Genome-Wide Identification and Expression Profiling of the Aux/IAA Gene Family in Eggplant (Solanum melongena L.) Reveals Its Roles in Abiotic Stress and Auxin Responses
Abstract
1. Introduction
2. Results
2.1. Identification of SmIAA Genes in Eggplant Genome and Analysis of Protein Properties
2.2. Chromosomal Location and Phylogenetic Analysis of SmIAA Genes
2.3. Gene Duplication and Synteny Analysis of SmIAA Genes
2.4. Gene Structure and Conserved Motif Composition of SmIAA Genes
2.5. Cis-Acting Element Analysis in Promoter Region of SmIAA
2.6. Secondary and Tertiary Structure of SmIAA Protein
2.7. Protein–Protein Interaction Network Analysis
2.8. Expression Patterns of SmIAA Genes
2.9. Expression Analysis of SmIAA Genes in Response to Abiotic Stress and Auxin
3. Discussion
4. Materials and Methods
4.1. Genome-Wide Identification of SmIAA Gene Family in Eggplant Genome
4.2. Chromosomal Localization and Phylogenetic Analysis
4.3. Gene Duplication and Synteny Analysis
4.4. Gene Structure and Conserved Motif Analysis
4.5. Promoter Cis-Regulatory Element Analysis
4.6. Protein Secondary and Tertiary Structure Prediction
4.7. Protein–Protein Interaction (PPI) Network Construction
4.8. Expression Profiling of SmIAA Genes
4.9. qRT-PCR Analysis Under Stress Treatments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AA | amino acids |
| AI | aliphatic index |
| ARF | Auxin Response Factor |
| AuxREs | auxin-responsive elements |
| BLASTP | Basic Local Alignment Search Tool for Proteins |
| CDS | Coding Sequence |
| cDNA | Complementary DNA |
| DBDs | DNA-binding domains |
| FPKM | Fragments Per Kilobase of transcript sequence per millions base pairs sequenced |
| GMQE | Global Model Quality Estimation |
| GRAVY | grand average of hydrophobicity |
| HMM | Hidden Markov Model |
| IAA | Indole-3-acetic acid |
| II | instability index |
| JTT | Jones–Taylor–Thornton |
| Ka | nonsynonymous substitution rate |
| Ka/Ks | Ratio of nonsynonymous/synonymous |
| Ks | synonymous substitution rate |
| MW | molecular weight |
| NJ | Neighbor-Joining |
| pI | isoelectric point |
| PPI | Protein–protein interaction |
| qRT-PCR | Quantitative real-time PCR |
| RMSD | Root means square deviation |
| SmIAA | Aux/IAA genes of Solanum melongena |
| TIR1/AFB | Transport Inhibitor Response 1/Auxin-Signaling F-box proteins |
References
- FAOSTAT. Available online: http://www.fao.org/faostat (accessed on 14 December 2025).
- Çakir, B.; Kiliçkaya, O.; Olcay, A.C. Genome-wide analysis of Aux/IAA genes in Vitis vinifera: Cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol. Plant. 2013, 35, 365–377. [Google Scholar] [CrossRef]
- Li, D.; Qian, J.; Li, W.; Yu, N.; Gan, G.; Jiang, Y.; Li, W.; Liang, X.; Chen, R.; Mo, Y.; et al. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol. Ecol. Resour. 2021, 21, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Wilkinson, E.G.; Sageman-Furnas, K.; Strader, L.C. Auxin and abiotic stress responses. J. Exp. Bot. 2023, 74, 7000–7014. [Google Scholar] [CrossRef]
- Musazade, E.; Mrisho, I.I.; Feng, X. Auxin metabolism and signaling: Integrating independent mechanisms and crosstalk in plant abiotic stress responses. Plant Stress 2025, 18, 101034. [Google Scholar] [CrossRef]
- Rouse, D.; Mackay, P.; Stirnberg, P.; Estelle, M.; Leyser, O. Changes in auxin response from mutations in an Aux/IAA gene. Science 1998, 279, 1371–1373. [Google Scholar] [CrossRef]
