Neuropeptides and the Autonomic Nervous System in Prader–Willi Syndrome
Abstract
1. Introduction
1.1. PWS
1.2. The Autonomic Nervous System
1.3. Peptides Regulating the Autonomic Nervous System
2. Deviations of Peptides Regulating the Autonomic Nervous System in PWS
2.1. Oxytocin and Arginine Vasopressin
2.1.1. Oxytocin
2.1.2. Arginine Vasopressin (AVP)
2.2. Neuropeptide Y (NPY)
2.3. Ghrelin
2.4. Cholecystokinin (CCK)
2.5. Substance P
2.6. Glucagon-like Peptide-1 (GLP-1)
2.7. Orexin
2.8. Opioids
2.9. Thyreotropin-Releasing Hormone (TRH) and Corticotropin-Releasing Hormone (CRH)
2.10. Other Neuropeptides of Importance for the Modulation of ANS Activity
3. Vagus Nerve Stimulation (VNS)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Driscoll, D.J.; Miller, J.L.; Cassidy, S.B. Prader–Willi Syndrome; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; GeneReviews: Seattle, WA, USA; University of Washington: Seattle, WA, USA, 1998; pp. 1993–2024. [Google Scholar]
- Tauber, M.; Hoybye, C. Endocrine disorders in Prader–Willi syndrome: A model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021, 9, 235–246. [Google Scholar] [CrossRef]
- Bar, C.; Diene, G.; Molinas, C.; Bieth, E.; Casper, C.; Tauber, M. Early diagnosis and care is achieved but should be improved in infants with Prader–Willi syndrome. Orphanet J. Rare Dis. 2017, 12, 118. [Google Scholar] [CrossRef]
- Bray, G.A.; York, D.A. Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis. Physiol. Rev. 1979, 59, 719–809. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Matsumoto, T.; Kita, H.; Moritani, T. Autonomic nervous system activity and the state and development of obesity in Japanese school children. Obes. Res. 2003, 11, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yakinci, C.; Mungen, B.; Karabiber, H.; Tayfun, M.; Evereklioglu, C. Autonomic nervous system functions in obese children. Brain Dev. 2000, 22, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Victor, A.K.; Reiter, L.T. Autonomic nervous system dysfunction in Prader–Willi syndrome. Clin. Auton. Res. 2023, 33, 281–286. [Google Scholar] [CrossRef]
- Schmidt, A.; Thews, G. Autonomic Nervous System. In Human Physiology, 2nd ed.; Janig, W., Ed.; Springer: New York, NY, USA, 1989; pp. 333–370. [Google Scholar]
- Wang, T.; Tufenkjian, A.; Ajijola, O.A.; Oka, Y. Molecular and functional diversity of the autonomic nervous system. Nat. Rev. Neurosci. 2025, 26, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R. Neuropeptide Regulation of the Autonomic Nervous System. In Neuropeptides and Stress; Taché, Y., Morley, J.E., Brown, M.R., Eds.; Hans Selye Symposia on Neuroendocrinology and Stress; Springer: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Caruso, A.; Gaetano, A.; Scaccianoce, S. Corticotropin-releasing hormone: Biology and therapeutic opportunities. Biology 2022, 11, 1785. [Google Scholar] [CrossRef]
- Wang, H.; Park, J.; Liu, Y.; Zhang, Y.; Wang, Y.; Wang, Z. Oxytocin receptor expression and activation in parasympathetic brainstem cardiac vagal neurons. bioRxiv 2025. [Google Scholar] [CrossRef]
- Gamer, M.; Büchel, C. Oxytocin specifically enhances valence-dependent parasympathetic responses. Psychoneuroendocrinology 2012, 37, 87–93. [Google Scholar] [CrossRef]
- Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012, 35, 649–659. [Google Scholar] [CrossRef]
- Singru, P.S.; Basu, S.; Singh, O.; Srivastava, A. Thyrotropin-Releasing Hormone (TRH)-Containing Neuronal System in the Brain: Organization, Function and Evolution. In Evolutionary and Comparative Neuroendocrinology; Grinevich, V., Oliveira, R., Eds.; Masterclass in Neuroendocrinology; Springer: Cham, Switzerland, 2025; Volume 17. [Google Scholar]
- Saper, C.B. Central autonomic system. In The Rat Nervous System, 3rd ed.; Paxinos, G., Ed.; Academic Press: Cambridge, MA, USA, 2004; pp. 761–796. [Google Scholar]
