RLRL Therapeutic Feasibility and Potential Mechanism on Myopia
Abstract
1. Introduction
2. Myopia
2.1. Classification of Myopia
2.1.1. Classification by Anatomical Features
2.1.2. Classification According to Degree of Refraction
2.1.3. Classification Divided by Physio-Pathological Factor
2.2. Factors Associated with the Development of Myopia
2.2.1. Genetic Susceptibility Background
2.2.2. Outdoor Time
2.2.3. Environmental Scenes
2.2.4. Accommodation
2.2.5. Peripheral Hyperopic Defocus
2.2.6. Contrast-Theory-Related On–Off Pathway Stimulation
2.2.7. Axial Elongation (Sclera and Choroid)
2.3. Interventions for Myopia Control
2.3.1. Progressive Addition Lenses
2.3.2. Highly Aspherical Lenslet Target and Defocus-Incorporated Multiple Segment Lenses
2.3.3. Diffusion Optics Technology Lenses
2.3.4. Orthokeratology Lenses
2.3.5. Atropine
2.3.6. Repeated Low-Level Right Light (RLRL) Therapy
3. RLRL Therapy
3.1. Evidence from Non-Clinical Studies
3.2. Potential Mechanism of RLRL Therapy
3.2.1. Accelerating Retinal Cell Metabolism
3.2.2. Modulating Physio-Anatomical Choroidal Change, Such as Thickening and Increasing Blood Flow
3.2.3. Mediating Scleral Remodeling
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zhang, P.; Zhu, H. Light Signaling and Myopia Development: A Review. Ophthalmol. Ther. 2022, 11, 939–957. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, W.J. Refractive Status of the Eye. In Borish’s Clinical Refraction; Benjamin, W.J., Borish, I.M., Eds.; Butterworth-Heinemann: St. Louis, MO, USA; Elsevier: St. Louis, MO, USA, 2012; p. 4. ISBN 978-0-7506-7524-6. [Google Scholar]
- Saw, S.; Gazzard, G.; Shih-Yen, E.C.; Chua, W. Myopia and Associated Pathological Complications. Ophthalmic Physiol. Opt. 2005, 25, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, W.J. Visual Acuity. In Borish’s Clinical Refraction; Benjamin, W.J., Borish, I.M., Eds.; Butterworth-Heinemann: St. Louis, MO, USA; Elsevier: St. Louis, MO, USA, 2012; p. 217. ISBN 978-0-7506-7524-6. [Google Scholar]
- Smith, G. Defocus, Depth-of-Field and Focussing Techniques. In The Eye and Visual Optical Instruments; Smith, G., Atchison, D.A., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 235–237. ISBN 978-0-521-47252-4. [Google Scholar]
- Yanoff, M.; Duker, J.S. (Eds.) Ophthalmology, 5th ed.; Elsevier: Edinburgh, UK, 2019; ISBN 978-0-323-52819-1. [Google Scholar]
- Wang, W.-Y.; Chen, C.; Chang, J.; Chien, L.; Shih, Y.-F.; Lin, L.L.K.; Pang, C.P.; Wang, I.-J. Pharmacotherapeutic Candidates for Myopia: A Review. Biomed. Pharmacother. 2021, 133, 111092. [Google Scholar] [CrossRef] [PubMed]
- Baird, P.N.; Saw, S.-M.; Lanca, C.; Guggenheim, J.A.; Smith Iii, E.L.; Zhou, X.; Matsui, K.-O.; Wu, P.-C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primer 2020, 6, 99. [Google Scholar] [CrossRef]
- Yan, C.; Zhao, Q. Progress in the Mechanism and Treatment of Myopia Control. Hans J. Ophthalmol. 2023, 12, 85–93. [Google Scholar] [CrossRef]
- Liu, Z.B.; Ma, Q.; Li, H.; Kang, H.X. Repeated Low-level Red-light Intervention to Improve the Research Status of Adolescent Myopia. Acta Laser Biol. Sin. 2024, 33, 12–20. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.X. Research progress of red-light therapy in the treatment of ocular diseases. J. Ophthalmol. Guangzhou 2024, 39, 471–476. [Google Scholar] [CrossRef]
- Hamblin, M.R. Preface. In Handbook of Low-Level Laser Therapy; Hamblin, M.R., de Sousa, M.V.P., Agrawal, T., Eds.; Pan Stanford Publishing: Singapore, 2017; ISBN 9789814745665. [Google Scholar]
- Liu, G.; Li, B.; Rong, H.; Du, B.; Wang, B.; Hu, J.; Zhang, B.; Wei, R. Axial Length Shortening and Choroid Thickening in Myopic Adults Treated with Repeated Low-Level Red Light. J. Clin. Med. 2022, 11, 7498. [Google Scholar] [CrossRef]
