Interactive Effects of Genetic Susceptibility and Early-Life Tobacco Smoke Exposure on the Asthma–Eczema Complex Phenotype in Children: 6-Year Follow-Up Case-Control Study
Abstract
1. Introduction
2. Results
2.1. The Association of TNS1 rs918949 and NRXN1 rs10194978 with Eczema
2.2. The Association of TNS1 rs918949 and NRXN1 rs10194978 with the Asthma–Eczema Complex Phenotype
2.3. Interaction Analysis of TNS1 rs918949 and NRXN1 rs10194978 with ETS Exposure in Relation to Asthma–Eczema Complex Phenotype
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Genotyping
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ETS | Environmental tobacco smoke |
| TNS1 | Tensin-1 |
| NRXN1 | Neurexin 1 |
| GWAS | Genome-wide association study |
| GWIS | Genome-wide interaction study |
| SNP | Single nucleotide polymorphism |
| OR | Odds ratio |
| CI | Confidence interval |
| RERI | Relative excess risk due to interaction |
| AP | Attributable proportion due to interaction |
| S | Synergy index |
| RR | Ratio of relative risk |
| FLG | Filaggrin—filament aggregating protein |
| IL- | Interleukins |
| KIF3A | Kinesin Family Member 3A |
| AP5B1 | Adaptor-Related Protein Complex 5 Subunit Beta 1 |
| OVOL1 | Ovo-like transcriptional repressor 1 |
| LRRC32 | Leucine-Rich Repeat Containing 32 |
| IKZF3 | IKAROS Family Zinc Finger 3 |
| EFHC1 | EF-hand domain containing 1 |
| TMTC2 | Transmembrane O-Mannosyltransferase Targeting Cadherins 2 |
| OAC2 | Aconitase-2 |
| CACNA2D3 | Gene encoding a member of the alpha-2/delta subunit family |
| TGF-β | Transforming growth factor beta |
| FEV1 | Forced expiratory volume in one second |
| FVC | Forced vital capacity |
| DNA | Deoxyribonucleic acid |
| MMP | Matrix metalloproteinases |
| TSLP | Thymic stromal lymphopoietin |
References
- Leshem, Y.A.; Weil, C.; Busse, W.W.; Beck, L.A.; Chodick, G.; Cyr, S.L.; Bosman, K.; Lubwama, R. Real-world onset of atopic comorbidities relative to atopic dermatitis in pediatric patients. Dermatol. Ther. 2025, 15, 3425–3436. [Google Scholar] [CrossRef]
- Narla, S.; Silverberg, J.I. Current updates in the epidemiology and comorbidities of atopic dermatitis. Ann. Allergy Asthma Immunol. 2025, 135, 511–520. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, J. Prevalence and risk factors for childhood asthma: A systematic review and meta-analysis. BMC Pediatr. 2025, 25, 50. [Google Scholar] [CrossRef] [PubMed]
- Paller, A.S.; Spergel, J.M.; Mina-Osorio, P.; Irvine, A.D. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J. Allergy Clin. Immunol. 2019, 143, 46–55. [Google Scholar] [CrossRef]
- Schoettler, N. Advances in asthma and allergic disease genetics. Curr. Opin. Allergy Clin. Immunol. 2025, 25, 58–65. [Google Scholar] [CrossRef]
- Lawson, L.P.; Parameswaran, S.; Panganiban, R.A.; Constantine, G.M.; Weirauch, M.T.; Kottyan, L.C. Update on the genetics of allergic diseases. J. Allergy Clin. Immunol. 2025, 155, 1738–1752. [Google Scholar] [CrossRef] [PubMed]
- Maggi, E.; Parronchi, P.; Azzarone, B.G.; Moretta, L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022, 77, 3267–3292. [Google Scholar] [CrossRef]
- Falcon, R.M.G.; Caoili, S.E.C. Immunologic, genetic, and ecological interplay of factors involved in allergic diseases. Front. Allergy 2023, 4, 1215616. [Google Scholar] [CrossRef] [PubMed]
- Mrkić Kobal, I.; Plavec, D.; Vlašić Lončarić, Ž.; Jerković, I.; Turkalj, M. Atopic march or atopic multimorbidity—Overview of current research. Medicina 2024, 60, 21. [Google Scholar] [CrossRef]
- Zheng, T.; Yu, J.; Oh, M.H.; Zhu, Z. The atopic march: Progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol. Res. 2011, 3, 67–73. [Google Scholar] [CrossRef]