- Gray, W.M.; Kepinski, S.; Rouse, D.; Leyser, O.; Estelle, M. Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins. Nature 2001, 414, 271–276. [Google Scholar] [CrossRef]
- Marzi, D.; Brunetti, P.; Saini, S.S.; Yadav, G.; Puglia, G.D.; Dello Ioio, R. Role of transcriptional regulation in auxin-mediated response to abiotic stresses. Front. Genet. 2024, 15, 1394091. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, J.J.; Zhang, J.Z. Aux/IAA gene family in plants: Molecular structure, regulation, and function. Int. J. Mol. Sci. 2018, 19, 259. [Google Scholar] [CrossRef]
- Thakur, J.K.; Tyagi, A.K.; Khurana, J.P. OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light. DNA Res. 2001, 8, 193–203. [Google Scholar] [CrossRef]
- Tian, Q.; Reed, J.W. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 1999, 126, 711–721. [Google Scholar] [CrossRef]
- Overvoorde, P.J.; Okushima, Y.; Alonso, J.M.; Chan, A.; Chang, C.; Ecker, J.R.; Hughes, B.; Liu, A.; Onodera, C.; Quach, H.; et al. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 2005, 17, 3282–3300. [Google Scholar] [CrossRef]
- Rogg, L.E.; Lasswell, J.; Bartel, B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 2001, 13, 465–480. [Google Scholar] [CrossRef]
- Tatematsu, K.; Kumagai, S.; Muto, H.; Sato, A.; Watahiki, M.K.; Harper, R.M.; Liscum, E.; Yamamoto, K.T. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 2004, 16, 379–393. [Google Scholar] [CrossRef]
- Müller, C.J.; Valdés, A.E.; Wang, G.; Ramachandran, P.; Beste, L.; Uddenberg, D.; Carlsbecker, A.; Yoshida, S.; Sundberg, B.; Nilsson, O.; et al. PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis. Plant Physiol. 2016, 170, 956–970. [Google Scholar] [CrossRef]
- Fan, J.; Deng, M.; Li, B.; Fan, G. Genome-wide identification of the Paulownia fortunei Aux/IAA gene family and its response to witches’ broom caused by phytoplasma. Int. J. Mol. Sci. 2024, 25, 2260. [Google Scholar] [CrossRef]
- Perrot-Rechenmann, C. Cellular responses to auxin: Division versus expansion. Cold Spring Harb. Perspect. Biol. 2010, 2, a001446. [Google Scholar] [CrossRef]
- Petersson, S.V.; Johansson, A.I.; Kowalczyk, M.; Makoveychuk, A.; Wang, J.Y.; Moritz, T.; Grebe, M.; Benfey, P.N.; Sandberg, G.; Ljung, K. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 2009, 21, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, D.; Geelen, D.; Verstraeten, I. Control of endogenous auxin levels in plant root development. Int. J. Mol. Sci. 2017, 18, 2587. [Google Scholar] [CrossRef] [PubMed]
- Mroue, S.; Simeunovic, A.; Robert, H.S. Auxin production as an integrator of environmental cues for developmental growth regulation. J. Exp. Bot. 2018, 69, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef]
- Tromas, A.; Perrot-Rechenmann, C. Recent progress in auxin biology. Comptes Rendus Biol. 2010, 333, 297–306. [Google Scholar] [CrossRef]
- Ma, Q.; Grones, P.; Robert, S. Auxin signaling: A big question to be addressed by small molecules. J. Exp. Bot. 2018, 69, 313–328. [Google Scholar] [CrossRef]
- Powers, S.K.; Strader, L.C. Regulation of auxin transcriptional responses. Dev. Dyn. 2020, 249, 483–495. [Google Scholar] [CrossRef]
- Ramos, J.A.; Zenser, N.; Leyser, O.; Callis, J. Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 2001, 13, 2349–2360. [Google Scholar] [CrossRef]