- Liang, J.; Pu, Y.; Chen, J.; Liu, M.; Ouyang, B.; Jin, Z.; Ge, W.; Wu, Z.; Yang, X.; Qin, C.; et al. Global Prevalence, Trend and Projection of Myopia in Children and Adolescents from 1990 to 2050: A Comprehensive Systematic Review and Meta-Analysis. Br. J. Ophthalmol. 2025, 109, 362–371. [Google Scholar] [CrossRef]
- Pan, C.-W.; Dirani, M.; Cheng, C.-Y.; Wong, T.-Y.; Saw, S.-M. The Age-Specific Prevalence of Myopia in Asia: A Meta-Analysis. Optom. Vis. Sci. 2015, 92, 258–266. [Google Scholar] [CrossRef]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and Disease Burden of Pathologic Myopia and Myopic Choroidal Neovascularization: An Evidence-Based Systematic Review. Am. J. Ophthalmol. 2014, 157, 9–25.e12. [Google Scholar] [CrossRef]
- Gao, L.Q. Prevalence and Characteristics of Myopic Retinopathy in a Rural Chinese Adult Population: The Handan Eye Study. Arch. Ophthalmol. 2011, 129, 1199. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Xu, L.; Wang, Y.X.; Wang, S.; You, Q.S.; Jonas, J.B. Prevalence and Progression of Myopic Retinopathy in Chinese Adults: The Beijing Eye Study. Ophthalmology 2010, 117, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, K.S.; Fricke, T.R.; Frick, K.D.; Jong, M.; Naduvilath, T.J.; Resnikoff, S.; Sankaridurg, P. Potential Lost Productivity Resulting from the Global Burden of Myopia. Ophthalmology 2019, 126, 338–346. [Google Scholar] [CrossRef] [PubMed]
- De Jong, P.T.V.M. Myopia: Its Historical Contexts. Br. J. Ophthalmol. 2018, 102, 1021–1027. [Google Scholar] [CrossRef]
- Consortium for Refractive Error and Myopia (CREAM); The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group; Wellcome Trust Case Control Consortium 2 (WTCCC2); The Fuchs’ Genetics Multi-Center Study Group; Verhoeven, V.J.M.; Hysi, P.G.; Wojciechowski, R.; Fan, Q.; Guggenheim, J.A.; Höhn, R.; et al. Genome-Wide Meta-Analyses of Multiancestry Cohorts Identify Multiple New Susceptibility Loci for Refractive Error and Myopia. Nat. Genet. 2013, 45, 314–318, Correction in Nat. Genet. 2013, 45, 712. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, Q.; Lu, L.; Lin, A.L.; Qu, C. The Evolution of Mechanism of Accommodation and a Novel Hypothesis. Graefes Arch. Clin. Exp. Ophthalmol. 2023, 261, 3083–3095. [Google Scholar] [CrossRef]
- Medina, A. Models of Myopia: The Effect of Accommodation, Lenses and Atropine. Eye 2024, 38, 1290–1295. [Google Scholar] [CrossRef]
- Schachar, R.A.; Schachar, I.H.; Kumar, S.; Feldman, E.I.; Pierscionek, B.K.; Cosman, P.C. Model of Zonular Forces on the Lens Capsule during Accommodation. Sci. Rep. 2024, 14, 5896. [Google Scholar] [CrossRef]
- Troilo, D.; Quinn, N.; Baker, K. Accommodation and Induced Myopia in Marmosets. Vis. Res. 2007, 47, 1228–1244. [Google Scholar] [CrossRef]
- Benavente-Perez, A.; Nour, A.; Troilo, D. Axial Eye Growth and Refractive Error Development Can Be Modified by Exposing the Peripheral Retina to Relative Myopic or Hyperopic Defocus. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6765–6773. [Google Scholar] [CrossRef] [PubMed]
- Erdinest, N.; London, N.; Lavy, I.; Berkow, D.; Landau, D.; Levinger, N.; Morad, Y. Peripheral Defocus as It Relates to Myopia Progression: A Mini-Review. Taiwan J. Ophthalmol. 2023, 13, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.; Jones, L.A.; Moeschberger, M.L.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K. Refractive Error, Axial Length, and Relative Peripheral Refractive Error before and after the Onset of Myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510. [Google Scholar] [CrossRef] [PubMed]
- Young, T.L. X-Linked High Myopia Associated with Cone Dysfunction. Arch. Ophthalmol. 2004, 122, 897–902. [Google Scholar] [CrossRef]