- Maiello, N.; Comberiati, P.; Giannetti, A.; Ricci, G.; Carello, R.; Galli, E. New directions in understanding atopic march starting from atopic dermatitis. Children 2022, 9, 450. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Vonk, J.M.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; van Dongen, J.; et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017, 49, 1752–1757. [Google Scholar] [CrossRef]
- Zhu, Z.; Lee, P.H.; Chaffin, M.D.; Chung, W.; Loh, P.R.; Lu, Q.; Christiani, D.C.; Liang, L. A genome-wide cross-trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases. Nat. Genet. 2018, 50, 857–864. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Wu, Q.; Jiang, Y.; Zhang, C.; Ye, W.; Peng, B.; Xie, H.; Li, W.; Wang, Y.; et al. Identification of shared genetic loci for asthma, allergic rhinitis, and pollinosis in East Asians. Sci. Rep. 2025, 15, 6068. [Google Scholar] [CrossRef]
- Johansson, Å.; Rask-Andersen, M.; Karlsson, T.; Ek, W.E. Genome-wide association analysis of 350,000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum. Mol. Genet. 2019, 28, 4022–4041. [Google Scholar] [CrossRef]
- Marenholz, I.; Esparza-Gordillo, J.; Rüschendorf, F.; Bauerfeind, A.; Strachan, D.P.; Spycher, B.D.; Baurecht, H.; Margaritte-Jeannin, P.; Sääf, A.; Kerkhof, M.; et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat. Commun. 2015, 6, 8804. [Google Scholar] [CrossRef] [PubMed]
- Margaritte-Jeannin, P.; Budu-Aggrey, A.; Ege, M.; Madore, A.M.; Linhard, C.; Mohamdi, H.; von Mutius, E.; Granell, R.; Demenais, F.; Laprise, C.; et al. Identification of OCA2 as a novel locus for the co-morbidity of asthma-plus-eczema. Clin. Exp. Allergy 2022, 52, 70–81. [Google Scholar] [CrossRef]
- Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: A mechanistic review. Int. J. Environ. Res. Public Health 2018, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Arnson, Y.; Shoenfeld, Y.; Amital, H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J. Autoimmun. 2010, 34, J258–J265. [Google Scholar] [CrossRef]
- Lee, J.; Taneja, V.; Vassallo, R. Cigarette smoking and inflammation: Cellular and molecular mechanisms. J. Dent. Res. 2012, 91, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Rylance, S.; Schotte, K.; Aarsand, R.; Lebedeva, E.; Bill, W.; Han, J.; Lam, D.C.; Soriano, J.B.; Yorgancioglu, A.; et al. Tobacco and asthma: Presenting the World Health Organization (WHO) tobacco knowledge summary. Subst. Abus. Treat. Prev. Policy 2025, 20, 34. [Google Scholar] [CrossRef]
- Agache, I.; Ricci-Cabello, I.; Canelo-Aybar, C.; Annesi-Maesano, I.; Cecchi, L.; Biagioni, B.; Chung, K.F.; D’Amato, G.; Damialis, A.; Del Giacco, S.; et al. The impact of exposure to tobacco smoke and e-cigarettes on asthma-related outcomes: Systematic review informing the EAACI guidelines on environmental science for allergic diseases and asthma. Allergy 2024, 79, 2346–2365. [Google Scholar] [CrossRef]
- Al-Alusi, N.A.; Ramirez, F.D.; Chan, L.N.; Ye, M.; Langan, S.M.; McCulloch, C.; Abuabara, K. Atopic dermatitis and tobacco smoke exposure during childhood and adolescence. J. Allergy Clin. Immunol. Glob. 2024, 4, 100345. [Google Scholar] [CrossRef]
- Kantor, R.; Kim, A.; Thyssen, J.P.; Silverberg, J.I. Association of atopic dermatitis with smoking: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2016, 75, 1119–1125.e1. [Google Scholar] [CrossRef]
- Lau, H.X.; Lee, J.W.; Yap, Q.V.; Chan, Y.H.; Samuel, M.; Loo, E.X.L. Smoke exposure and childhood atopic eczema and food allergy: A systematic review and meta-analysis. Pediatr. Allergy Immunol. 2023, 34, e14010. [Google Scholar] [CrossRef] [PubMed]