- Szemenyei, H.; Hannon, M.; Long, J.A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 2008, 319, 1384–1386. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, F.; Friml, J.; Ding, Z. Auxin signaling: Research advances over the past 30 years. J. Integr. Plant Biol. 2022, 64, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yahaya, B.S.; Li, J.; Wu, F. Enigmatic role of auxin response factors in plant growth and stress tolerance. Front. Plant Sci. 2024, 15, 1398818. [Google Scholar] [CrossRef] [PubMed]
- Hugo, C.; Teva, V. A matter of time: Auxin signaling dynamics and the regulation of auxin responses during plant development. J. Exp. Bot. 2023, 74, 3887–3902. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Bian, J.; Ren, Z.; Ta, W.; Peng, Y. Plant Aux/IAA gene family: Significance in growth, development and stress responses. Agronomy 2025, 15, 1228. [Google Scholar] [CrossRef]
- Lu, S.; Li, M.; Cheng, Y.; Gou, H.; Che, L.; Liang, G.; Mao, J. Genome-wide identification of Aux/IAA gene family members in grape and functional analysis of VaIAA3 in response to cold stress. Plant Cell Rep. 2024, 43, 265. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Z.F. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. Int. J. Mol. Sci. 2013, 14, 13645–13656. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Q.; Duan, D.; Dong, Q.; Zhao, S.; Zhang, M.; Fu, X.; Ma, F. Overexpression of MdIAA9 confers high tolerance to osmotic stress in transgenic tobacco. PeerJ 2019, 7, e7935. [Google Scholar] [CrossRef]
- Singh, V.K.; Jain, M. Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. Front. Plant Sci. 2015, 6, 918. [Google Scholar] [CrossRef]
- Wen, S.; Ying, J.; Ye, Y.; Cai, Y.; Qian, R. Comprehensive transcriptome analysis of Asparagus officinalis in response to varying levels of salt stress. BMC Plant Biol. 2024, 24, 819. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Ying, J.; Ye, Y.; Cai, Y.; Li, L.; Qian, R. Genome-wide identification and salt stress-responsive expression profiling of Aux/IAA gene family in Asparagus officinalis. BMC Plant Biol. 2025, 25, 759. [Google Scholar] [CrossRef] [PubMed]
- Matsui, A.; Ishida, J.; Morosawa, T.; Mochizuki, Y.; Kaminuma, E.; Endo, T.A.; Okamoto, M.; Nambara, E.; Nakajima, M.; Kawashima, M.; et al. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol. 2008, 49, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, L.; Xiong, L. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 2009, 229, 577–591. [Google Scholar] [CrossRef]
- Waseem, M.; Ahmad, F.; Habib, S.; Li, Z. Genome-wide identification of the auxin/indole-3-acetic acid (Aux/IAA) gene family in pepper, its characterisation, and comprehensive expression profiling under environmental and phytohormones stress. Sci. Rep. 2018, 8, 12008. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Gao, X.; Liu, Y.; Fu, B. Genome-wide identification and expression pattern analysis of the Aux/IAA (auxin/indole-3-acetic acid) gene family in alfalfa (Medicago sativa) and the potential functions under drought stress. BMC Genom. 2024, 25, 382. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, M.; Cheng, T.; Wang, J.; Zhang, Q. Genome-wide identification of Aux/IAA gene family and their expression analysis in Prunus mume. Front. Genet. 2022, 13, 1013822. [Google Scholar] [CrossRef]
- Liu, R.; Guo, Z.; Lu, S. Genome-wide identification and expression analysis of the Aux/IAA and auxin response factor gene family in Medicago truncatula. Int. J. Mol. Sci. 2021, 22, 10494. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Zhang, Q.; Wang, J.; King, G.J.; Liu, K. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). BMC Plant Biol. 2017, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Lan, J.; Ma, R.; Li, J.; Zhang, F.; Zhang, B.; Liu, X.; Chen, S. Genome-wide analysis of Aux/IAA gene family in Artemisia argyi: Identification, phylogenetic analysis, and determination of response to various phytohormones. Plants 2024, 13, 564. [Google Scholar] [CrossRef]