- Greenwald, S.H.; Kuchenbecker, J.A.; Rowlan, J.S.; Neitz, J.; Neitz, M. Role of a Dual Splicing and Amino Acid Code in Myopia, Cone Dysfunction and Cone Dystrophy Associated with L/M Opsin Interchange Mutations. Transl. Vis. Sci. Technol. 2017, 6, 2. [Google Scholar] [CrossRef]
- Nickla, D.L.; Wallman, J. The Multifunctional Choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef]
- Jobling, A.I.; Nguyen, M.; Gentle, A.; McBrien, N.A. Isoform-Specific Changes in Scleral Transforming Growth Factor-β Expression and the Regulation of Collagen Synthesis during Myopia Progression. J. Biol. Chem. 2004, 279, 18121–18126. [Google Scholar] [CrossRef]
- Wu, H.; Chen, W.; Zhao, F.; Zhou, Q.; Reinach, P.S.; Deng, L.; Ma, L.; Luo, S.; Srinivasalu, N.; Pan, M.; et al. Scleral Hypoxia Is a Target for Myopia Control. Proc. Natl. Acad. Sci. USA 2018, 115, E7091–E7100. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, Z.; Tan, X.; Kong, X.; Zhong, H.; Zhang, J.; Xiong, R.; Yuan, Y.; Zeng, J.; Morgan, I.G.; et al. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children. Ophthalmology 2022, 129, 509–519. [Google Scholar] [CrossRef]
- Xiong, R.; Zhu, Z.; Jiang, Y.; Kong, X.; Zhang, J.; Wang, W.; Kiburg, K.; Yuan, Y.; Chen, Y.; Zhang, S.; et al. Sustained and Rebound Effect of Repeated Low-level Red-light Therapy on Myopia Control: A 2-year Post-trial Follow-up Study. Clin. Exp. Ophthalmol. 2022, 50, 1013–1024. [Google Scholar] [CrossRef]
- Valter, K.; Tedford, S.E.; Eells, J.T.; Tedford, C.E. Photobiomodulation Use in Ophthalmology—An Overview of Translational Research from Bench to Bedside. Front. Ophthalmol. 2024, 4, 1388602. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30, Correction in Investig. Ophthalmol. Vis. Sci. 2024, 65, 19. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Stedman, T.L. (Ed.) Myopia. In Stedman’s Medical Dictionary: A Vocabulary of Medicine and Its Allied Sciences, with Pronunciations and Derivations; Williams & Wilkins: Baltimore, MD, USA, 1972; p. 865. [Google Scholar]
- Duke-Elder, S.; Abrams, D. Ophthalmic Optics and Refraction; Duke-Elder, S., Ed.; Kimpton: London, UK, 1970; ISBN 978-0-85313-758-0. [Google Scholar]
- World Health Organization. The Impact of Myopia and High Myopia: Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia; World Health Organization: Geneva, Switzerland, 2015; pp. 1–35. [Google Scholar]
- The CREAM Consortium; 23andMe Research Team; UK Biobank Eye and Vision Consortium; Tedja, M.S.; Wojciechowski, R.; Hysi, P.G.; Eriksson, N.; Furlotte, N.A.; Verhoeven, V.J.M.; Iglesias, A.I.; et al. Genome-Wide Association Meta-Analysis Highlights Light-Induced Signaling as a Driver for Refractive Error. Nat. Genet. 2018, 50, 834–848. [Google Scholar] [CrossRef]
- Sherwin, J.C.; Reacher, M.H.; Keogh, R.H.; Khawaja, A.P.; Mackey, D.A.; Foster, P.J. The Association between Time Spent Outdoors and Myopia in Children and Adolescents. Ophthalmology 2012, 119, 2141–2151. [Google Scholar] [CrossRef]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef]
- Landis, E.G.; Yang, V.; Brown, D.M.; Pardue, M.T.; Read, S.A. Dim Light Exposure and Myopia in Children. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4804. [Google Scholar] [CrossRef]
- Mountjoy, E.; Davies, N.M.; Plotnikov, D.; Smith, G.D.; Rodriguez, S.; Williams, C.E.; Guggenheim, J.A.; Atan, D. Education and Myopia: Assessing the Direction of Causality by Mendelian Randomisation. BMJ 2018, 361, k2022, Correction in BMJ 2018, 362, k2932. [Google Scholar] [CrossRef]
- Schachar, R.A. The Mechanism of Accommodation and Presbyopia. Int. Ophthalmol. Clin. 2006, 46, 39–61. [Google Scholar] [CrossRef]
- Helmholtz, H.V. Ueber die Accommodation des Auges. Graefes Arch. Clin. Exp. Ophthalmol. 1855, 1, 1–74. [Google Scholar] [CrossRef]