- Koppelman, G.H.; Pino-Yanes, M.; Melén, E.; Powell, P.; Bracke, K.R.; Celedón, J.C.; Brusselle, G.G. Genetic and environmental risk factors for asthma: Towards prevention. Lancet Respir. Med. 2025, 13, 1011–1025. [Google Scholar] [CrossRef]
- Turner, S. Gene–environment interactions—What can these tell us about the relationship between asthma and allergy? Front. Pediatr. 2017, 5, 118. [Google Scholar] [CrossRef]
- Custovic, A.; Marinho, S.; Simpson, A. Gene–environment interactions in the development of asthma and atopy. Expert Rev. Respir. Med. 2012, 6, 301–308. [Google Scholar] [CrossRef]
- Martin, M.J.; Estravís, M.; García-Sánchez, A.; Dávila, I.; Isidoro-García, M.; Sanz, C. Genetics and epigenetics of atopic dermatitis: An updated systematic review. Genes 2020, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Tamari, M.; Hirota, T. Genome-wide association studies of atopic dermatitis. J. Dermatol 2014, 41, 213–220. [Google Scholar] [CrossRef]
- Stemmler, S.; Hoffjan, S. Trying to understand the genetics of atopic dermatitis. Mol. Cell. Probes 2016, 30, 374–385. [Google Scholar] [CrossRef]
- Herrera-Luis, E.; Martin-Almeida, M.; Pino-Yanes, M. Asthma—Genomic advances toward risk prediction. Clin. Chest Med. 2024, 45, 599–610. [Google Scholar] [CrossRef]
- Kim, K.W.; Ober, C. Lessons learned from GWAS of asthma. Allergy Asthma Immunol. Res. 2019, 11, 170–187. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O.C.M.; et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Sim, S.; Choi, H.G. Atopic dermatitis is associated with active and passive cigarette smoking in adolescents. PLoS ONE 2017, 12, e0187453. [Google Scholar] [CrossRef]
- Margaritte-Jeannin, P.; Vernet, R.; Budu-Aggrey, A.; Ege, M.; Madore, A.M.; Linhard, C.; Mohamdi, H.; von Mutius, E.; Granell, R.; Demenais, F.; et al. TNS1 and NRXN1 genes interacting with early-life smoking exposure in asthma-plus-eczema susceptibility. Allergy Asthma Immunol. Res. 2023, 15, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Lee, S.; Jung, J.H.; Sub, Y.; Lee, S.; Kim, E.G.; Kim, M.N.; Kim, S.Y.; Kim, Y.H.; Sohn, M.H.; et al. GWAS identifies CACNA2D3 associated with asthma and atopic dermatitis multimorbidity in children. Allergy 2025, 80, 1776–1781. [Google Scholar] [CrossRef]
- Lu, H.F.; Zhou, Y.C.; Yang, L.T.; Zhou, Q.; Wang, X.J.; Qiu, S.Q.; Cheng, B.H.; Zeng, X.H. Involvement and repair of epithelial barrier dysfunction in allergic diseases. Front. Immunol. 2024, 15, 1348272. [Google Scholar] [CrossRef] [PubMed]
- Zeyneloglu, C.; Babayev, H.; Ogulur, I.; Ardicli, S.; Pat, Y.; Yazici, D.; Zhao, B.; Chang, L.; Liu, X.; D’Avino, P.; et al. The epithelial barrier theory proposes a comprehensive explanation for the origins of allergic and other chronic noncommunicable diseases. FEBS Lett. 2025, 599, 3208–3243. [Google Scholar] [CrossRef]
- Losol, P.; Sokolowska, M.; Hwang, Y.K.; Ogulur, I.; Mitamura, Y.; Yazici, D.; Pat, Y.; Radzikowska, U.; Ardicli, S.; Yoon, J.E.; et al. Epithelial barrier theory: The role of exposome, microbiome, and barrier function in allergic diseases. Allergy Asthma Immunol. Res. 2023, 15, 705–724. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, J.; Dong, F.; Cao, L.; Wang, M.; Sun, G. TNS1: Emerging insights into its domain function, biological roles, and tumors. Biology 2022, 11, 1571. [Google Scholar] [CrossRef]
- Bernau, K.; Torr, E.E.; Evans, M.D.; Aoki, J.K.; Ngam, C.R.; Sandbo, N. Tensin 1 is essential for myofibroblast differentiation and extracellular matrix formation. Am. J. Respir. Cell Mol. Biol. 2017, 56, 465–476. [Google Scholar] [CrossRef]
- Stylianou, P.; Clark, K.; Gooptu, B.; Smallwood, D.; Brightling, C.E.; Amrani, Y.; Roach, K.M.; Bradding, P. Tensin1 expression and function in chronic obstructive pulmonary disease. Sci. Rep. 2019, 9, 18942. [Google Scholar] [CrossRef]