- Wang, S.; Bai, Y.; Shen, C.; Wu, Y.; Zhang, S.; Jiang, D.; Guilfoyle, T.J.; Chen, M.; Qi, Y. Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genom. 2010, 10, 533–546. [Google Scholar] [CrossRef]
- Audran-Delalande, C.; Bassa, C.; Mila, I.; Regad, F.; Zouine, M.; Bouzayen, M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol. 2012, 53, 659–672. [Google Scholar] [CrossRef]
- Remington, D.L.; Vision, T.J.; Guilfoyle, T.J.; Reed, J.W. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 2004, 135, 1738–1752. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.P.; Zhou, D.J.; Niu, Y.Z.; Zheng, Y.Y. Genome-wide identification and analysis of Aux/IAA transcription factor family in common tobacco (Nicotiana tabacum L.). Acta Tabacaria Sin. 2019, 25, 10–20. (In Chinese) [Google Scholar]
- Xu, H.; Liu, Y.; Zhang, S.; Shui, D.; Xia, Z.; Sun, J. Genome-wide identification and expression analysis of the Aux/IAA gene family in turnip (Brassica rapa ssp. rapa). BMC Plant Biol. 2023, 23, 342. [Google Scholar] [CrossRef]
- Tiwari, S.B.; Hagen, G.; Guilfoyle, T.J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 2004, 16, 533–543. [Google Scholar] [CrossRef]
- McLaughlin, H.M.; Ang, A.C.H.; Ostergaard, L. Noncanonical auxin signaling. Cold Spring Harb. Perspect. Biol. 2021, 13, a039917. [Google Scholar] [CrossRef]
- Dreher, K.A.; Brown, J.; Saw, R.E.; Callis, J. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 2006, 18, 699–714. [Google Scholar] [CrossRef]
- Cao, M.; Chen, R.; Li, P.; Yu, Y.; Zheng, R.; Ge, D.; Zheng, W.; Wang, X.; Gu, Y.; Gelová, Z.; et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 2019, 568, 240–243. [Google Scholar] [CrossRef]
- Lv, B.; Yu, Q.; Liu, J.; Wen, X.; Yan, Z.; Hu, K.; Li, H.; Kong, X.; Liu, J.; Gao, Y.; et al. Non-canonical Aux/IAA protein IAA33 competes with canonical Aux/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J. 2020, 39, e101515. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Ye, M.; Li, C.; Gong, M. H2O2 participates in the induction and formation of potato tubers by activating tuberization-related signal transduction pathways. Agronomy 2023, 13, 1398. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, C.; Lian, W.; Yu, Q.; Jia, Y.; Jia, H.; Xie, L. NtIAA26 positively regulates salt tolerance in tobacco by modulating potassium uptake and antioxidant activity. Plant Growth Regul. 2022, 97, 559–569. [Google Scholar] [CrossRef]
- Shi, S.; Li, D.; Li, S.; Wang, Y.; Tang, X.; Liu, Y.; Ge, H.; Chen, H. Comparative transcriptomic analysis of early fruit development in eggplant (Solanum melongena L.) and functional characterization of SmOVATE5. Plant Cell Rep. 2023, 42, 321–336. [Google Scholar] [CrossRef]
- Yang, H.; Wei, X.; Lei, W.; Su, H.; Zhao, Y.; Yuan, Y.; Zhang, R.; Wang, Y.; Wang, L.; Zhang, S.; et al. Genome-wide identification, expression, and protein analysis of CKX and IPT gene families in radish (Raphanus sativus L.) reveal their involvement in clubroot resistance. Int. J. Mol. Sci. 2024, 25, 8974. [Google Scholar] [CrossRef]