- Charman, W.N. Near Vision, Lags of Accommodation and Myopia. Ophthalmic Physiol. Opt. 1999, 19, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Berntsen, D.A.; Sinnott, L.T.; Mutti, D.O.; Zadnik, K. Accommodative Lag and Juvenile-Onset Myopia Progression in Children Wearing Refractive Correction. Vis. Res. 2011, 51, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, D.I. A Model of the Contribution of Oculomotor and Optical Factors to Emmetropization and Myopia. Vis. Res. 1998, 38, 2869–2879. [Google Scholar] [CrossRef] [PubMed]
- Gwiazda, J.; Bauer, J.; Thorn, F.; Held, R. Shifts in Tonic Accommodation after near Work Are Related to Refractive Errors in Children. Ophthalmic Physiol. Opt. 1995, 15, 93–97. [Google Scholar] [CrossRef]
- Gilmartin, B.; Hogan, R.E. The Relationship between Tonic Accommodation and Ciliary Muscle Innervation. Investig. Ophthalmol. Vis. Sci. 1985, 26, 1024–1028. [Google Scholar]
- Day, M.; Seidel, D.; Gray, L.S.; Strang, N.C. The Effect of Modulating Ocular Depth of Focus upon Accommodation Microfluctuations in Myopic and Emmetropic Subjects. Vis. Res. 2009, 49, 211–218. [Google Scholar] [CrossRef]
- Smith, E.L.; Ramamirtham, R.; Qiao-Grider, Y.; Hung, L.-F.; Huang, J.; Kee, C.; Coats, D.; Paysse, E. Effects of Foveal Ablation on Emmetropization and Form-Deprivation Myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3914–3922. [Google Scholar] [CrossRef]
- Zaghloul, K.A.; Boahen, K.; Demb, J.B. Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities. J. Neurosci. 2003, 23, 2645–2654. [Google Scholar] [CrossRef]
- Yeo, A.C.H.; Atchison, D.A.; Lai, N.S.; Schmid, K.L. Near Work–Induced Contrast Adaptation in Emmetropic and Myopic Children. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3441. [Google Scholar] [CrossRef]
- Hoseini-Yazdi, H.; Read, S.A.; Alonso-Caneiro, D.; Collins, M.J. Retinal OFF-Pathway Overstimulation Leads to Greater Accommodation-Induced Choroidal Thinning. Investig. Ophthalmol. Vis. Sci. 2021, 62, 5. [Google Scholar] [CrossRef]
- Ikuno, Y.; Tano, Y. Retinal and Choroidal Biometry in Highly Myopic Eyes with Spectral-Domain Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3876. [Google Scholar] [CrossRef] [PubMed]
- Harb, E.; Hyman, L.; Gwiazda, J.; Marsh-Tootle, W.; Zhang, Q.; Hou, W.; Norton, T.T.; Weise, K.; Dirkes, K.; Zangwill, L.M.; et al. Choroidal Thickness Profiles in Myopic Eyes of Young Adults in the Correction of Myopia Evaluation Trial Cohort. Am. J. Ophthalmol. 2015, 160, 62–71.e2. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; He, X.; Deng, J.; Lv, M.; Jin, J.; Sun, S.; Yao, C.; Zhu, J.; Zou, H.; Xu, X. Choroidal Thickness in 3001 Chinese Children Aged 6 to 19 Years Using Swept-Source OCT. Sci. Rep. 2017, 7, 45059. [Google Scholar] [CrossRef] [PubMed]
- Ostrin, L.A.; Harb, E.; Nickla, D.L.; Read, S.A.; Alonso-Caneiro, D.; Schroedl, F.; Kaser-Eichberger, A.; Zhou, X.; Wildsoet, C.F. IMI—The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Investig. Ophthalmol. Vis. Sci. 2023, 64, 4. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, F.; Xian, Y.; Li, M.; Niu, L.; Zhou, X.; Zhao, J. Correlation of Contrast Sensitivity at Low Spatial Frequencies with Myopic Shift in Chinese Children. BMC Ophthalmol. 2025, 25, 99. [Google Scholar] [CrossRef]
- Cury, V.; Moretti, A.I.S.; Assis, L.; Bossini, P.; De Souza Crusca, J.; Neto, C.B.; Fangel, R.; De Souza, H.P.; Hamblin, M.R.; Parizotto, N.A. Low Level Laser Therapy Increases Angiogenesis in a Model of Ischemic Skin Flap in Rats Mediated by VEGF, HIF-1α and MMP-2. J. Photochem. Photobiol. B 2013, 125, 164–170. [Google Scholar] [CrossRef]
- Leung, J.T.M.; Brown, B. Progression of Myopia in Hong Kong Chinese Schoolchildren Is Slowed by Wearing Progressive Lenses. Optom. Vis. Sci. 1999, 76, 346–354. [Google Scholar] [CrossRef]