- Wain, L.V.; Shrine, N.; Artigas, M.S.; Erzurumluoglu, A.M.; Noyvert, B.; Bossini-Castillo, L.; Obeidat, M.; Henry, A.P.; Portelli, M.A.; Hall, R.J.; et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat. Genet. 2017, 49, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.; Fawcett, K.A.; Song, K.; Sakornsakolpat, P.; et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019, 51, 481–493, Erratum in Nat. Genet. 2024, 56, 1032–1033. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.; Mittler, S.; Hamilton, D.W. Contact guidance of connective tissue fibroblasts on submicrometer anisotropic topographical cues is dependent on tissue of origin, β1 integrins, and tensin-1 recruitment. ACS Appl. Mater. Interfaces 2023, 15, 19817–19832. [Google Scholar] [CrossRef] [PubMed]
- Saintigny, G.; Bernard, F.X.; Juchaux, F.; Pedretti, N.; Mahé, C. Reduced expression of the adhesion protein tensin1 in cultured human dermal fibroblasts affects collagen gel contraction. Exp. Dermatol 2008, 17, 788–789. [Google Scholar] [CrossRef]
- Ng, H.Y.; Wu, Y.S.; Biswas, M.; Sim, M.S. Deciphering the molecular clock: Exploring molecular mechanisms and genetic influences on skin ageing. Biogerontology 2025, 26, 153. [Google Scholar] [CrossRef]
- Pankov, R.; Cukierman, E.; Katz, B.Z.; Matsumoto, K.; Lin, D.C.; Lin, S.; Hahn, C.; Yamada, K.M. Integrin dynamics and matrix assembly: Tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J. Cell Biol. 2000, 148, 1075–1090. [Google Scholar] [CrossRef]
- Wain, L.V.; Shrine, N.; Miller, S.; Jackson, V.E.; Ntalla, I.; Soler Artigas, M.; Billington, C.K.; Kheirallah, A.K.; Allen, R.; Cook, J.P.; et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): A genetic association study in UK Biobank. Lancet Respir. Med. 2015, 3, 769–781, Erratum in Lancet Respir. Med. 2016, 4, e4. [Google Scholar] [CrossRef]
- Hancock, D.B.; Artigas, M.S.; Gharib, S.A.; Henry, A.; Manichaikul, A.; Ramasamy, A.; Loth, D.W.; Imboden, M.; Koch, B.; McArdle, W.L.; et al. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet. 2012, 8, e1003098. [Google Scholar] [CrossRef] [PubMed]
- Kerkhof, M.; Boezen, H.M.; Granell, R.; Henry, A.; Manichaikul, A.; Ramasamy, A.; Loth, D.W.; Imboden, M.; Koch, B.; McArdle, W.L.; et al. Transient early wheeze and lung function in early childhood associated with chronic obstructive pulmonary disease genes. J. Allergy Clin. Immunol. 2014, 133, 68–76.e1–4. [Google Scholar] [CrossRef] [PubMed]
- Lutz, S.M.; Cho, M.H.; Young, K.; Hersh, C.P.; Castaldi, P.J.; McDonald, M.L.; Regan, E.; Mattheisen, M.; DeMeo, D.L.; Parker, M.; et al. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet. 2015, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Luis, E.; Benke, K.; Volk, H.; Ladd-Acosta, C.; Wojcik, G.L. Gene–environment interactions in human health. Nat. Rev. Genet. 2024, 25, 768–784. [Google Scholar] [CrossRef]
- Reissner, C.; Runkel, F.; Missler, M. Neurexins. Genome Biol. 2013, 14, 213. [Google Scholar] [CrossRef]
- Gomez, A.M.; Traunmüller, L.; Scheiffele, P. Neurexins: Molecular codes for shaping neuronal synapses. Nat. Rev. Neurosci. 2021, 22, 137–151. [Google Scholar] [CrossRef]
- Fuccillo, M.V.; Pak, C. Copy number variants in neurexin genes: Phenotypes and mechanisms. Curr. Opin. Genet. Dev. 2021, 68, 64–70. [Google Scholar] [CrossRef]
- Guzman, C.; Mohri, K.; Nakamura, R.; Miyake, M.; Tsuchiya, Y.; Tomii, K.; Watanabe, H. Neuronal and non-neuronal functions of the synaptic cell adhesion molecule neurexin in Nematostella vectensis. Nat. Commun. 2024, 15, 6495. [Google Scholar] [CrossRef]