- Yan, W.; Dong, X.; Li, R.; Zhao, X.; Zhou, Q.; Luo, D.; Liu, Z. Genome-wide identification of JAZ gene family members in autotetraploid cultivated alfalfa (Medicago sativa subsp. sativa) and expression analysis under salt stress. BMC Genom. 2024, 25, 636. [Google Scholar] [CrossRef]
- Tian, Y.; Song, K.; Li, B.; Song, Y.; Zhang, X.; Li, H.; Yang, L. Genome-wide identification and expression analysis of NF-Y gene family in tobacco (Nicotiana tabacum L.). Sci. Rep. 2024, 14, 5257. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qin, J.; Wang, Z.; Lin, H.; Ye, S.; Wei, J.; Wang, S.; Zhang, L. Genome-wide identification of 109 NAC genes and dynamic expression profiles under cold stress in Madhuca longifolia. Int. J. Mol. Sci. 2025, 26, 4713. [Google Scholar] [CrossRef]
- Li, S.B.; Xie, Z.Z.; Hu, C.G.; Zhang, J.Z. A review of auxin response factors (ARFs) in plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef]
- Miao, Z.M.; Kai, Z.H.; Feng, Z.J.; Sheng, Z.X.; Lin, S.Y.; Juan, C.Z. ARF4 regulates shoot regeneration through coordination with ARF5 and IAA12. Plant Cell Rep. 2020, 40, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Kato, K.; Bashiruddin, S.; Suzuki, M.; Miura, S.; Fukaki, H.; Tabata, S.; Tanaka, H.; Tasaka, M.; Aida, M. Involvement of auxin signaling mediated by IAA14 and ARF7/19 in membrane lipid remodeling during phosphate starvation. Plant Mol. Biol. 2010, 72, 533–544. [Google Scholar] [CrossRef]
- Xu, C.; Shan, Y.; Hou, H.; Fan, X.; Yang, H.; Li, W.; Deng, X.; Zhang, J.; Wang, N.; Chen, X.; et al. Auxin-mediated Aux/IAA–ARF–HB signaling cascade regulates secondary xylem development in Populus. New Phytol. 2019, 222, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Wang, N.; Xu, H.F.; Jiang, S.H.; Fang, H.C.; Su, M.Y.; Zhang, Z.Y.; Chen, X.S. Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apple. Hortic. Res. 2018, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Si, C.; Zeng, D.; da Silva, J.A.T.; Qiu, S.; Duan, J.; Bai, S.; He, C. Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC Genom. 2023, 24, 199. [Google Scholar] [CrossRef]
- Su, L.Y. Identification and expression of Aux/IAA gene family in kiwifruit. J. Fruit Sci. 2023, 43, 55–65. (In Chinese) [Google Scholar]
- Li, Y.; Wang, L.; Yu, B.; Guo, J.; Zhao, Y.; Zhu, Y. Expression analysis of AuxIAA family genes in apple under salt stress. Biochem. Genet. 2022, 60, 1205–1221. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, M.; Li, J.; Zhao, H.; Ge, W.; Zhang, K. Identification and analysis of Aux/IAA family in Acer rubrum. Front. Plant Sci. 2021, 12, 699595. [Google Scholar] [CrossRef]
- Gao, J.; Cao, X.; Shi, S.; Ma, Y.; Wang, K.; Liu, S.; Chen, D.; Chen, Q.; Ma, H. Genome-wide survey of Aux/IAA gene family members in potato (Solanum tuberosum): Identification, expression analysis, and evaluation of their roles in tuber development. Biochem. Biophys. Res. Commun. 2016, 471, 320–327. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Gillani, M.; Pollastri, G. Protein subcellular localization prediction tools. Comput. Struct. Biotechnol. J. 2024, 23, 1796–1807. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Noble, W.S.; Bailey, T.L. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat. Protoc. 2014, 9, 1428–1450. [Google Scholar] [CrossRef]
