KCNV2-Deficient Retinal Organoid Model of Cone Dystrophy—In Vitro Screening for AAV Gene Replacement Therapy
Abstract
1. Introduction
2. Results
2.1. Potassium Channel Subunit KCNV2 Is Expressed During Retinal Organoid Development and Kv8.2 Localises to the Rod and Cone Inner Segments
2.2. Patient-Derived and CRISPR Knockout Retinal Organoid Model of KCNV2 Retinopathy
2.3. Optimisation of KCNV2 AAV Vectors for Human Photoreceptor Delivery
2.4. Comprehensive Single-Cell Transcriptomic Analysis Uncovers Cellular Heterogeneity in Retinal Organoids and Stress-Related Pathway Alterations in KCNV2 Disease Model
2.5. Transcriptomic Profiling of AAV-optiKCNV2 Demonstrates RK Promoter Specificity for Rods and Cones Versus Ubiquitous Expression with CAG in Retinal Organoids
2.6. Transcriptomic Analysis Reveals AAV-optiKCNV2 Supplementation Partially Rescues Cell Stress Signatures Through Restoration of a Subset of Mitochondrial, Oxidative Stress, and Apoptotic Pathway Genes
3. Discussion
4. Materials and Methods
4.1. Generation of IPSCs and KCNV2 CRISPR KO IPSCs
4.2. Generation of KCNV2 Patient IPSC
4.3. Generation of Retinal Organoids and AAV Transduction
4.4. Flow Cytometry
4.5. Codon Optimisation
4.6. AAV Production
4.7. Proximity Ligation Assay and Quantification
4.8. Quantification of Immunofluorescence—ImageJ (ONL Thickness, Cone Cell Count, Kv8.2 Fluorescence)
4.9. Protein Extraction and Immunoblotting
4.10. RT-qPCR
4.11. Histology
4.12. Retinal Organoid Dissociation and scRNA-Seq Library Preparation
4.13. Computational Analysis of scRNA-Seq Data
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAV | Adeno-associated virus |
| bGH | Bovine growth hormone |
| CAG | CMV enhancer/chicken beta-actin |
| CDSRR | Cone dystrophy supernormal rod response |
| CSNB | Congenital stationary night blindness |
| DE | Differentially expressed |
| DEG | Differentially expressed gene |
| GO | Gene ontology |
| GO:BP | Gene ontology biological processes |
| IHC | Immunohistochemistry |
| INL | Inner nuclear layer |
| IPSC | Induced pluripotent stem cell |
| IS | Inner segment |
| KB | kilobase |
| KCNV2 | Potassium voltage-gated channel modifier subfamily V member 2 |
| kDa | kiloDaltons |
| KO | Knockout |
| ns | Non-significant |
| ONL | Outer nuclear layer |
| optiKCNV2 | Codon-optimised KCNV2 |
| OS | Outer segment |
| PBMC | Peripheral blood monocyte cell |
| PLA | Proximity ligation assay |
| PT | Patient |
| QPCR | Quantitative polymerase chain reaction |
| RK | Rhodopsin kinase |
| RO | Retinal organoid |
| scRNA-seq | Single-cell RNA sequencing |
| VGs | Viral genomes |
| WPREm6 | Woodchuck hepatitis virus posttranscriptional regulatory element |
References
- Gayet-Primo, J.; Yaeger, D.B.; Khanjian, R.A.; Puthussery, T. Heteromeric KV2/KV8.2 channels mediate delayed rectifier potassium currents in primate photoreceptors. J. Neurosci. 2018, 38, 3414–3427. [Google Scholar] [CrossRef] [PubMed]
- Beech, D.J.; Barnes, S. Characterization of a voltage-gated K+ channel that accelerates the rod response to dim light. Neuron 1989, 3, 573–581. [Google Scholar] [CrossRef]