- Boucard, A.A.; Ko, J.; Südhof, T.C. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J. Biol. Chem. 2012, 287, 9399–9413. [Google Scholar] [CrossRef]
- Hernandez-Pacheco, N.; Kere, M.; Melén, E. Gene–environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr. Allergy Immunol. 2022, 33, e13780. [Google Scholar] [CrossRef]
- Morales, E.; Duffy, D. Genetics and gene–environment interactions in childhood and adult onset asthma. Front. Pediatr. 2019, 7, 499. [Google Scholar] [CrossRef]
- London, S.J.; Melén, E. Genomic interactions with exposure to inhaled pollutants. J. Allergy Clin. Immunol. 2019, 143, 2011–2013.e1. [Google Scholar] [CrossRef]
- Morissette, M.C.; Lamontagne, M.; Bérubé, J.C.; Gaschler, G.; Williams, A.; Yauk, C.; Couture, C.; Laviolette, M.; Hogg, J.C.; Timens, W.; et al. Impact of cigarette smoke on the human and mouse lungs: A gene-expression comparison study. PLoS ONE 2014, 9, e92498. [Google Scholar] [CrossRef]
- Brody, J.S. Transcriptome alterations induced by cigarette smoke. Int. J. Cancer 2012, 131, 2754–2762. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, P.; Peng, H. Are healthy smokers really healthy? Tob. Induc. Dis. 2016, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, M.; Kyrkou, G.; Georgakopoulou, V.E.; Kapetanaki, A.; Vivilaki, V.; Spandidos, D.A.; Diamanti, A. Smoke signals in the genome: Epigenetic consequences of parental tobacco exposure (Review). Biomed. Rep. 2025, 23, 146. [Google Scholar] [CrossRef]
- Kaur, G.; Begum, R.; Thota, S.; Batra, S. A systematic review of smoking-related epigenetic alterations. Arch. Toxicol. 2019, 93, 2715–2740. [Google Scholar] [CrossRef] [PubMed]
- Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019, 12, 65. [Google Scholar] [CrossRef]
- Pappas, R.S. Toxic elements in tobacco and in cigarette smoke: Inflammation and sensitization. Metallomics 2011, 3, 1181–1198. [Google Scholar] [CrossRef]
- Rom, O.; Avezov, K.; Aizenbud, D.; Reznick, A.Z. Cigarette smoking and inflammation revisited. Respir. Physiol. Neurobiol. 2013, 187, 5–10. [Google Scholar] [CrossRef]
- Shiels, M.S.; Katki, H.A.; Freedman, N.D.; Purdue, M.P.; Wentzensen, N.; Trabert, B.; Kitahara, C.M.; Furr, M.; Li, Y.; Kemp, T.J.; et al. Cigarette smoking and variations in systemic immune and inflammation markers. J. Natl. Cancer Inst. 2014, 106, dju294. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Di, Y.P. Effects of second hand smoke on airway secretion and mucociliary clearance. Front. Physiol. 2012, 3, 342. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, D.K.; Hirata, F.; Rishi, A.K.; Gairola, C.G. Cigarette smoke, inflammation, and lung injury: A mechanistic perspective. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 45–64. [Google Scholar] [CrossRef]
- Gangl, K.; Reininger, R.; Bernhard, D.; Campana, R.; Pree, I.; Reisinger, J.; Kneidinger, M.; Kundi, M.; Dolznig, H.; Thurnher, D.; et al. Cigarette smoke facilitates allergen penetration across respiratory epithelium. Allergy 2009, 64, 398–405. [Google Scholar] [CrossRef]
- Lugg, S.T.; Scott, A.; Parekh, D.; Naidu, B.; Thickett, D.R. Cigarette smoke exposure and alveolar macrophages: Mechanisms for lung disease. Thorax 2022, 77, 94–101. [Google Scholar] [CrossRef]
- Tamimi, A.; Serdarevic, D.; Hanania, N.A. The effects of cigarette smoke on airway inflammation in asthma and COPD: Therapeutic implications. Respir. Med. 2012, 106, 319–328. [Google Scholar] [CrossRef]
- Wylam, M.E.; Sathish, V.; VanOosten, S.K.; Freeman, M.; Burkholder, D.; Thompson, M.A.; Pabelick, C.M.; Prakash, Y.S. Mechanisms of cigarette smoke effects on human airway smooth muscle. PLoS ONE 2015, 10, e0128778. [Google Scholar] [CrossRef]