- Ma, M.A.; Morrison, E.H. Neuroanatomy, Nucleus Suprachiasmatic. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Guyenet, P.G.; Haselton, J.R.; Sun, M.K. Sympathoexcitatory neurons of the rostroventrolateral medulla and the origin of the sympathetic vasomotor tone. Prog. Brain Res 1989, 81, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Gozes, I.; Brenneman, D.E. VIP: Molecular biology and neurobiological function. Mol. Neurobiol. 1989, 3, 201–236. [Google Scholar] [CrossRef] [PubMed]
- Toogood, A.A.; Thornert, M.O. Ghrelin, not just another growth hormone secretagogue. Clin. Endocrinol. 2001, 55, 589–591. [Google Scholar] [CrossRef]
- Rehfeld, J.F. Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger. Front. Endocrinol. 2017, 8, 47. [Google Scholar] [CrossRef]
- Höybye, C.; Petersson, M. The Role of the Arcuate Nucleus in Regulating Hunger and Satiety in Prader–Willi Syndrome. Curr. Issues Mol. Biol. 2025, 47, 192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Correa-da-Silva, F.; Fliers, E.; Swaab, D.F.; Yi, C.X. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J. Neuroendocrinol. 2021, 33, e12994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Argiolas, A.; Gessa, G.L. Central functions of oxytocin. Neurosci. Biobehav. Rev. 1991, 15, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Tribollet, E.; Goumaz, M.; Raggenbass, M.; Dreifuss, J.J. Appearance and Transient Expression of Vasopressin and Oxytocin Receptors in the Rat Brain. J. Recept. Res. 1991, 11, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Saji, F.; Nishimori, K.; Ogita, K.; Nakamura, H.; Koyama, M.; Murata, Y. Molecular regulation of the oxytocin receptor in peripheral organs. J. Mol. Endocrinol. 2003, 30, 109–115. [Google Scholar] [CrossRef]
- Gimpl, G.; Fahrenholz, F. The Oxytocin Receptor System: Structure, Function, and Regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [PubMed]
- Monstein, H.J.; Grahn, N.; Truedsson, M.; Ohlsson, B. Oxytocin and oxytocin-receptor mRNA expression in the human gastrointestinal tract: A polymerase chain reaction study. Regul. Pept. 2004, 119, 39–44. [Google Scholar] [CrossRef]
- Holmes, C.L.; Landry, D.W.; Granton, J.T. Science review: Vasopressin and the cardiovascular system part 1--receptor physiology. Crit. Care 2003, 7, 427–434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uvnäs-Moberg, K.; Gross, M.M.; Calleja-Agius, J.; Turner, J.D. The Yin and Yang of the oxytocin and stress systems: Opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front. Endocrinol. 2024, 15, 2024. [Google Scholar] [CrossRef]
- Petersson, M. Cardiovascular effects of oxytocin. Prog. Brain Res. 2002, 139, 281–288. [Google Scholar] [CrossRef]
- Petersson, M.; Uvnäs-Moberg, K.; Erhardt, S.; Engberg, G. Oxytocin increases locus coeruleus alpha 2-adrenoreceptor responsiveness in rats. Neurosci. Lett. 1998, 255, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liang, J.Y.; Li, P.; Pan, Y.J.; Qiu, P.Y.; Zhang, J.; Hao, F.; Wang, D.X. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides 2011, 32, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, Y.; Sato, K.; Takayanagi, Y.; Mizukami, H.; Ozawa, K.; Hidema, S.; So, K.H.; Kawada, T.; Inoue, N.; Ikeda, I. Oxytocin Receptor in the Hypothalamus Is Sufficient to Rescue Normal Thermoregulatory Function in Male Oxytocin Receptor Knockout Mice. Endocrinology 2013, 154, 4305–4315. [Google Scholar] [CrossRef]
- Vandendoren, M.; Landen, J.G.; Rogers, J.F.; Killmer, S.; Alimiri, B.; Pohlman, C.; Tattersall, G.J.; Bedford, N.L.; Nelson, A.C. Oxytocin neurons signal state-dependent transitions from rest to thermogenesis and behavioral arousal in social and non-social settings. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Kummerfeld, D.F.; Raabe, C.A.; Brosius, J.; Mo, D.; Skryabin, B.V.; Rozhdestvensky, T.S. A comprehensive review of genetically engineered mouse models for Prader Willi Syndrome research. Int. J. Mol. Sci. 2021, 22, 3613. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, D.; Meziane, H.; Marly, F.; Angelats, C.; Fernandez, P.A.; Muscatelli, F. Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev. Biol. 2006, 6, 56. [Google Scholar] [CrossRef]
