.; Fowler, M.; Panchal, S.; Chaoui, H.; Mekhilef, S.; Dou, S.X.; See, K. Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration. Batteries 2025, 11, 298. [Google Scholar] [CrossRef]
- Diab, W.; Al Kobaisi, M. Temporal Neural Operator for Modeling Time-Dependent Physical Phenomena. Sci. Rep. 2025, 15, 32791. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, X.; Li, Y.; Lv, Q.; Chen, C.Y.-C.; Shen, L. Efficient Equivariant Model for Machine Learning Interatomic Potentials. npj Comput. Mater. 2025, 11, 49. [Google Scholar] [CrossRef]
- Mahmoudabadbozchelou, M.; Jamali, S. Rheology-Informed Neural Networks (RhINNs) for Forward and Inverse Metamodelling of Complex Fluids. Sci. Rep. 2021, 11, 12015. [Google Scholar] [CrossRef]
- Morris, J.A.; Bardsley, O.J.; Salvage, S.C.; Jackson, A.P.; Matthews, H.R.; Huang, C.L.-H. Nernst-Planck-Gaussian Modelling of Electrodiffusional Recovery from Ephaptic Excitation between Mammalian Cardiomyocytes. Front. Physiol. 2024, 14, 1280151. [Google Scholar] [CrossRef]
- Li, C.; Dabiri, S.; Ardekani, A.M. Perivascular Interactions and Tissue Properties Modulate Directional Glymphatic Transport in the Brain. Fluids Barriers CNS 2025, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Kusch, L.; Diaz-Pier, S.; Klijn, W.; Sontheimer, K.; Bernard, C.; Morrison, A.; Jirsa, V. Multiscale Co-Simulation Design Pattern for Neuroscience Applications. Front. Neuroinform. 2024, 18, 1156683. [Google Scholar] [CrossRef]
- Alwaeli, S.H.A.; Abdulsaeed, A.A.; Fayyadh, S.J.; Khan, M.I.; Yousif, A.; Saba, T.; Bahaj, S.A. A Unified Spectral-Persistent Homology Framework for Stable and Generalizable Topological Deep Learning. Discov. Comput. 2025, 28, 255. [Google Scholar] [CrossRef]
- Deistler, M.; Kadhim, K.L.; Pals, M.; Beck, J.; Huang, Z.; Gloeckler, M.; Lappalainen, J.K.; Schröder, C.; Berens, P.; Gonçalves, P.J.; et al. Jaxley: Differentiable Simulation Enables Large-Scale Training of Detailed Biophysical Models of Neural Dynamics. Nat. Methods 2025, 22, 2649–2657. [Google Scholar] [CrossRef]
- Walker, A.S.; Raliski, B.K.; Karbasi, K.; Zhang, P.; Sanders, K.; Miller, E.W. Optical Spike Detection and Connectivity Analysis with a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease. Front. Neurosci. 2021, 15, 643859. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Meyer, A.J.; Ježek, F.; Zhang, S.; Catalan, T.; Miller, A.; Schenk, N.A.; Sturgess, V.E.; Uceda, D.; Li, R.; et al. Identification of Digital Twins to Guide Interpretable AI for Diagnosis and Prognosis in Heart Failure. npj Digit. Med. 2025, 8, 110. [Google Scholar] [CrossRef]
- Castro, P.; Luppi, A.; Tagliazucchi, E.; Perl, Y.S.; Naci, L.; Owen, A.M.; Sitt, J.D.; Destexhe, A.; Cofré, R. Dynamical Structure-Function Correlations Provide Robust and Generalizable Signatures of Consciousness in Humans. Commun. Biol. 2024, 7, 1224. [Google Scholar] [CrossRef]
- Alsentzer, E.; Li, M.M.; Kobren, S.N.; Noori, A.; Undiagnosed Diseases Network; Kohane, I.S.; Zitnik, M. Few Shot Learning for Phenotype-Driven Diagnosis of Patients with Rare Genetic Diseases. npj Digit. Med. 2025, 8, 380. [Google Scholar] [CrossRef]
- Gazerani, P. Intelligent Digital Twins for Personalized Migraine Care. J. Pers. Med. 2023, 13, 1255. [Google Scholar] [CrossRef]
- Wu, B.; Wu, W.; Ma, R.; Chen, H.; Zhao, Y.; Li, Y.; Lei, X.; Liu, F. High-Sensitivity and Wide-Range Flexible Ionic Piezocapacitive Pressure Sensors with Porous Hemisphere Array Electrodes. Sensors 2024, 24, 366. [Google Scholar] [CrossRef]
- Sharafat, A.; Tanoli, W.A.; Zubair, M.U.; Mazher, K.M. Digital Twin-Driven Stability Optimization Framework for Large Underground Caverns. Appl. Sci. 2025, 15, 4481. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. Int. J. Mol. Sci. 2025, 26, 9409. [Google Scholar] [CrossRef]
- Thenuwara, G.; Curtin, J.; Tian, F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. Sensors 2023, 23, 9842. [Google Scholar] [CrossRef] [PubMed]