- Smith, K.E.; Wilkie, S.E.; Tebbs-Warner, J.T.; Jarvis, B.J.; Gallasch, L.; Stocker, M.; Hunt, D.M. Functional analysis of missense mutations in Kv8.2 causing cone dystrophy with supernormal rod electroretinogram. J. Biol. Chem. 2012, 287, 43972–43983. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, T.A.C.D.; Georgiou, M.; Robson, A.G.; Michaelides, M. KCNV2 retinopathy: Clinical features, molecular genetics and directions for future therapy. Ophthalmic Genet. 2020, 41, 208–215. [Google Scholar] [CrossRef]
- Tanimoto, N.; Usui, T.; Ichibe, M.; Takagi, M.; Hasegawa, S.; Abe, H. PIII and derived PII analysis in a patient with retinal dysfunction with supernormal scotopic ERG. Doc. Ophthalmol. 2005, 110, 219–226. [Google Scholar] [CrossRef]
- Georgiou, M.; Robson, A.G.; Fujinami, K.; Leo, S.M.; Vincent, A.; Nasser, F.; De Guimarães, T.A.C.; Khateb, S.; Pontikos, N.; Fujinami-Yokokawa, Y.; et al. KCNV2-Associated Retinopathy: Genetics, Electrophysiology, and Clinical Course—KCNV2 Study Group Report 1. Am. J. Ophthalmol. 2021, 225, 95–107. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev. Rep. 2024, 20, 495–508. [Google Scholar] [CrossRef]
- West, E.L.; Majumder, P.; Naeem, A.; Fernando, M.; O’Hara-Wright, M.; Lanning, E.; Kloc, M.; Ribeiro, J.; Ovando-Roche, P.; Shum, I.O.; et al. Antioxidant and lipid supplementation improve the development of photoreceptor outer segments in pluripotent stem cell-derived retinal organoids. Stem Cell Rep. 2022, 17, 775–788. [Google Scholar] [CrossRef]
- Kruczek, K.; Qu, Z.; Welby, E.; Shimada, H.; Hiriyanna, S.; English, M.A.; Zein, W.M.; Brooks, B.P.; Swaroop, A. In vitro modeling and rescue of ciliopathy associated with IQCB1/NPHP5 mutations using patient-derived cells. Stem Cell Rep. 2022, 17, 2172–2186. [Google Scholar] [CrossRef]
- Gonzalez-Cordero, A.; Goh, D.; Kruczek, K.; Naeem, A.; Fernando, M.; Holthaus, S.-M.K.; Takaaki, M.; Blackford, S.J.I.; Kloc, M.; Agundez, L.; et al. Assessment of AAV Vector Tropisms for Mouse and Human Pluripotent Stem Cell–Derived RPE and Photoreceptor Cells. Hum. Gene Ther. 2018, 29, 1124–1139. [Google Scholar] [CrossRef] [PubMed]
- Kruczek, K.; Qu, Z.; Gentry, J.; Fadl, B.R.; Gieser, L.; Hiriyanna, S.; Batz, Z.; Samant, M.; Samanta, A.; Chu, C.J.; et al. Gene Therapy of Dominant CRX-Leber Congenital Amaurosis using Patient Stem Cell-Derived Retinal Organoids. Stem Cell Rep. 2021, 16, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Boon, N.; Lu, X.; Andriessen, C.A.; Moustakas, I.; Buck, T.M.; Freund, C.; Arendzen, C.H.; Böhringer, S.; Boon, C.J.; Mei, H.; et al. AAV-mediated gene augmentation therapy of CRB1 patient-derived retinal organoids restores the histological and transcriptional retinal phenotype. Stem Cell Rep. 2023, 18, 1123–1137. [Google Scholar] [CrossRef]
- Sai, H.; Ollington, B.; Rezek, F.O.; Chai, N.; Lane, A.; Georgiadis, A.; Bainbridge, J.; Michaelides, M.; Sacristan-Reviriego, A.; Perdigão, P.R.; et al. Effective AAV-mediated gene replacement therapy in retinal organoids modeling AIPL1-associated LCA4. Mol. Ther. Nucleic Acids 2024, 35, 102148. [Google Scholar] [CrossRef]