- Gwiazda, J.; Hyman, L.; Hussein, M.; Everett, D.; Norton, T.T.; Kurtz, D.; Leske, M.C.; Manny, R.; Marsh-Tootle, W.; Scheiman, M. A Randomized Clinical Trial of Progressive Addition Lenses versus Single Vision Lenses on the Progression of Myopia in Children. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1492. [Google Scholar] [CrossRef]
- Berntsen, D.A.; Mutti, D.O.; Zadnik, K. Study of Theories about Myopia Progression (STAMP) Design and Baseline Data. Optom. Vis. Sci. 2010, 87, 823–832. [Google Scholar] [CrossRef]
- Berntsen, D.A.; Sinnott, L.T.; Mutti, D.O.; Zadnik, K. A Randomized Trial Using Progressive Addition Lenses to Evaluate Theories of Myopia Progression in Children with a High Lag of Accommodation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 640–649. [Google Scholar] [CrossRef]
- Berntsen, D.A.; Barr, C.D.; Mutti, D.O.; Zadnik, K. Peripheral Defocus and Myopia Progression in Myopic Children Randomly Assigned to Wear Single Vision and Progressive Addition Lenses. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5761–5770. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.Y.; Tang, W.C.; Tse, D.Y.; Lee, R.P.K.; Chun, R.K.M.; Hasegawa, K.; Qi, H.; Hatanaka, T.; To, C.H. Defocus Incorporated Multiple Segments (DIMS) Spectacle Lenses Slow Myopia Progression: A 2-Year Randomised Clinical Trial. Br. J. Ophthalmol. 2020, 104, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Huang, Y.; Li, X.; Yang, A.; Zhou, F.; Wu, J.; Wang, C.; Li, Y.; Lim, E.W.; Spiegel, D.P.; et al. Spectacle Lenses with Aspherical Lenslets for Myopia Control vs Single-Vision Spectacle Lenses: A Randomized Clinical Trial. JAMA Ophthalmol. 2022, 140, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, P.; Peixoto-de-Matos, S.C.; Logan, N.S.; Ngo, C.; Jones, D.; Young, G. A 3-Year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom. Vis. Sci. 2019, 96, 556–567. [Google Scholar] [CrossRef]
- Rappon, J.; Chung, C.; Young, G.; Hunt, C.; Neitz, J.; Neitz, M.; Chalberg, T. Control of Myopia Using Diffusion Optics Spectacle Lenses: 12-Month Results of a Randomised Controlled, Efficacy and Safety Study (CYPRESS). Br. J. Ophthalmol. 2023, 107, 1709–1715. [Google Scholar] [CrossRef]
- Kakita, T.; Hiraoka, T.; Oshika, T. Influence of Overnight Orthokeratology on Axial Elongation in Childhood Myopia. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2170–2174. [Google Scholar] [CrossRef]
- Swarbrick, H.A.; Alharbi, A.; Watt, K.; Lum, E.; Kang, P. Myopia Control during Orthokeratology Lens Wear in Children Using a Novel Study Design. Ophthalmology 2015, 122, 620–630. [Google Scholar] [CrossRef]
- VanderVeen, D.K.; Kraker, R.T.; Pineles, S.L.; Hutchinson, A.K.; Wilson, L.B.; Galvin, J.A.; Lambert, S.R. Use of Orthokeratology for the Prevention of Myopic Progression in Children. Ophthalmology 2019, 126, 623–636. [Google Scholar] [CrossRef]
- Hiraoka, T.; Kakita, T.; Okamoto, F.; Takahashi, H.; Oshika, T. Long-Term Effect of Overnight Orthokeratology on Axial Length Elongation in Childhood Myopia: A 5-Year Follow-Up Study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3913–3919. [Google Scholar] [CrossRef]
- Yi, S.; Huang, Y.; Yu, S.-Z.; Chen, X.-J.; Yi, H.; Zeng, X.-L. Therapeutic Effect of Atropine 1% in Children with Low Myopia. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2015, 19, 426–429. [Google Scholar] [CrossRef]
- Chia, A.; Lu, Q.-S.; Tan, D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2. Ophthalmology 2016, 123, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Walline, J.J.; Lindsley, K.B.; Vedula, S.S.; Cotter, S.A.; Mutti, D.O.; Ng, S.M.; Twelker, J.D. Interventions to Slow Progression of Myopia in Children. Cochrane Database Syst. Rev. 2020, 2020, CD004916. [Google Scholar] [CrossRef]