- Procter, J.B.; Carstairs, G.M.; Soares, B.; Morris, J.H.; Sillitoe, I.; Goldman, A.D.; Patwardhan, A.; Kerrison, N.D.; Bowerbank, E.M.; Lopez, R. Alignment of biological sequences with Jalview. Methods Mol. Biol. 2021, 2231, 203–224, Erratum in Methods Mol Biol. 2021, 2231, C1. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Geourjon, C.; Deléage, G. SOPM: A self-optimized method for protein secondary structure prediction. Protein Eng. 1994, 7, 157–164. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Maruyama, Y.; Igarashi, R.; Ushiku, Y.; Mitsutake, A. Analysis of protein folding simulation with moving Root Mean Square Deviation. J. Chem. Inf. Model. 2023, 63, 1529–1541. [Google Scholar] [CrossRef]
- Chen, J.; Wang, S.; Wu, F.; Wei, M.; Li, J.; Yang, F. Genome-wide identification and functional characterization of auxin response factor (ARF) genes in eggplant. Int. J. Mol. Sci. 2022, 23, 6219. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, C.; Zhang, S.; Tian, S.; Tang, Q.; Wei, D.; Niu, Y. Screening and interaction analysis identify genes related to anther dehiscence in Solanum melongena L. Front. Plant Sci. 2021, 12, 648193. [Google Scholar]
- Zheng, L.; Meng, Y.; Ma, J.; Zhao, X.; Cheng, T.; Ji, J.; Chang, E.; Meng, C.; Deng, N.; Chen, L.; et al. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa. Front. Plant Sci. 2015, 6, 678. [Google Scholar] [CrossRef] [PubMed]
- Yerlikaya, B.A.; Yerlikaya, S.; Aydin, A.; Yilmaz, N.N.; Bahadır, S.; Abdulla, M.F.; Mostafa, K.; Kavas, M. Enhanced drought and salt stress tolerance in Arabidopsis via ectopic expression of the PvMLP19 gene. Plant Cell Rep. 2025, 44, 130. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Lin, Y.; Li, Y.; Xie, X.; Zheng, X.; Wu, W.; Zhou, Y.; Zheng, Y. Genome-wide identification and analysis of SmRR gene family in eggplant (Solanum melongena L.) and their response to abiotic stress and auxin. BMC Genom. 2025, 26, 689. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, G.; Liang, D.; He, B.; Wang, Y.; Cai, Y.; Zhang, Q. Reference gene selection for qPCR analysis in Schima superba under abiotic stress. Genes 2022, 13, 1887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, L.; Li, W.; Han, S.; Yang, W.; Qi, L. Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PLoS ONE 2013, 8, e53196. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]










| Gene Name | Gene ID | Chr. | Subgroup | AA (bp) | MW (Da.) | pI | II | AI | GRAVY | SL |
|---|---|---|---|---|---|---|---|---|---|---|
| SmIAA1 | Smechr0100790.1 | 1 | B4 | 617 | 69,106.35 | 5.99 | 61.34 | 71.07 | −0.496 | N |
| SmIAA2 | Smechr0101209.1 | 1 | A3 | 239 | 26,663.29 | 5.72 | 32.54 | 71.72 | −0.436 | N |
| SmIAA3 | Smechr0101326.1 | 1 | B4 | 685 | 76,563.58 | 5.9 | 51.94 | 77.66 | −0.461 | N |
| SmIAA4 | Smechr0300045.1 | 3 | A1 | 190 | 21,784.92 | 5.41 | 56.91 | 69.84 | −0.647 | N |
| SmIAA5 | Smechr0302810.1 | 3 | B4 | 191 | 21,446.3 | 4.57 | 52.57 | 91.73 | −0.066 | N |
| SmIAA6 | Smechr0303268.1 | 3 | B4 | 848 | 94,291.76 | 6.51 | 55.48 | 65.18 | −0.636 | N |
| SmIAA7 | Smechr0303465.1 | 3 | A4 | 185 | 20,977.98 | 7.59 | 49.36 | 72.11 | −0.591 | N |
| SmIAA8 | Smechr0303466.1 | 3 | A2 | 208 | 23,109.32 | 7.58 | 50.77 | 71.2 | −0.582 | N |
| SmIAA9 | Smechr0303478.1 | 3 | A5 | 287 | 31,540.62 | 6.47 | 42.06 | 74.74 | −0.522 | N |
| SmIAA10 | Smechr0303536.1 | 3 | B1 | 279 | 30,860.66 | 8.79 | 40.81 | 67.46 | −0.727 | N |
| SmIAA11 | Smechr0402028.1 | 4 | A5 | 345 | 36,957.8 | 8.51 | 46 | 68.46 | −0.458 | N |
| SmIAA12 | Smechr0402457.1 | 4 | B4 | 930 | 102,636.05 | 5.18 | 50.73 | 73.89 | −0.427 | N |
| SmIAA13 | Smechr0500039.1 | 5 | B4 | 1094 | 120,901.13 | 5.91 | 57.96 | 75.51 | −0.57 | N |
| SmIAA14 | Smechr0501636.1 | 5 | B4 | 297 | 33,271.28 | 5.22 | 50.27 | 64.65 | −0.728 | N |