- Lane, A.; Jovanovic, K.; Shortall, C.; Ottaviani, D.; Panes, A.B.; Schwarz, N.; Guarascio, R.; Hayes, M.J.; Palfi, A.; Chadderton, N.; et al. Modeling and Rescue of RP2 Retinitis Pigmentosa Using iPSC-Derived Retinal Organoids. Stem Cell Rep. 2020, 15, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Sladen, P.E.; Naeem, A.; Adefila-Ideozu, T.; Vermeule, T.; Busson, S.L.; Michaelides, M.; Naylor, S.; Forbes, A.; Lane, A.; Georgiadis, A. AAV-RPGR Gene Therapy Rescues Opsin Mislocalisation in a Human Retinal Organoid Model of RPGR-Associated X-Linked Retinitis Pigmentosa. Int. J. Mol. Sci. 2024, 25, 1839. [Google Scholar] [CrossRef]
- McClements, M.E.; Steward, H.; Atkin, W.; Goode, E.A.; Gándara, C.; Chichagova, V.; MacLaren, R.E. Tropism of AAV Vectors in Photoreceptor-Like Cells of Human iPSC-Derived Retinal Organoids. Transl. Vis. Sci. Technol. 2022, 11, 3. [Google Scholar] [CrossRef]
- Howden, S.E.; Maufort, J.P.; Duffin, B.M.; Elefanty, A.G.; Stanley, E.G.; Thomson, J.A. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts. Stem Cell Rep. 2015, 5, 1109–1118. [Google Scholar] [CrossRef]
- He, X.; Fu, Y.; Ma, L.; Yao, Y.; Ge, S.; Yang, Z.; Fan, X. AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. Research 2023, 6, 0291. [Google Scholar] [CrossRef]
- Dalkara, D.; Byrne, L.C.; Klimczak, R.R.; Visel, M.; Yin, L.; Merigan, W.H.; Flannery, J.G.; Schaffer, D.V. In Vivo–Directed Evolution of a New Adeno-Associated Virus for Therapeutic Outer Retinal Gene Delivery from the Vitreous. Sci. Transl. Med. 2013, 5, 189ra76. [Google Scholar] [CrossRef]
- Garita-Hernandez, M.; Routet, F.; Guibbal, L.; Khabou, H.; Toualbi, L.; Riancho, L.; Reichman, S.; Duebel, J.; Sahel, J.-A.; Goureau, O.; et al. AAV-mediated gene delivery to 3D retinal organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci. 2020, 21, 994. [Google Scholar] [CrossRef] [PubMed]
- Ianevski, A.; Giri, A.K.; Aittokallio, T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat. Commun. 2022, 13, 1246. [Google Scholar] [CrossRef] [PubMed]
- Riazuddin, S.A.; Shahzadi, A.; Zeitz, C.; Ahmed, Z.M.; Ayyagari, R.; Chavali, V.R.; Ponferrada, V.G.; Audo, I.; Michiels, C.; Lancelot, M.-E.; et al. A mutation in SLC24A1 implicated in autosomal-recessive congenital stationary night blindness. Am. J. Hum. Genet. 2010, 87, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Deschênes, I.; Tomaselli, G.F. Modulation of Kv4.3 current by accessory subunits. FEBS Lett. 2002, 528, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Samardzija, M.; Wariwoda, H.; Imsand, C.; Huber, P.; Heynen, S.R.; Gubler, A.; Grimm, C. Activation of survival pathways in the degenerating retina of rd10 mice. Exp. Eye Res. 2012, 99, 17–26. [Google Scholar] [CrossRef]
- Aït-Ali, N.; Fridlich, R.; Millet-Puel, G.; Clérin, E.; Delalande, F.; Jaillard, C.; Blond, F.; Perrocheau, L.; Reichman, S.; Byrne, L.C.; et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 2015, 161, 817–832. [Google Scholar] [CrossRef]
- Léveillard, T.; Ait-Ali, N.; Blond, F. Method for Treating Retinal Degeneration Disease by Administering Nucleolin Polynucleotide or Polypeptide. Patent WO2020079464A1, 23 April 2020. [Google Scholar]