- Foulds, W.S.; Barathi, V.A.; Luu, C.D. Progressive Myopia or Hyperopia Can Be Induced in Chicks and Reversed by Manipulation of the Chromaticity of Ambient Light. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8004. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, S.; Schaeffel, F.; Xiong, S.; Zheng, Y.; Zhou, X.; Lu, F.; Qu, J. Interactions of Chromatic and Lens-Induced Defocus during Visual Control of Eye Growth in Guinea Pigs (Cavia porcellus). Vis. Res. 2014, 94, 24–32. [Google Scholar] [CrossRef]
- Gawne, T.J.; Siegwart, J.T.; Ward, A.H.; Norton, T.T. The Wavelength Composition and Temporal Modulation of Ambient Lighting Strongly Affect Refractive Development in Young Tree Shrews. Exp. Eye Res. 2017, 155, 75–84. [Google Scholar] [CrossRef]
- Smith, E.L.; Hung, L.-F.; Arumugam, B.; Holden, B.A.; Neitz, M.; Neitz, J. Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6490. [Google Scholar] [CrossRef]
- Hung, L.-F.; Arumugam, B.; She, Z.; Ostrin, L.; Smith, E.L. Narrow-Band, Long-Wavelength Lighting Promotes Hyperopia and Retards Vision-Induced Myopia in Infant Rhesus Monkeys. Exp. Eye Res. 2018, 176, 147–160. [Google Scholar] [CrossRef]
- Zha, Y.; Zhu, G.; Zhuang, J.; Zheng, H.; Cai, J.; Feng, W. Axial Length and Ocular Development of Premature Infants without ROP. J. Ophthalmol. 2017, 2017, 6823965. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, K.; Gao, L.; Zhang, L.; Yang, H. Increased Expression of CCN2 in the Red Flashing Light-Induced Myopia in Guinea Pigs. BioMed Res. Int. 2013, 2013, 761823. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, X.; Zhang, Y.; Zhou, Y.; Zhang, J.; Zhang, X.; Zhu, Y.; Xue, L. Repeated Low-Level Red-Light Therapy for Controlling Onset and Progression of Myopia-a Review. Int. J. Med. Sci. 2023, 20, 1363–1376. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z. RTG-Dependent Mitochondria to Nucleus Signaling Is Negatively Regulated by the Seven WD-Repeat Protein Lst8p. EMBO J. 2001, 20, 7209–7219. [Google Scholar] [CrossRef] [PubMed]
- Wong-Riley, M. Energy Metabolism of the Visual System. Eye Brain 2010, 2, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Rich, P.R.; Maréchal, A. The Mitochondrial Respiratory Chain. Essays Biochem. 2010, 47, 1–23. [Google Scholar] [CrossRef]
- Mitchell, P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism. Nature 1961, 191, 144–148. [Google Scholar] [CrossRef]
- Hatefi, Y. The Mitochondrial Electron Transport and Oxidative Phosphorylation Systems. Annu. Rev. Biochem. 1985, 54, 1015–1069. [Google Scholar] [CrossRef]
- De Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef]
- Kadenbach, B.; Hüttemann, M. The Subunit Composition and Function of Mammalian Cytochrome c Oxidase. Mitochondrion 2015, 24, 64–76. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and Applications of the Anti-Inflammatory Effects of Photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef]
- Karu, T.I. Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef]
- Ohta, K.; Muramoto, K.; Shinzawa-Itoh, K.; Yamashita, E.; Yoshikawa, S.; Tsukihara, T. X-Ray Structure of the NO-Bound CuB in Bovine Cytochrome c Oxidase. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D. The Sites and Topology of Mitochondrial Superoxide Production. Exp. Gerontol. 2010, 45, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Csordás, G.; Hajnóczky, G. SR/ER–Mitochondrial Local Communication: Calcium and ROS. Biochim. Biophys. Acta BBA-Bioenerg. 2009, 1787, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Ramasarma, T.; Vaigundan, D. Connecting CuA with Metal Centers of Heme a, Heme a, CuB and Zn by Pathways with Hydrogen Bond as the Bridging Element in Cytochrome c Oxidase. Biochem. Biophys. Res. Commun. 2019, 510, 261–265. [Google Scholar] [CrossRef]