- Swaab, D.F.; Purba, J.S.; Hofman, M.A. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader–Willi syndrome: A study of five cases. J. Clin. Endocrinol. Metab. 1995, 80, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Swaab, D. Prader—Willi syndrome and the hypothalamus. Acta Paediatr. 1997, 86, 50–54. [Google Scholar] [CrossRef]
- Bittel, D.C.; Kibiryeva, N.; Sell, S.M.; Strong, T.V.; Butler, M.G. Whole genome microarray analysis of gene expression in Prader–Willi syndrome. Am. J. Med Genet. Part A 2007, 143, 430–442. [Google Scholar] [CrossRef]
- Johnson, L.; Manzardo, A.M.; Miller, J.L.; Driscoll, D.J.; Butler, M.G. Elevated plasma oxytocin levels in children with Prader–Willi syndrome compared with healthy unrelated siblings. Am. J. Med Genet. Part A 2015, 170, 594–601. [Google Scholar] [CrossRef]
- Höybye, C.; Barkeling, B.; Espelund, U.; Petersson, M.; Thorén, M. Peptides associated with hyperphagia in adults with Prader–Willi syndrome before and during GH treatment. Growth Horm. IGF Res. 2003, 13, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; State, M.; Anderson, G.M.; Kaye, W.M.; Hanchett, J.M.; McConaha, C.W.; North, W.G.; Leckman, J.F. Cerebrospinal fluid levels of oxytocin in Prader–Willi syndrome: A preliminary report. Biol. Psychiatry 1998, 4, 1349–1352. [Google Scholar] [CrossRef]
- Sparapni, S. The biology of vasopressin. Biomedicines 2021, 9, 89. [Google Scholar] [CrossRef] [PubMed]
- Borie, A.M.; Dromard, Y.; Guillon, G.; Olma, A.; Manning, M.; Muscatelli, F.; Desarmenien, M.G.; Jeanneteau, F. Correction of vasopressin deficit in the lateral septum ameliorates social deficits of mouse autism model. J. Clin. Investig. 2021, 131, e144450. [Google Scholar] [CrossRef]
- Rice, L.J.; Agu, J.; Carter, C.S.; Harris, J.C.; Nazarloo, H.P.; Naanai, H.; Einfeld, S.L. The relationship between endogenous oxytocin and vasopressin levels and the Prader–Willi syndrome behaviour phenotype. Front. Endocrinol. 2023, 14, 1183525. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rice, L.J.; Agu, J.; Carter, C.S.; Cho, Y.H.; Harris, J.; Heilman, K.; Nazarloo, H.P.; Naanai, H.; Porges, S.; Einfeld, S.L. The relationship between cardiac activity, behaviour and endogenous oxytocin and vasopressin in Prader–Willi Syndrome: An exploratory study. Int. J. Psychophysiol. 2024, 205, 112429. [Google Scholar] [CrossRef] [PubMed]
- Gabreëls, B.A.; Swaab, D.F.; de Kleijn, D.P.; Seidah, N.G.; Van de Loo, J.W.; Van de Ven, W.J.; Martens, G.J.; van Leeuwen, F.W. Attenuation of the polypeptide 7B2, prohormone convertase PC2, and vasopressin in the hypothalamus of some Prader-Willi patients: Indications for a processing defect. J. Clin. Endocrinol. Metab. 1998, 83, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Angulo, M.; Price, D.; Taneja, S. MR of the pituitary in patients with Prader–Willi syndrome: Size determination and imaging findings. Pediatr. Radiol. 1996, 26, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Pascalau, R.; Wang, H.; Bajpayi, S.; Yurgel, M.; Quansah, K.; Hattar, S.; Tampakakis, E.; Kuruvilla, R. Sympathetic NPY controls glucose homeostasis, cold tolerance, and cardiovascular functions in mice. Cell Rep. 2024, 43, 113674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robertson, C.; Paterson, D.J.; Herring, N. Neuropeptide Y and the autonomic nervous system. Auton. Neurosci. Basic Clin. 2022, 239, 102972. [Google Scholar]