- Amengual, J.; Zhang, N.; Kemerer, M.; Maeda, T.; Palczewski, K.; Von Lintig, J. STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum. Mol. Genet. 2014, 23, 5402–5417. [Google Scholar] [CrossRef]
- Golzio, C.; Martinovic-Bouriel, J.; Thomas, S.; Mougou-Zrelli, S.; Grattagliano-Bessières, B.; Bonnière, M.; Delahaye, S.; Munnich, A.; Encha-Razavi, F.; Lyonnet, S.; et al. Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am. J. Hum. Genet. 2007, 80, 1179–1187. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, M.; Wu, H.; Zhang, C.; Wei, D.; Li, S.; Song, Z.; Tao, Y. Unveiling the role of CaMKII in retinal degeneration: From biological mechanism to therapeutic strategies. Cell Biosci. 2024, 14, 59. [Google Scholar] [CrossRef]
- Landgraf, I.; Mühlhans, J.; Dedek, K.; Reim, K.; Brandstätter, J.H.; Ammermüller, J. The absence of Complexin 3 and Complexin 4 differentially impacts the ON and OFF pathways in mouse retina. Eur. J. Neurosci. 2012, 36, 2470–2481. [Google Scholar] [CrossRef]
- Zariwala, M.; O’Neal, W.K.; Noone, P.G.; Leigh, M.W.; Knowles, M.R.; Ostrowski, L.E. Investigation of the possible role of a novel gene, DPCD, in primary ciliary dyskinesia. Am. J. Respir. Cell Mol. Biol. 2004, 30, 428–434. [Google Scholar] [CrossRef]
- Mao, Y.-Q.; Seraphim, T.V.; Wan, Y.; Wu, R.; Coyaud, E.; Bin Munim, M.; Mollica, A.; Laurent, E.; Babu, M.; Mennella, V.; et al. DPCD is a regulator of R2TP in ciliogenesis initiation through Akt signaling. Cell Rep. 2024, 43, 113713. [Google Scholar] [CrossRef]
- Maeda, A.; Maeda, T.; Imanishi, Y.; Baehr, W.; Palczewski, K. Role of Photoreceptor-specific Retinol Dehydrogenase in the Retinoid Cycle in Vivo. J. Biol. Chem. 2005, 13, 18822–18832. [Google Scholar] [CrossRef]
- Chen, C.; Thompson, D.A.; Koutalos, Y. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. J. Biol. Chem. 2012, 287, 24662–24670. [Google Scholar] [CrossRef]
- Hussey, K.A.; Hadyniak, S.E.; Johnston, R.J. Patterning and Development of Photoreceptors in the Human Retina. Front. Cell Dev. Biol. 2022, 10, 878350. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Rashwan, R.; Voigt, V.; Nerbonne, J.; Hunt, D.M.; Carvalho, L.S. Molecular, cellular and functional changes in the retinas of young adult mice lacking the voltage-gated K+ channel subunits Kv8.2 and K2.1. Int. J. Mol. Sci. 2021, 22, 4877. [Google Scholar] [CrossRef]
- Hart, N.S.; Mountford, J.K.; Voigt, V.; Fuller-Carter, P.; Barth, M.; Nerbonne, J.M.; Hunt, D.M.; Carvalho, L.S. The role of the voltage-gated potassium channel proteins Kv8.2 and Kv2.1 in vision and retinal disease: Insights from the study of mouse gene knock-out mutations. eNeuro 2019, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.-H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014, 5, 4047. [Google Scholar] [CrossRef] [PubMed]
- Cameron Cowan, A.S.; Renner, M.; De Gennaro, M.; Roma, G.; Nigsch, F.; Roska Correspondence, B.; Cowan, C.S.; Gross-Scherf, B.; Goldblum, D.; Hou, Y.; et al. Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. Cell 2020, 182, 1623–1640.e34. [Google Scholar] [CrossRef]
- Hallam, D.; Hilgen, G.; Dorgau, B.; Zhu, L.; Yu, M.; Bojic, S.; Hewitt, P.; Schmitt, M.; Uteng, M.; Kustermann, S.; et al. Human-Induced Pluripotent Stem Cells Generate Light Responsive Retinal Organoids with Variable and Nutrient-Dependent Efficiency. Stem Cells 2018, 36, 1535–1551. [Google Scholar] [CrossRef]