- Amatngalim, G.D.; Broekman, W.; Daniel, N.M.; van der Vlugt, L.E.; van Schadewijk, A.; Taube, C.; Hiemstra, P.S. Cigarette smoke modulates repair and innate immunity following injury to airway epithelial cells. PLoS ONE 2016, 11, e0166255. [Google Scholar] [CrossRef]
- Tilp, C.; Bucher, H.; Haas, H.; Duechs, M.J.; Wex, E.; Erb, K.J. Effects of conventional tobacco smoke and nicotine-free cigarette smoke on airway inflammation, airway remodelling and lung function in a triple allergen model of severe asthma. Clin. Exp. Allergy 2016, 46, 957–972. [Google Scholar] [CrossRef]
- Lin, H.; Li, H. How does cigarette smoking affect airway remodeling in asthmatics? Tob. Induc. Dis. 2023, 21, 13. [Google Scholar] [CrossRef]
- Huang, Q.; Li, Y.; Li, C.; Zhang, X.; Du, X.; Chen, Y.; Corrigan, C.J.; Wang, W.; Ying, S. Cigarette smoke aggravates asthma via altering airways inflammation phenotypes and remodelling. Clin. Respir. J. 2023, 17, 1316–1327. [Google Scholar] [CrossRef]
- Roberts, W. Air pollution and skin disorders. Int. J. Womens Dermatol 2020, 7, 91–97. [Google Scholar] [CrossRef]
- Puri, P.; Nandar, S.K.; Kathuria, S.; Ramesh, V. Effects of air pollution on the skin: A review. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 415–423. [Google Scholar] [CrossRef]
- Percoco, G.; Patatian, A.; Eudier, F.; Grisel, M.; Bader, T.; Lati, E.; Savary, G.; Picard, C.; Benech, P. Impact of cigarette smoke on physical-chemical and molecular properties of human skin in an ex vivo model. Exp. Dermatol 2021, 30, 1610–1618. [Google Scholar] [CrossRef]
- Hong, C.H.; Lee, C.H.; Yu, H.S.; Huang, S.K. Benzopyrene, a major polyaromatic hydrocarbon in smoke fume, mobilizes Langerhans cells and polarizes Th2/17 responses in epicutaneous protein sensitization through the aryl hydrocarbon receptor. Int. Immunopharmacol. 2016, 36, 111–117. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Nanjappa, V.; Raja, R.; Jain, A.P.; Mangalaparthi, K.K.; Sathe, G.J.; Babu, N.; Patel, K.; Cavusoglu, N.; Soeur, J.; et al. How does chronic cigarette smoke exposure affect human skin? A global proteomics study in primary human keratinocytes. Omics A J. Integr. Biol. 2016, 20, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, G.; Antona, R.; Malizia, V.; Montalbano, L.; Corsello, G.; La Grutta, S. Smoke exposure as a risk factor for asthma in childhood: A review of current evidence. Allergy Asthma Proc. 2014, 35, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Accordini, S.; Calciano, L.; Johannessen, A.; Portas, L.; Benediktsdóttir, B.; Bertelsen, R.J.; Bråbäck, L.; Carsin, A.E.; Dharmage, S.C.; Dratva, J.; et al. Ageing lungs in European cohorts (ALEC) study. A three-generation study on the association of tobacco smoking with asthma. Int. J. Epidemiol. 2018, 47, 1106–1117. [Google Scholar] [CrossRef]
- den Dekker, H.T.; Voort, A.; de Jongste, J.C.; Reiss, I.K.; Hofman, A.; Jaddoe, V.W.V.; Duijts, L. Tobacco smoke exposure, airway resistance, and asthma in school-age children: The Generation R study. Chest 2015, 148, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Plata, R.; Rojas-Martínez, R.; Martínez-Briseño, D.; García-Sancho, C.; Pérez-Padilla, R. Effect of passive smoking on the growth of pulmonary function and respiratory symptoms in schoolchildren. Rev. Investig. Clin. 2016, 68, 119–127. [Google Scholar] [CrossRef]
- Gibbs, K.; Collaco, J.M.; McGrath-Morrow, S.A. Impact of tobacco smoke and nicotine exposure on lung development. Chest 2016, 149, 552–561. [Google Scholar] [CrossRef]