- Haferkamp, A.; Freund, T.; Wagener, N.; Reitz, A.; Schurch, B.; Doersam, J.; Schumacher, S.; Bastian, P.J.; Buettern, R.J.; Mueller, S.C.; et al. Distribution of neuropeptide Y-containing nerves in the neurogenic and non-neurogenic detrusor. BJU Int. 2006, 97, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.P.; Unmehopa, U.A.; Bloom, S.R.; Swaab, D.F. Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader–Willi syndrome and other obese subjects. J. Clin. Endocrinol. Metab. 2002, 87, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Corrêa da Silva, F.; Aguiar, C.; Pereira, J.A.S.; de Brito Monteiro, L.; Davanzo, G.G.; Codo, A.C.; Pimentel de Freitas, L.; Berti, A.S.; Lopes Ferrucci, D.; Castelucci, B.G.; et al. Ghrelin effects on mitochondrial fitness modulates macrophage function. Free Radic. Biol. Med. 2019, 145, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, F.; Salio, C.; Lossi, L.; Merighi, A. Ghrelin in central neurons. Curr. Neuropharmacol. 2009, 7, 37–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Druce, M.R.; Wren, A.M.; Park, A.J.; Milton, J.E.; Patterson, M.; Frost, G.; Ghatei, M.A.; Small, C.; Bloom, S.R. Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes. 2005, 29, 1130–1136. [Google Scholar] [CrossRef]
- Pustovit, R.V.; Furness, J.B.; Rivera, L.R. A ghrelin receptor agonist is an effective colokinetic in rats with diet-induced constipation. Neurogastroenterol. Motil. 2015, 27, 610–617. [Google Scholar] [CrossRef] [PubMed]
- DelParigi, A.; Tschöp, M.; Heiman, M.L.; Salbe, A.D.; Vozarova, B.; Sell, S.M.; Bunt, J.C.; Tataranni, P.A. High circulating ghrelin: A potential cause for hyperphagia and obesity in Prader–Willi syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 5461–5464. [Google Scholar] [CrossRef]
- Haqq, A.M.; DeLorey, D.S.; Sharma, A.M.; Freemark, M.; Kreier, F.; Mackenzie, M.L.; Richer, L.P. Autonomic nervous system dysfunction in obesity and Prader–Willi syndrome: Current evidence and implications for future obesity therapies. Clin. Obes. 2011, 1, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.H.; Jin, D.K.; Kim, S.E.; Song, S.Y.; Paik, K.H.; Park, H.Y.; Oh, Y.J.; Kim, A.H.; Kim, J.S.; Kim, C.W.; et al. Hyperghrelinemia does not accelerate gastric emptying in Prader–Willi syndrome patients. J. Clin. Endocrinol. Metab. 2005, 90, 3367–3370. [Google Scholar] [CrossRef]
- Maillard, J.; Park, S.; Croizier, S.; Vanacker, C.; Cook, J.H.; Prevot, V.; Tauber, M.; Bouret, S.G. Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Hum. Mol. Genet. 2016, 25, 3208–3215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moran, T.H.; Kinzig, K.P. Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, 183–188. [Google Scholar] [CrossRef]
- Butler, M.G.; Carlson, M.G.; Schmidt, D.E.; Feurer, I.D.; Thompson, T. Plasma cholecystokinin levels in Prader–Willi syndrome and obese subjects. Am. J. Med Genet. 2000, 95, 67–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomita, T.; Greeley, G., Jr.; Watt, L.; Doull, V.; Chance, R. Protein meal-stimulated pancreatic polypeptide secretion in Prader–Willi syndrome of adults. Pancreas 1989, 4, 395–400. [Google Scholar] [CrossRef]
- Paik, K.H.; Jin, D.K.; Lee, K.H.; Armstrong, L.; Lee, J.E.; Oh, Y.J.; Kim, S.; Kwon, E.K.; Choe, Y.H. Peptide YY, Cholecystokinin, Insulin and Ghrelin Response to Meal did not Change, but Mean Serum Levels of Insulin is Reduced in Children with Prader–Willi Syndrome. J. Korean Med Sci. 2007, 22, 436–441. [Google Scholar] [CrossRef]
- Ebner, K.; Singewald, N. The role of substance P in stress and anxiety responses. Amino Acids 2006, 31, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Datar, P.; Srivastava, S.; Coutinho, E.; Govil, G. Substance P: Structure, function, and therapeutics. Curr. Top. Med. Chem. 2004, 4, 75–103. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Crandall, C.G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. 2010, 2, 685–696. [Google Scholar] [CrossRef]
- Butler, M.G.; Nelson, T.A.; Driscoll, D.J.; Manzardo, A.M. Evaluation of plasma substance p and beta-endorphin levels in children with Prader–Willi syndrome. J. Rare Disord. 2015, 3. [Google Scholar] [PubMed] [PubMed Central]
- Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [PubMed]
- Marathe, C.S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Glucagon-like peptides 1 and 2 in health and disease: A review. Peptides 2013, 44, 75–86. [Google Scholar] [CrossRef]
- Kanoski, S.E.; Fortin, S.M.; Arnold, M.; Grill, H.J.; Hayes, M.R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 2011, 152, 3103–3112. [Google Scholar] [CrossRef]
- Holt, M.K.; Trapp, S. The physiological role of the brain GLP-1 system in stress. Congent. Biol. 2016, 2, 1229086. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Purtell, L.; Sze, L.; Loughnan, G.; Smith, E.; Herzog, H.; Sainsbury, A.; Steinbeck, K.; Campbell, L.V.; Viardot, A. In adults with Prader–Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels. Neuropeptides 2011, 45, 301–307. [Google Scholar] [CrossRef]
- Türkkahraman, D.; Tekin, S.; Güllü, M.; Aykal, G. Serum Ghrelin and Glucagon-like Peptide 1 Levels in Children with Prader-Willi and Bardet-Biedl Syndromes. J. Clin. Res. Pediatr. Endocrinol. 2024, 16, 146–150. [Google Scholar] [CrossRef]
- Bueno, M.; Boixadera-Planas, E.; Blanco-Hinojo, L.; Esteba-Castillo, S.; Giménez-Palop, O.; Torrents-Rodas, D.; Pujol, J.; Corripio, R.; Deus, J.; Caixàs, A. Hunger and Satiety Peptides: Is There a Pattern to Classify Patients with Prader–Willi Syndrome? J. Clin. Med. 2021, 10, 5170. [Google Scholar] [CrossRef]
- Ng, N.B.H.; Low, Y.W.; Rajgor, D.D.; Low, J.M.; Lim, Y.Y.; Loke, K.Y.; Lee, Y.S. The effects of glucagon-like peptide (GLP)-1 receptor agonists on weight and glycaemic control in Prader–Willi syndrome: A systematic review. Clin. Endocrinol. 2022, 96, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Mieda, M.; Tsujino, N.; Sakurai, T. Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front. Endocrinol. 2013, 4, 57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grujic, N.; Tesmer, A.; Bracey, E.; Peleg-Raibstein, D.; Burdakov, D. Control and coding of pupil size by hypothalamic orexin neurons. Nat. Neurosci. 2023, 26, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Inutsuka, A.; Yamashita, A.; Chowdhury, S.; Nakai, J.; Ohkura, M.; Taguchi, T.; Yamanaka, A. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci. Rep. 2016, 6, 29480. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaszberenyi, M.; Thurzo, B.; Bagaso, Z.; Vecsei, L.; Tanake, M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024, 12, 448. [Google Scholar] [CrossRef]
- Manzardo, A.M.; Johnson, L.; Miller, J.L.; Driscoll, D.J.; Butler, M.G. Higher plasma orexin a levels in children with Prader–Willi syndrome compared with healthy unrelated sibling controls. Am. J. Med Genet. A 2016, 170, 2328–2333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kozlov, S.V.; Bogenpohl, J.W.; Howell, M.P.; Wevrick, R.; Panda, S.; Hogenesch, J.B.; Muglia, L.J.; Van Gelder, R.N.; Herzog, E.D.; Stewart, C.L. The imprinted gene Magel2 regulates normal circadian output. Nat. Genet. 2007, 39, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gullapalli, S.; Pan, H.; Ramos-Ortolaza, D.L.; Hayward, M.D.; Low, M.J.; Pintar, J.E.; Devi, L.A.; Gomes, I. Regulation of Opioid Receptors by Their Endogenous Opioid Peptides. Cell. Mol. Neurobiol. 2021, 41, 1103–1118. [Google Scholar] [CrossRef]
- Vaccarino, A.L.; Kastin, A.J. Endogenous opiates: 1999. Peptides 2000, 21, 1975–2034. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, C. The Hypothalamic-Pituitary-Adrenal Axis and Its Regulation. In The Peripheral Existence and Effects of Corticotropin-Releasing Factor Family; Zhu, C., Wan, R., Li, S., Eds.; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Taché, Y.; Wang, H.; Miampamba, M.; Martinez, V.; Yuan, P.Q. Role of brainstem TRH/TRH-R1 receptors in the vagal gastric cholinergic response to various stimuli including sham-feeding. Auton. Neurosci. 2006, 125, 42–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Lu, S.; Guo, H.; Zhang, Z.; Zheng, H.; Zhang, C.; Zhang, J.; Wang, K.; Pei, F.; et al. Stress triggers gut dysbiosis via CRH-CRHR1-mitochondria pathway. Biofilms Microbiomes 2024, 10, 93. [Google Scholar] [CrossRef]