- Kaila, V.R.I.; Oksanen, E.; Goldman, A.; Bloch, D.A.; Verkhovsky, M.I.; Sundholm, D.; Wikström, M. A Combined Quantum Chemical and Crystallographic Study on the Oxidized Binuclear Center of Cytochrome c Oxidase. Biochim. Biophys. Acta BBA-Bioenerg. 2011, 1807, 769–778. [Google Scholar] [CrossRef]
- Kim, Y.C.; Hummer, G. Proton-Pumping Mechanism of Cytochrome c Oxidase: A Kinetic Master-Equation Approach. Biochim. Biophys. Acta BBA-Bioenerg. 2012, 1817, 526–536. [Google Scholar] [CrossRef]
- Brändén, M.; Sigurdson, H.; Namslauer, A.; Gennis, R.B.; Ädelroth, P.; Brzezinski, P. On the Role of the K-Proton Transfer Pathway in Cytochrome c Oxidase. Proc. Natl. Acad. Sci. USA 2001, 98, 5013–5018. [Google Scholar] [CrossRef]
- Kohler, A.; Barrientos, A.; Fontanesi, F.; Ott, M. The Functional Significance of Mitochondrial Respiratory Chain Supercomplexes. EMBO Rep. 2023, 24, e57092. [Google Scholar] [CrossRef]
- Shinhmar, H.; Hogg, C.; Neveu, M.; Jeffery, G. Weeklong Improved Colour Contrasts Sensitivity after Single 670 Nm Exposures Associated with Enhanced Mitochondrial Function. Sci. Rep. 2021, 11, 22872. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, Y.; Chen, J.; Zhou, L. Mitochondrial Signaling for Histamine Releases in Laser-irradiated RBL-2H3 Mast Cells. Lasers Surg. Med. 2010, 42, 503–509. [Google Scholar] [CrossRef]
- Arzumanian, V.; Stankevičius, E.; Laukevičienė, A.; Kėvelaitis, E. Mechanisms of Nitric Oxide Synthesis and Action in Cells. Medicina 2003, 39, 535–541. [Google Scholar]
- Xiong, F.; Mao, T.; Liao, H.; Hu, X.; Shang, L.; Yu, L.; Lin, N.; Huang, L.; Yi, Y.; Zhou, R.; et al. Orthokeratology and Low-Intensity Laser Therapy for Slowing the Progression of Myopia in Children. BioMed Res. Int. 2021, 2021, 8915867. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xing, C.; Qiang, W.; Hua, C.; Tong, L. Low-intensity, Long-wavelength Red Light Slows the Progression of Myopia in Children: An Eastern China-based Cohort. Ophthalmic Physiol. Opt. 2022, 42, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, W.; Lee, G.; Tanushi, A.; Tsukada, K.; Choi, H.S.; Kashiwagi, S. High-Throughput Single-Cell Live Imaging of Photobiomodulation with Multispectral near-Infrared Lasers in Cultured T Cells. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Brookes, P.S.; Yoon, Y.; Robotham, J.L.; Anders, M.W.; Sheu, S.-S. Calcium, ATP, and ROS: A Mitochondrial Love-Hate Triangle. Am. J. Physiol.-Cell Physiol. 2004, 287, C817–C833. [Google Scholar] [CrossRef]
- Carroll, V.A.; Ashcroft, M. Role of Hypoxia-Inducible Factor (HIF)-1α versus HIF-2α in the Regulation of HIF Target Genes in Response to Hypoxia, Insulin-Like Growth Factor-I, or Loss of von Hippel-Lindau Function: Implications for Targeting the HIF Pathway. Cancer Res. 2006, 66, 6264–6270. [Google Scholar] [CrossRef]
- Araújo, T.G.; De Oliveira, A.G.; Tobar, N.; Saad, M.J.A.; Moreira, L.R.; Reis, E.R.; Nicola, E.M.D.; De Jorge, G.L.; Dos Tártaro, R.R.; Boin, I.F.S.F.; et al. Liver Regeneration Following Partial Hepatectomy Is Improved by Enhancing the HGF/Met Axis and Akt and Erk Pathways after Low-Power Laser Irradiation in Rats. Lasers Med. Sci. 2013, 28, 1511–1517. [Google Scholar] [CrossRef]
- Rola, P.; Włodarczak, S.; Lesiak, M.; Doroszko, A.; Włodarczak, A. Changes in Cell Biology under the Influence of Low-Level Laser Therapy. Photonics 2022, 9, 502. [Google Scholar] [CrossRef]
- Jiao, S.; Reinach, P.S.; Huang, C.; Yu, L.; Zhuang, H.; Ran, H.; Zhao, F.; Srinivasalu, N.; Qu, J.; Zhou, X. Calcipotriol Attenuates Form Deprivation Myopia Through a Signaling Pathway Parallel to TGF-Β2–Induced Increases in Collagen Expression. Investig. Ophthalmol. Vis. Sci. 2023, 64, 2. [Google Scholar] [CrossRef]