- Neuman, Å.; Hohmann, C.; Orsini, N.; Pershagen, G.; Eller, E.; Kjaer, H.F.; Gehring, U.; Granell, R.; Henderson, J.; Heinrich, J.; et al. Maternal smoking in pregnancy and asthma in preschool children: A pooled analysis of eight birth cohorts. Am. J. Respir. Crit. Care Med. 2012, 186, 1037–1043. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, X. Early-life risk factors for recurrent wheezing in preschool children: A meta-analysis of 15 cohort studies. Allergy Asthma Proc. 2025, 46, e98–e109. [Google Scholar] [CrossRef]
- Schrott, R.; Song, A.; Ladd-Acosta, C. Epigenetics as a biomarker for early-life environmental exposure. Curr. Environ. Health Rep. 2022, 9, 604–624. [Google Scholar] [CrossRef]
- Amine, I.; Guillien, A.; Philippat, C.; Anguita-Ruiz, A.; Casas, M.; de Castro, M.; Dedele, A.; Garcia-Aymerich, J.; Granum, B.; Grazuleviciene, R.; et al. Environmental exposures in early life and general health in childhood. Environ. Health 2023, 22, 53. [Google Scholar] [CrossRef]
- Mocelin, H.T.; Fischer, G.B.; Bush, A. Adverse early-life environmental exposures and their repercussions on adult respiratory health. J. Pediatr. 2022, 98, S86–S95. [Google Scholar] [CrossRef]
- Hanifin, J.M.; Rajka, G. Diagnostic features of atopic dermatitis. Acta Derm. Venereol. 1980, 92, 44–47. [Google Scholar] [CrossRef]
- Knol, M.J.; VanderWeele, T.J.; Groenwold, R.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef]
- Knol, M.J.; VanderWeele, T.J. Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 2012, 41, 514–520. [Google Scholar] [CrossRef]
| Variable | Atopic Eczema | Control |
|---|---|---|
| Age at the time of recruitment, month (mean ± SD) | 13.6 ± 6.7 | 15.9 ± 5.6 |
| Gender (male/female) | 63/40 | 44/41 |
| Allergic sensitization (%) | 55 (53.4%) | 11 (12.9%) |
| Asthma (%) | 28 (27.2%) | 0 |
| Atopic hereditary (%) | 57 (55.3%) | 0 |
| Serum Total IgE, IU/mL, geometric mean, 95% CI | 24.6 (27.8 ÷ 53.4) | 17.7 (14.3 ÷ 22.2) |
| TNS1 rs918949 | ||
| CC | 33 (32.0%) | 24 (28.2%) |
| CT | 42 (40.8%) | 48 (56.5%) |
| TT | 28 (27.2%) | 13 (15.3%) |
| NRXN1 rs10194978 | ||
| GG | 21 (20.4%) | 20 (23.5%) |
| GA | 45 (43.7%) | 35 (41.2%) |
| AA | 37 (35.9%) | 30 (35.3%) |
| Tobacco smoke exposure: | ||
| YES | 36 (34.9%) | 23 (27.1%) |
| NO | 67 (65.1%) | 62 (72.9%) |
| TNS1 rs918949 Genotype Status | Genotype/ Risk Allele Frequency Total n (%) | Phenotype | ||||
|---|---|---|---|---|---|---|
| Eczema vs. Control | Asthma Plus Eczema vs. Control | Asthma Plus Eczema vs. Control * | Asthma Plus Eczema vs. Eczema Only | Eczema Without Asthma vs. Control | ||
| Total n (%) | 103/188 (54.8%) | 28/113 (24.8%) | 28/188 (14.9%) | 28/103 (27.2%) | 75/160 (46.9%) | |
| CC CT TT | 57/188 (30.3%) 90/188 (47.9%) 41/188 (21.8%) | 1.0 Reference p = 0.236 0.64 (0.32 ÷ 1.24) p = 0.398 1.56 (0.68 ÷ 3.64) | 1.0 Reference p = 0.776 0.83 (0.27 ÷ 2.56) p = 0.043 3.69 (1.12 ÷ 12.1) | 1.0 Reference p = 1.000 1.06 (0.36 ÷ 3.10) p = 0.032 3.52 (1.19 ÷ 10.36) | 1.0 Reference p = 0.586 1.41 (0.45 ÷ 4.37) p = 0.050 3.75 (1.08 ÷ 10.7) | 1.0 Reference p = 0.155 0.59 (0.29 ÷ 1.20) p = 1.000 1.09 (0.44 ÷ 2.73) |
| CC vs. CT + TT | 131/188 (69.7%) | p = 0.634 0.83 (0.44 ÷ 1.56) | p = 0.623 1.44 (0.52 ÷ 3.99) | p = 0.373 1.72 (0.66 ÷ 4.49) | p = 0.235 2.06 (0.74 ÷ 5.71) | p = 0.312 0.69 (0.36 ÷ 1.36) |
| CC + CT vs. TT | 41/188 (21.8%) | p = 0.072 2.07 (0.99 ÷ 4.30) | p < 0.001 6.75 (2.37 ÷ 19.2) | p = 0.006 3.39 (1.45 ÷ 7.92) | p = 0.045 2.76 (1.10 ÷ 7.01) | p = 0.411 1.50 (0.67 ÷ 3.72) |
| C vs. T | 172/376 (45.7%) | p = 0.467 1.18 (0.78 ÷ 1.77) | p = 0.031 2.00 (1.08 ÷ 3.71) | p = 0.020 2.04 (1.14 ÷ 3.64) | p = 0.028 2.08 (1.11 ÷ 3.88) | p = 0.910 0.96 (0.62 ÷ 1.50) |
| NRXN1 rs10194978 Genotype Status | Genotype/ Risk Allele Frequency Total n (%) | Phenotype | ||||
|---|---|---|---|---|---|---|