- Grootjen, L.N.; Kerkhof, G.F.; Juriaans, A.F.; Trueba-Timmermans, D.J.; Hokken-Koelega, A.C.S. Acute stress response of the HPA-axis in children with Prader–Willi syndrome: New insights and consequences for clinical practice. Front. Endocrinol. 2023, 14, 1146680. [Google Scholar] [CrossRef] [PubMed]
- Tennese, A.A.; Wevrick, R. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology 2011, 152, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Pellikaan, K.; Snijders, F.; Rosenberg, A.G.; Davidse, K.; van den Berg, S.A.A.; Visser, W.E.; van der Lely, A.J.; de Graaff, L.C.G. Thyroid function in adults with Prader–Willi syndrome: A cohort study and literature review. J. Clin. Med. 2021, 10, 3804. [Google Scholar] [CrossRef]
- Iughetti, L.; Vivi, G.; Balsamo, A.; Corrias, A.; Crinò, A.; Delvecchio, M.; Gargantini, L.; Greggio, N.A.; Grugni, G.; Hladnik, U.; et al. Thyroid function in patients with Prader–Willi syndrome: An Italian multicenter study of 339 patients. J. Pediatr. Endocrinol. Metab. 2019, 32, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Hobson, S.A.; Wynick, D.; Hökfelt, T.; Kofler, B. Physiology, signaling and pharmacology of galanin peptides and receptors: Three decades of emerging diversity. Pharmacol. Rev. 2015, 67, 118–175. [Google Scholar] [CrossRef]
- Sipkova, J.; Kramarikova, I.; Hynie, S.; Klenerova, V. The Galanin and Galanin Receptor Subtypes, its Regulatory Role in the Biological and Pathological Functions. Physiol. Res. 2017, 66, 729–740. [Google Scholar] [CrossRef]
- Delgado, M.; Ganea, D. Vasoactive intestinal peptide: A neuropeptide with pleiotropic immune functions. Amino Acids 2013, 45, 25–39. [Google Scholar] [CrossRef]
- Yoshiyama, M.; de Groat, W.C. The role of vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide in the neural pathways controlling the lower urinary tract. J. Mol. Neurosci. 2008, 36, 227–240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Victor, A.K.; Klein, J.; Tacer, K.F.; Tai, D.J.; de Esch, C.; Nuttle, A.; Temirov, J.; Burnett, L.C.; Rosenbaum, M.; et al. Loss of MAGEL2 in Prader–Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020, 5, e138576. [Google Scholar] [CrossRef] [PubMed]
- Brain, S.D.; Williams, T.J.; Tippins, J.R.; Morris, H.R.; MacIntyre, I. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985, 313, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Schou, W.S.; Ashina, S.; Amin, F.M.; Goadsby, P.J.; Ashina, M. Calcitonin gene-related peptide and pain: A systematic review. J. Headache Pain. 2017, 18, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, B.; Xue, L.; Wu, B. Structure and function of somatostatin and its receptors in endocrinology. Endocr. Rev. 2025, 46, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.M.; Vanderpump, M.; Khoo, B.; Patterson, M.; Ghatei, M.A.; Goldstone, A.P. Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader–Willi syndrome. J. Clin. Endocrinol. Metab. 2004, 89, 4162–4165. [Google Scholar] [CrossRef] [PubMed]
- Ventureyra, E.C. Transcutaneous vagus nerve stimulation for partial onset seizure therapy. A new concept. Childs Nerv. Syst. 2000, 16, 101–102. [Google Scholar] [CrossRef]
- Austelle, C.W.; Cox, S.S.; Wills, K.E.; Badran, B.W. Vagus nerve stimulation (VNS): Recent advances and future directions. Clin. Auton. Res. 2024, 34, 529–547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trifilio, E.; Shortell, D.; Olshan, S.; O’Neal, A.; Coyne, J.; Lamb, D.; Porges, E.; Williamson, J. Impact of transcutaneous vagus nerve stimulation on healthy cognitive and brain aging. Front. Neurosci. 2023, 17, 1184051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rice, L.J.; Lagopoulos, J.; Brammer, M.; Einfeld, S.L. Reduced Gamma-Aminobutyric Acid Is Associated with Emotional and Behavioral Problems in Prader–Willi Syndrome. Am. J. Med Genet. B Neuropsychiatr. Genet. 2016, 171, 1041–1048. [Google Scholar] [CrossRef]