- Toader, C.; Brehar, F.M.; Radoi, M.P.; Covache-Busuioc, R.A.; Serban, M.; Ciurea, A.V.; Dobrin, N. Challenging Management of a Rare Complex Cerebral Arteriovenous Malformation in the Corpus Callosum and Post-Central Gyrus: A Case Study of a 41-Year-Old Female. J. Clin. Med. 2024, 13, 7494. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, L.; Stricker, L.; Beltramo, P.J.; Vermant, J. Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. J. Phys. Chem. B 2022, 126, 5842–5854. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Basei, F.L.; Rojas, M.L.; Galvis, D.; Zorzano, A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023, 13, 1225. [Google Scholar] [CrossRef]
- Wang, W.; Han, F.; Qi, Z.; Yan, C.; Su, B.; Wang, J. Phase Separation: Orchestrating Biological Adaptations to Environmental Fluctuations. Int. J. Mol. Sci. 2025, 26, 4614. [Google Scholar] [CrossRef]
- Khdoudi, A.; Masrour, T.; El Hassani, I.; El Mazgualdi, C. A Deep-Reinforcement-Learning-Based Digital Twin for Manufacturing Process Optimization. Systems 2024, 12, 38. [Google Scholar] [CrossRef]
- Park, K.T.; Son, Y.H.; Ko, S.W.; Noh, S.D. Digital Twin and Reinforcement Learning-Based Resilient Production Control for Micro Smart Factory. Appl. Sci. 2021, 11, 2977. [Google Scholar] [CrossRef]
- Toader, C.; Serban, M.; Eva, L.; Costea, D.; Covache-Busuioc, R.-A.; Radoi, M.P.; Ciurea, A.V.; Dumitru, A.V. Large Pontine Cavernoma with Hemorrhage: Case Report on Surgical Approach and Recovery. J. Clin. Med. 2025, 14, 2358. [Google Scholar] [CrossRef]
- Tortora, M.; Pacchiano, F.; Ferraciolli, S.F.; Criscuolo, S.; Gagliardo, C.; Jaber, K.; Angelicchio, M.; Briganti, F.; Caranci, F.; Tortora, F.; et al. Medical Digital Twin: A Review on Technical Principles and Clinical Applications. J. Clin. Med. 2025, 14, 324. [Google Scholar] [CrossRef] [PubMed]
- Baloiu, A.I.; Filipoiu, F.; Toader, C.; Covache-Busuioc, R.-A.; Munteanu, O.; Serban, M. Sphenoid Sinus Hyperpneumatization: Anatomical Variants, Molecular Blueprints, and AI-Augmented Roadmaps for Skull Base Surgery. Front. Endocrinol. 2025, 16, 1634206. [Google Scholar] [CrossRef]
- Vallée, A. Digital Twins for Personalized Medicine Require Epidemiological Data and Mathematical Modeling: Viewpoint. J. Med. Internet Res. 2025, 27, e72411. [Google Scholar] [CrossRef]
- Khoshfekr Rudsari, H.; Tseng, B.; Zhu, H.; Song, L.; Gu, C.; Roy, A.; Irajizad, E.; Butner, J.; Long, J.; Do, K.-A. Digital Twins in Healthcare: A Comprehensive Review and Future Directions. Front. Digit. Health 2025, 7, 1633539. [Google Scholar] [CrossRef]


| Analytical Scale | Key Mechanisms and Physical Principles | Representative Molecular Systems | Functional Consequences and Pathophysiological Relevance | References |
|---|---|---|---|---|
| Quantum–Molecular (Å–nm) | AI-derived neural network potentials (ANI, QM/ML hybrids) reconstruct protein free-energy surfaces; shallow basins (<10 kJ/mol barriers) permit microstate redistribution under minor physicochemical shifts (pH, ions, redox). | Tau (VQIINK/VQIVYK motifs), α-synuclein (E61–A76 cluster), TDP-43/FUS low-complexity domains. | Microstate drift without large conformational change; early disruption of hydrogen-bond and cation–π networks destabilizes local folding equilibria. | [36] |
| Mesoscale (nm–µm) | Multivalent sticker–spacer interactions drive LLPS; phosphorylation, methylation, ATP, and RNA modulate phase diagrams; oxidative stress and ionic drift alter droplet viscoelasticity and aging kinetics. | TDP-43, FUS, hnRNPA1 condensates; PSD-95–Shank–Homer synaptic assemblies. | Altered condensate turnover, increased gel fraction, impaired diffusion; early deviation from proteome homeostasis preceding aggregation. | [37] |