- Dorgau, B.; Georgiou, M.; Chaudhary, A.; Moya-Molina, M.; Collin, J.; Queen, R.; Hilgen, G.; Davey, T.; Hewitt, P.; Schmitt, M.; et al. Human Retinal Organoids Provide a Suitable Tool for Toxicological Investigations: A Comprehensive Validation Using Drugs and Compounds Affecting the Retina. Stem Cells Transl. Med. 2022, 11, 159–177. [Google Scholar] [CrossRef]
- Vincent, A.; Wright, T.; Garcia-Sanchez, Y.; Kisilak, M.; Campbell, M.; Westall, C.; Héon, E. Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related “cone dystrophy with supernormal rod electroretinogram”. Investig. Ophthalmol. Vis. Sci. 2013, 54, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, K.; Smuga-otto, K.; Tian, S.; Stewart, R.; Igor, I.; Slukvin, I.I.; Thomson, J.A. Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science 2009, 324, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, P.R.L.; Ollington, B.; Sai, H.; Leung, A.; Sacristan-Reviriego, A.; van der Spuy, J. Retinal Organoids from an AIPL1 CRISPR/Cas9 Knockout Cell Line Successfully Recapitulate the Molecular Features of LCA4 Disease. Int. J. Mol. Sci. 2023, 24, 5912. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. Available online: https://www.R-project.org/ (accessed on 24 December 2025).
- Yu, G. Thirteen years of clusterProfiler. Innovovation 2024, 5, 100722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, G.; He, Q.Y. ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 2016, 2, 477–479. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA. [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Busson, S.L.; Naeem, A.; Ferrara, S.; Sarcar, S.; Adefila-Ideozu, T.; Wells, S.; El Alami, S.; Boot, J.; Sladen, P.E.; Michaelides, M.; et al. KCNV2-Deficient Retinal Organoid Model of Cone Dystrophy—In Vitro Screening for AAV Gene Replacement Therapy. Int. J. Mol. Sci. 2026, 27, 449. https://doi.org/10.3390/ijms27010449
Busson SL, Naeem A, Ferrara S, Sarcar S, Adefila-Ideozu T, Wells S, El Alami S, Boot J, Sladen PE, Michaelides M, et al. KCNV2-Deficient Retinal Organoid Model of Cone Dystrophy—In Vitro Screening for AAV Gene Replacement Therapy. International Journal of Molecular Sciences. 2026; 27(1):449. https://doi.org/10.3390/ijms27010449
Chicago/Turabian StyleBusson, Sophie L., Arifa Naeem, Silvia Ferrara, Shilpita Sarcar, Toyin Adefila-Ideozu, Sarah Wells, Sophia El Alami, James Boot, Paul E. Sladen, Michel Michaelides, and et al. 2026. "KCNV2-Deficient Retinal Organoid Model of Cone Dystrophy—In Vitro Screening for AAV Gene Replacement Therapy" International Journal of Molecular Sciences 27, no. 1: 449. https://doi.org/10.3390/ijms27010449
APA StyleBusson, S. L., Naeem, A., Ferrara, S., Sarcar, S., Adefila-Ideozu, T., Wells, S., El Alami, S., Boot, J., Sladen, P. E., Michaelides, M., Georgiadis, A., & Lane, A. (2026). KCNV2-Deficient Retinal Organoid Model of Cone Dystrophy—In Vitro Screening for AAV Gene Replacement Therapy. International Journal of Molecular Sciences, 27(1), 449. https://doi.org/10.3390/ijms27010449