- Ben-Menachem, E.; Hamberger, A.; Hedner, T.; Hammond, E.J.; Uthman, B.M.; Slater, J.; Treig, T.; Stefan, H.; Ramsay, R.; Wernicke, J.; et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995, 20, 221–227. [Google Scholar] [CrossRef]
- Capone, F.; Assenza, G.; Di Pino, G.; Musumeci, G.; Ranieri, F.; Florio, L.; Barbato, C.; Di Lazzaro, V. The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 2015, 122, 679–685. [Google Scholar] [CrossRef]
- Manning, K.E.; Beresford-Webb, J.A.; Aman, L.C.S.; Ring, H.A.; Watson, P.C.; Porges, S.W.; Oliver, C.; Jennings, S.R.; Holland, A.J. Transcutaneous vagus nerve stimulation (t-VNS): A novel effective treatment for temper outbursts in adults with Prader–Willi Syndrome indicated by results from a non-blind study. PLoS ONE 2019, 14, e0223750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmausser, M.; Holland, A.; Beresford-Webb, J.; Eglen, S.J.; Manning, K.; Aman, L.; Kronhaus, D.; Koenig, J. Effects of long-term transcutaneous auricular vagus nerve stimulation on circadian vagal activity in people with Prader–Willi Syndrome: A case-series. Res. Dev. Disabil. 2024, 154, 104855. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.W.; Holmes, N.M.; Fam, J.; Westbrook, R.F.; Delaney, A.J. Oxytocin increases inhibitory synaptic transmission and blocks development of long-term potentiation in the lateral amygdala. J. Neurophysiol. 2020, 123, 587–599. [Google Scholar] [CrossRef]
- Dubois-Dauphin, M.; Raggenbass, M.; Widmer, H.; Tribollet, E.; Dreifuss, J.J. Morphological and electrophysiological evidence for postsynaptic localization of functional oxytocin receptors in the rat dorsal motor nucleus of the vagus nerve. Brain Res. 1992, 575, 124–131. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, K. Mechanism and Applications of Vagus Nerve Stimulation. Curr. Issues Mol. Biol. 2025, 47, 122. [Google Scholar] [CrossRef]
- Veldman, F.; Hawinkels, K.; Keszthelyi, D. Efficacy of vagus nerve stimulation in gastrointestinal disorders: A systematic review. Gastroenterol. Rep. 2025, 13, goaf009. [Google Scholar] [CrossRef]
- 115; Petersson, M.; Hulting, A.; Andersson, R.; Uvnäs-Moberg, K. Long-term changes in gastrin, cholecystokinin and insulin in response to oxytocin treatment. Neuroendocrinology 1999, 69, 202–208. [Google Scholar] [CrossRef]
- Butler, M.G.; Bittel, D.C. Plasma obestatin and ghrelin levels in subjects with Prader–Willi syndrome. Am. J. Med Genet. A 2007, 143, 415–421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Casello, S.M.; Flores, R.J.; Yarur, H.E.; Wang, H.; Awanyai, M.; Arenivar, M.A.; Jaime-Lara, R.B.; Bravo-Rivera, H.; Tejeda, H.A. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front. Neural Circuits 2022, 16, 796443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heseding, H.M.; Jahn, K.; Eberlein, C.K.; Wieting, J.; Maier, H.B.; Proskynitopoulos, P.J.; Glahn, A.; Bleich, S.; Frieling, H.; Deest, M. Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader–Willi syndrome and in Prader–Willi syndrome associated psychosis. Psychiatry 2022, 12, 246. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fountain, M.D.; Schaaf, C.P. Prader–Willi Syndrome and Schaaf-Yang Syndrome: Neurodevelopmental Diseases Intersecting at the MAGEL2 Gene. Diseases 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muscatelli, F.; Abrous, D.N.; Massacrier, A.; Boccaccio, L.; Le Moal, M.; Cau, P.; Cremer, C. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader–Willi syndrome. Hum. Mol. Genet. 2000, 9, 3101–3110. [Google Scholar] [CrossRef] [PubMed]