| Cellular–Organellar (µm) | Protonation, redox, and ionic gradients reshape local dielectric constants; erosion of energy barriers (ΔG‡ ↓ ~1–3 kBT) accelerates conformational transitions; mitochondrial potential fluctuations and ROS feedback deform landscapes. | Cytoskeletal proteins, chaperones (Hsp70/Hsp90), respiratory-chain complexes I–IV. | Reduced energy-barrier selectivity and impaired structural maintenance; enhanced conformational noise and ROS propagation. | [38] |
| Network and Phase-Transition Level | Collective drift across proteome phase boundaries driven by osmotic imbalance, ATP/ADP ratio, and macromolecular crowding; critical-point crossing between liquid-like and gel-like states. | Neuronal proteome viewed as multi-variable phase manifold (ionic composition, condensate valence, solvent polarization). | Emergence of mesoscale rigidity, slowed turnover, altered signal propagation; pre-aggregation instability signature. | [39] |
| Emergent Biophysical Signature (System) | Reduced curvature and friction on conformational energy surfaces; broadened NMR relaxation dispersion, slower folding kinetics, altered fluorescence lifetime distributions. | Ensemble of neuronal proteins under chronic stress or energy imbalance. | Early physicochemical marker of neuronal vulnerability before morphological pathology or aggregate formation. | [40] |
| Domain | Core Fluidic Phenomena | Mechanistic Drivers & Molecular Contributors | Functional Consequences for Neuronal Stability | References |
|---|---|---|---|---|
| Intracellular Quantum–Hydrodynamic Layer | Nanoconfined water networks; proton delocalization; shear-sensitive viscoelastic flow | Hydrogen-bond network fluctuations; mitochondrial redox microgradients; actin-mediated shear thinning; proton conduction chains informed by ML-QM potentials | Alters protonation of voltage-sensor residues; shapes Ca2+ microdomains; modulates reaction rates and local pH microgradients | [91] |
| Cytoplasmic Mesoscale Flow Architecture | PINN-reconstructed anisotropic flow corridors; organelle-induced vortices; ATP-dependent viscoelastic rheology | Actin/filamin remodeling; microtubule alignment; mitochondrial clustering; local thermal gradients | Controls metabolite distribution; sets timing of vesicle/RNA granule trafficking; introduces chemical heterogeneity that precedes synaptic dysfunction | [92] |
| Membrane & Organelle Surface Microcircuits | Marangoni-like lipid flows; curvature-driven surface streaming; mechano-chemical feedback loops | PI(4,5)P2, GM1, PS redistribution; BAR-domain curvature sensors; ER–mitochondria Ca2+ pulses; Drp1/Mfn-mediated viscosity shifts | Reconfigures ion-channel clustering; modulates exocytic probability; shifts energetic thresholds for cytoskeletal remodeling | [93] |
| Extracellular Matrix Fluid Networks | ECM as porous viscoelastic conduit; anisotropic nanoflows; activity-driven remodeling | Hyaluronan hydration; glycosaminoglycan density; perineuronal net geometry; astrocytic ECM sculpting | Dictates spatial ion gradients; shapes ephaptic coupling; modifies excitability through constrained diffusion corridors | [94] |
| Perivascular & Glymphatic Hydrodynamics | Multi-frequency oscillatory flows (0.5–5 Hz, 40–90 Hz harmonics); AQP4-dependent wave coherence; nonlinear Darcy–Navier–Stokes coupling | Astrocytic endfoot polarity; arterial pulsatility; metabolic state; CSF–ISF mixing dynamics | Modulates solute clearance, redox balance, and ion dispersion; governs metabolic resilience and sets boundary conditions for neuronal phase stability | [95] |
| Whole-Tissue Hydrodynamic Integration | Flow-field drift; loss of coherence across scales; energy–fluid coupling | Decreased AQP4 polarization; ECM stiffening; mitochondrial energy deficits; altered ionic buffering | Early destabilization before morphological change; heightened susceptibility to molecular and electrophysiological perturbations | [96] |
| Functional Axis | Core AI/Computational Mechanisms | Physical Domains Captured | Key Emergent Capabilities | References |
|---|---|---|---|---|