| SmIAA15 | Smechr0502523.1 | 5 | B2 | 233 | 25,998.13 | 5.25 | 31.62 | 64.81 | −0.609 | N |
| SmIAA16 | Smechr0600104.1 | 6 | A1 | 191 | 21,692.69 | 7.61 | 44.04 | 75.97 | −0.603 | N |
| SmIAA17 | Smechr0600105.1 | 6 | A3 | 214 | 24,232.88 | 8.7 | 39.99 | 76.92 | −0.519 | N |
| SmIAA18 | Smechr0601560.1 | 6 | A1 | 187 | 20,923.9 | 5.5 | 53.68 | 75.08 | −0.591 | N |
| SmIAA19 | Smechr0601563.1 | 6 | A3 | 223 | 25,344.13 | 8.78 | 40.53 | 67.71 | −0.635 | N |
| SmIAA20 | Smechr0601905.1 | 6 | B1 | 265 | 31,162.69 | 5.91 | 37.96 | 88.94 | −0.396 | PM |
| SmIAA21 | Smechr0602219.1 | 6 | A4 | 182 | 21,008.87 | 8.58 | 51.09 | 69.51 | −0.663 | N |
| SmIAA22 | Smechr0602220.1 | 6 | A2 | 169 | 18,898.94 | 7.66 | 36.84 | 90.47 | −0.117 | N |
| SmIAA23 | Smechr0603146.1 | 6 | A1 | 150 | 16,821.25 | 6.58 | 40.09 | 72.8 | −0.469 | N |
| SmIAA24 | Smechr0700239.1 | 7 | B1 | 207 | 23,101.43 | 7.62 | 24.17 | 88.36 | −0.435 | C |
| SmIAA25 | Smechr0700752.1 | 7 | B4 | 1108 | 122,631.44 | 6.23 | 61.66 | 71.1 | −0.574 | N |
| SmIAA26 | Smechr0701387.1 | 7 | B4 | 1077 | 120,390.25 | 6.19 | 69.35 | 69.55 | −0.666 | N |
| SmIAA27 | Smechr0701526.1 | 7 | B4 | 891 | 98,726.06 | 6.13 | 60.62 | 74.74 | −0.433 | N |
| SmIAA28 | Smechr0800141.1 | 8 | B4 | 673 | 75,524.05 | 5.96 | 60.78 | 70.82 | −0.538 | N |
| SmIAA29 | Smechr0802512.1 | 8 | B4 | 658 | 73,713.25 | 6.41 | 47.95 | 71.23 | −0.532 | N |
| SmIAA30 | Smechr0901634.1 | 9 | B2 | 298 | 32,132.18 | 8.97 | 45.31 | 72.28 | −0.403 | N |
| SmIAA31 | Smechr0901825.1 | 9 | A1 | 193 | 21,830.65 | 7.62 | 60.27 | 69.69 | −0.75 | N |
| SmIAA32 | Smechr0902295.1 | 9 | A1 | 198 | 22,292.42 | 6.01 | 56.72 | 69.95 | −0.675 | N |
| SmIAA33 | Smechr0902296.1 | 9 | A3 | 235 | 26,208.04 | 8.11 | 40.85 | 62.26 | −0.595 | N |
| SmIAA34 | Smechr0902429.1 | 9 | B2 | 290 | 31,324.28 | 8.32 | 27.97 | 62.52 | −0.703 | N |
| SmIAA35 | Smechr1200111.1 | 12 | A5 | 291 | 31,908.28 | 8.3 | 45.8 | 66.98 | −0.538 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lin, Y.; Li, Y.; Wang, Y.; Soe, H.; Yang, X.; Li, W.; Li, H.; Zhang, Z.; Yu, P.; Wu, W.; et al. Genome-Wide Identification and Expression Profiling of the Aux/IAA Gene Family in Eggplant (Solanum melongena L.) Reveals Its Roles in Abiotic Stress and Auxin Responses. Int. J. Mol. Sci. 2026, 27, 350. https://doi.org/10.3390/ijms27010350
Lin Y, Li Y, Wang Y, Soe H, Yang X, Li W, Li H, Zhang Z, Yu P, Wu W, et al. Genome-Wide Identification and Expression Profiling of the Aux/IAA Gene Family in Eggplant (Solanum melongena L.) Reveals Its Roles in Abiotic Stress and Auxin Responses. International Journal of Molecular Sciences. 2026; 27(1):350. https://doi.org/10.3390/ijms27010350
Chicago/Turabian StyleLin, Yanyu, Yutong Li, Yimeng Wang, Hayman Soe, Xuansong Yang, Wenjing Li, Hui Li, Zhixuan Zhang, Peilin Yu, Weiren Wu, and et al. 2026. "Genome-Wide Identification and Expression Profiling of the Aux/IAA Gene Family in Eggplant (Solanum melongena L.) Reveals Its Roles in Abiotic Stress and Auxin Responses" International Journal of Molecular Sciences 27, no. 1: 350. https://doi.org/10.3390/ijms27010350
APA StyleLin, Y., Li, Y., Wang, Y., Soe, H., Yang, X., Li, W., Li, H., Zhang, Z., Yu, P., Wu, W., Xie, X., & Zheng, Y. (2026). Genome-Wide Identification and Expression Profiling of the Aux/IAA Gene Family in Eggplant (Solanum melongena L.) Reveals Its Roles in Abiotic Stress and Auxin Responses. International Journal of Molecular Sciences, 27(1), 350. https://doi.org/10.3390/ijms27010350