- Leinhos, L.; Peters, J.; Krull, S.; Helbig, L.; Vogler, M.; Levay, M.; Van Belle, G.J.; Ridley, A.J.; Lutz, S.; Katschinski, D.M.; et al. Hypoxia Suppresses Myofibroblast Differentiation by Changing RhoA Activity. J. Cell Sci. 2019, 132, jcs223230. [Google Scholar] [CrossRef]
- Magar, A.G.; Morya, V.K.; Kwak, M.K.; Oh, J.U.; Noh, K.C. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int. J. Mol. Sci. 2024, 25, 3313. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Elsner, T.; Botella, L.M.; Velasco, B.; Corbí, A.; Attisano, L.; Bernabéu, C. Synergistic Cooperation between Hypoxia and Transforming Growth Factor-β Pathways on Human Vascular Endothelial Growth Factor Gene Expression. J. Biol. Chem. 2001, 276, 38527–38535. [Google Scholar] [CrossRef] [PubMed]
- Therapeutic Goods Administration. Eyerising Myopia Management Device—Home-Use Myopia Control Red Light Device (ARTG 412752); Department of Health and Aged Care: Canberra, Australia, 2024. [Google Scholar]
- Tan, N.R.X.; Chan, K.E.; Lim, B.X.H.; Giannaccare, G.; Najjar, R.P.; Lim, C.H.L. Photobiomodulation: Evidence and Applications in Ophthalmology. Curr. Opin. Ophthalmol. 2025, 36, 345–381. [Google Scholar] [CrossRef]
- Dering, B.; Wright, D.; Gheorghiu, E. The Interaction between Luminance Polarity Grouping and Symmetry Axes on the ERP Responses to Symmetry. Vis. Neurosci. 2024, 41, E005. [Google Scholar] [CrossRef]
- Kremers, J.; Huchzermeyer, C. Electroretinographic Responses to Periodic Stimuli in Primates and the Relevance for Visual Perception and for Clinical Studies. Vis. Neurosci. 2024, 41, E004. [Google Scholar] [CrossRef]
- Trouilloud, A.; Ferry, E.; Boucart, M.; Kauffmann, L.; Warniez, A.; Rouland, J.-F.; Peyrin, C. Impact of Glaucoma on the Spatial Frequency Processing of Scenes in Central Vision. Vis. Neurosci. 2023, 40, E001. [Google Scholar] [CrossRef]
- Huang, Z.; He, T.; Zhang, J.; Du, C. Red Light Irradiation as an Intervention for Myopia. Indian J. Ophthalmol. 2022, 70, 3198–3201. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Zhu, Z.; Xiang, K.; Zhang, X.; Zhang, B.; Chen, J.; Yang, J.; Du, L.; Niu, C.; et al. Effect of Repeated Low-Level Red Light on Myopia Prevention Among Children in China with Premyopia: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e239612. [Google Scholar] [CrossRef]
- Xiong, R.; Wang, W.; Tang, X.; He, M.; Hu, Y.; Zhang, J.; Du, B.; Jiang, Y.; Zhu, Z.; Chen, Y.; et al. Myopia Control Effect of Repeated Low-Level Red-Light Therapy Combined with Orthokeratology. Ophthalmology 2024, 131, 1304–1313. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Y.; Guo, J.; Peng, J.; Zhao, P. Retinal Damage After Repeated Low-Level Red-Light Laser Exposure. JAMA Ophthalmol. 2023, 141, 693. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, Y.-J.; Jeon, I.-C.; Cho, S.-S.; Park, D.-H. RLRL Therapeutic Feasibility and Potential Mechanism on Myopia. Int. J. Mol. Sci. 2026, 27, 428. https://doi.org/10.3390/ijms27010428
Chen Y-J, Jeon I-C, Cho S-S, Park D-H. RLRL Therapeutic Feasibility and Potential Mechanism on Myopia. International Journal of Molecular Sciences. 2026; 27(1):428. https://doi.org/10.3390/ijms27010428
Chicago/Turabian StyleChen, Yu-Jiao, In-Chul Jeon, Seung-Sik Cho, and Dae-Hun Park. 2026. "RLRL Therapeutic Feasibility and Potential Mechanism on Myopia" International Journal of Molecular Sciences 27, no. 1: 428. https://doi.org/10.3390/ijms27010428
APA StyleChen, Y.-J., Jeon, I.-C., Cho, S.-S., & Park, D.-H. (2026). RLRL Therapeutic Feasibility and Potential Mechanism on Myopia. International Journal of Molecular Sciences, 27(1), 428. https://doi.org/10.3390/ijms27010428