- Barelle, P.Y.; Sicardi, A.; Schaller, F.; Buron, J.; Becquet, D.; Omnes, F.; Watrin, F.; Alifrangis, M.S.; Santos, C.; Menuet, C.; et al. Investigation of a mouse model of Prader–Willi Syndrome with combined disruption of Necdin and Magel2. JCI Insight 2025, 10, e185159. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, A.; Schaller, F.; Tyzio, R.; Gaillard, S.; Santini, F.; Xolin, M.; Diabira, D.; Vaidyanathan, R.; Matarzzo, V.; Muscatelli, F. Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism. Mol. Psychiatry 2021, 26, 7582–7595. [Google Scholar] [CrossRef]
- Tauber, M.; Boulanouar, K.; Diene, G.; Çabal-Berthoumieu, S.; Ehlinger, V.; Fichaux-Bourin, P.; Molinas, C.; Faye, S.; Valette, M.; Pourrinet, J.; et al. The Use of Oxytocin to Improve Feeding and Social Skills in Infants With Prader–Willi Syndrome. Pediatrics 2017, 139, e20162976. [Google Scholar] [CrossRef] [PubMed]
- Richer, L.P.; Tan, Q.; Butler, M.G.; Avedzi, H.M.; DeLorey, D.S.; Peng, Y.; Tun, H.M.; Sharma, A.M.; Ainsley, S.; Orsso, C.E.; et al. Evaluation of Autonomic Nervous System Dysfunction in Childhood Obesity and Prader–Willi Syndrome. Int. J. Mol. Sci. 2023, 24, 8013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Field, T. The power of touch. In A Multidisciplinary Approach to Embodiment; Price, C., LaMotte, J., Eds.; Routledge: London, UK, 2020; pp. 267–278. [Google Scholar]
| Symptoms | Examples of Possible Peptides Involved |
|---|---|
| Altered temperature regulation | TRH, CGRP, orexin, oxytocin, NPY |
| Sweating abnormalities | VIP, substance P, CGRP |
| Changes in diurnal rhythm | CRH, TRH, AVP, orexin, NPY, VIP |
| Increased nociceptive threshold | Opioids, Substance P, OXT, galanin, CGRP, CCK, NPY |
| Altered blood pressure regulation | NPY, CRH, OXT, AVP, VIP |
| Heart rate variability | NPY, VIP, CRH, OXT, galanin, AVP |
| Prolonged pupillary reaction | NPY, VIP, Substance P, orexin, CRH |
| Decreased saliva production | VIP, NPY |
| Urine retention | NPY. VIP, substance P |
| Delayed gastric emptying | Ghrelin, CCK, somatostatin, GLP-1 |
| Constipation | Ghrelin, VIP, somatostatin |
| Peptide | Change | Human/Animal | References |
|---|---|---|---|
| Oxytocin | Both increased and decreased | Humans: Increase (decrease in relation to obesity) in plasma and CSF. Decrease in CNS tissue. Animal model: Decreased | [36,37,38,39,40,41,42,43] |
| Vasopressin | Decreased | Humans: CSF and plasma but unchanged in CNS Animal model | [38,43,46,47,48] |
| Neuropeptide Y | Decreased or unchanged | Humans: CNS and plasma | [23,42,53] |
| Ghrelin | Increased or unchanged | Human plasma: Increased Animal model: Unchanged | [59,60,62,76] |
| Cholecystokinin | Decreased or unchanged | Human plasma | [65,66] |
| Substance P | Increased | Human plasma | [70] |
| GLP-1 | Increased or unchanged | Human plasma | [75,76,77,78] |
| Orexin | Both increased and decreased | Human: plasma: Increased Animal model: Decreased | [83,84] |
| Beta-endorphin | Increased | Human plasma | [70] |
| VIP | Decreased | Animal model | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Höybye, C.; Petersson, M. Neuropeptides and the Autonomic Nervous System in Prader–Willi Syndrome. Int. J. Mol. Sci. 2026, 27, 352. https://doi.org/10.3390/ijms27010352
Höybye C, Petersson M. Neuropeptides and the Autonomic Nervous System in Prader–Willi Syndrome. International Journal of Molecular Sciences. 2026; 27(1):352. https://doi.org/10.3390/ijms27010352
Chicago/Turabian StyleHöybye, Charlotte, and Maria Petersson. 2026. "Neuropeptides and the Autonomic Nervous System in Prader–Willi Syndrome" International Journal of Molecular Sciences 27, no. 1: 352. https://doi.org/10.3390/ijms27010352
APA StyleHöybye, C., & Petersson, M. (2026). Neuropeptides and the Autonomic Nervous System in Prader–Willi Syndrome. International Journal of Molecular Sciences, 27(1), 352. https://doi.org/10.3390/ijms27010352