| 1. Co-evolving multiphysics representations | Operator-learning frameworks (FNOs, DeepONets, graph neural PDE solvers); probabilistic neural operators for uncertainty-aware forecasting | Structural, electrical, metabolic, mechanical, hydrodynamic | Continuous assimilation of heterogeneous data; tracking of slow manifold curvature drift; adaptive updating under perturbations | [143] |
| 2. Cross-scale molecular integration | Quantum-informed ML potentials (equivariant networks, neural wavefunction solvers) coupling conformational energy landscapes to reaction–diffusion operators | Conformational energetics, LLPS microstructure, solvation-shell polarity, proton mobility | Early detection of shifts in aggregation-prone motifs; mapping molecular instability into mesoscale reaction kinetics | [144] |
| 3. Mesoscale hydrodynamic–viscoelastic solvers | Physics-informed neural networks (PINNs) for intracellular flows, viscosity tensors, pressure fields | Intracellular rheology, Ca2+ microdomains, metabolic flux fields | Identification of viscosity drift, flow incoherence, mechanical relaxation mismatch; linking cytoplasmic mechanics to energetic constraints | [145] |
| 4. Electrodynamic field reconstruction | Learned electrodiffusion and impedance operators; neural Green’s-function approximators | Extracellular ionic dynamics, ephaptic fields, nonlinear multi-ion transport | Detection of irregular frequency-dependent dissipation; mapping of electrodynamic fragility preceding firing instability | [146] |
| 5. Perivascular/glymphatic flow modeling | AI-enhanced Navier–Stokes solvers; harmonic decomposition of vascular oscillations | Perivascular fluid architecture, AQP4-dependent permeability, solute mixing | Linking flow-field coherence to metabolic resilience; identifying high-frequency harmonic loss as early instability marker | [147] |
| 6. Multiscale co-simulation graphs | Graph-based multiphysics co-simulation engines integrating coupled operator nodes | Organellar, cellular, tissue, and microvascular subsystems | Revealing cross-domain coupling not visible experimentally; emergence of collective instability modes | [148] |
| 7. Early-phase bifurcation diagnostics | Spectral-energy decomposition, manifold learning, topological data analysis (persistent homology) | Stability curvature, attractor topology, ergodicity metrics | Detection of dissipative bandwidth narrowing, covariance breakdown, attractor fragmentation prior to structural pathology | [149] |
| 8. Intervention-sensitivity and control maps | Neural sensitivity fields; differentiable multiphysics surrogates enabling counterfactual simulations | Mechanical, hydrodynamic, metabolic, electrodynamic | Forecasting intervention windows; estimating how local perturbations propagate across physical domains to restore stability | [150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pantu, C.; Breazu, A.; Oprea, S.; Serban, M.; Covache-Busuioc, R.-A.; Munteanu, O.; Dobrin, N.; Costea, D.; Eva, L. AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration. Int. J. Mol. Sci. 2026, 27, 676. https://doi.org/10.3390/ijms27020676
Pantu C, Breazu A, Oprea S, Serban M, Covache-Busuioc R-A, Munteanu O, Dobrin N, Costea D, Eva L. AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration. International Journal of Molecular Sciences. 2026; 27(2):676. https://doi.org/10.3390/ijms27020676
Chicago/Turabian StylePantu, Cosmin, Alexandru Breazu, Stefan Oprea, Matei Serban, Razvan-Adrian Covache-Busuioc, Octavian Munteanu, Nicolaie Dobrin, Daniel Costea, and Lucian Eva. 2026. "AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration" International Journal of Molecular Sciences 27, no. 2: 676. https://doi.org/10.3390/ijms27020676
APA StylePantu, C., Breazu, A., Oprea, S., Serban, M., Covache-Busuioc, R.-A., Munteanu, O., Dobrin, N., Costea, D., & Eva, L. (2026). AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration. International Journal of Molecular Sciences, 27(2), 676. https://doi.org/10.3390/ijms27020676