| Eczema vs. Control | Asthma Plus Eczema vs. Control | Asthma Plus Eczema vs. Control * | Asthma Plus Eczema vs. Eczema Only | Eczema Without Asthma vs. Control | ||
| Total n (%) | 103/188 (54.8%) | 28/113 (24.8%) | 28/188 (14.9%) | 28/103 (27.2%) | 75/160 (46.9%) | |
GG GA AA | 41/188(21.8%) 80/188(42.6%) 67/188(35.6%) | 1.0 Reference p = 0.700 1.22 (0.57 ÷ 2.61) p = 0.696 1.17 (0.54 ÷ 2.56) | 1.0 Reference p = 0.388 2.00 (0.58 ÷ 6.91) p = 0.541 1.67 (0.46 ÷ 6.06) | 1.0 Reference p = 0.295 1.96 (0.60 ÷ 6.39) p = 0.561 1.62 (0.47 ÷ 5.59) | 1.0 Reference p = 0.383 1.92 (0.54 ÷ 6.76) p = 0.544 1.57 (0.43 ÷ 5.83) | 1.0 Reference p = 1.000 1.04 (0.46 ÷ 2.34) p = 1.000 1.06 (0.46 ÷ 2.43) |
| GG vs. GA + AA | 147/188 (78.2%) | p = 0.723 1.20 (0.60 ÷ 2.40) | p = 0.426 1.85 (0.57 ÷ 5.95) | p = 0.456 1.81 (0.59 ÷ 5.43) | p = 0.420 1.76 (0.54 ÷ 5.77) | p = 1.000 1.05 (0.50 ÷ 2.19) |
| GG + GA vs. AA | 67/188 (35.6%) | p = 1.000 1.03 (0.56 ÷ 1.87) | p = 1.000 1.02 (0.42 ÷ 2.48) | p = 1.000 1.01 (0.43 ÷ 2.32) | p = 1.000 0.99 (0.36 ÷ 2.44) | p = 1.000 1.03 (0.54 ÷ 1.97) |
| G vs. A | 211/376 (56.1%) | p = 0.834 1.05 (0.69 ÷ 1.58) | p = 0.280 1.42 (0.76 ÷ 2.65) | p = 0.306 1.40 (0.78 ÷ 2.52) | p = 0.344 1.38 (0.73 ÷ 2.59) | p = 0.910 1.03 (0.66 ÷ 1.61) |
| Genotype | ETS Exposure (Yes) p-Value RR (95% CI) | ETS Exposure (No) p-Value RR (95% CI) |
|---|---|---|
| TNS1 rs918949 | ||
| TNS1 rs918949 allele C | 1.00 (Reference) - | 1.00 (Reference) - |
| TNS1 rs918949 allele T | p < 0.001 8.50 (3.02 ÷ 23.95) | p = 0.509 0.71 (0.29 ÷ 1.73) |
| NRXN1 rs10194978 | ||
| NRXN1 rs10194978 allele G | 1.00 (Reference) - | 1.00 (Reference) - |
| NRXN1 rs10194978 allele A | p = 0.005 4.23 (1.62 ÷ 11.52) | p = 1.000 1.02 (0.41 ÷ 2.59) |
| Genotype and Exposure Combinations | Eczema-Associated Asthma n (%) | Control n (%) | p-Value | RR (95% CI) | |
|---|---|---|---|---|---|
| TNS1 rs918949 allele C ETS exposure (No) | 14 (25.0%) | 62 (36.5%) | ----- | 1.00 (Reference) | RERI = 2.84; AP = 0.78; S = 52.4 ratio of RRs = 4.70 |
| TNS1 rs918949 allele T ETS exposure (No) | 10 (17.8%) | 62 (36.5%) | p = 0.509 | 0.75 (0.33 ÷ 1.69) | |
| TNS1 rs918949 allele C ETS exposure (Yes) | 8 (14.3%) | 34 (20.0%) | p = 1.000 | 1.03 (0.42 ÷ 2.40) | |
| TNS1 rs918949 allele T ETS exposure (Yes) | 24 (42.9%) | 12 (7.0%) | p < 0.001 | 3.62 (2.10 ÷ 6.07) | |
| NRXN1 rs10194978 allele G ETS exposure (No) | 8 (14.3%) | 42 (24.7%) | ----- | 1.00 (Reference) | RERI = 2.07; AP = 0.55; S = 2.38 ratio of RRs = 2.16 |
| NRXN1 rs10194978 allele A ETS exposure (No) | 16 (28.6%) | 82 (48.2%) | p = 1.000 | 1.05 (0.46 ÷ 2.56) | |
| NRXN1 rs10194978 allele G ETS exposure (Yes) | 12 (21.4%) | 33 (19.4%) | p = 0.220 | 1.67 (0.69 ÷ 4.16) | |
| NRXN1 rs10194978 allele A ETS exposure (Yes) | 20 (35.7%) | 13 (7.7%) | p < 0.001 | 3.79 (1.85 ÷ 8.14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dębińska, A.; Danielewicz, H.; Drabik-Chamerska, A.; Sozańska, B. Interactive Effects of Genetic Susceptibility and Early-Life Tobacco Smoke Exposure on the Asthma–Eczema Complex Phenotype in Children: 6-Year Follow-Up Case-Control Study. Int. J. Mol. Sci. 2026, 27, 346. https://doi.org/10.3390/ijms27010346
Dębińska A, Danielewicz H, Drabik-Chamerska A, Sozańska B. Interactive Effects of Genetic Susceptibility and Early-Life Tobacco Smoke Exposure on the Asthma–Eczema Complex Phenotype in Children: 6-Year Follow-Up Case-Control Study. International Journal of Molecular Sciences. 2026; 27(1):346. https://doi.org/10.3390/ijms27010346
Chicago/Turabian StyleDębińska, Anna, Hanna Danielewicz, Anna Drabik-Chamerska, and Barbara Sozańska. 2026. "Interactive Effects of Genetic Susceptibility and Early-Life Tobacco Smoke Exposure on the Asthma–Eczema Complex Phenotype in Children: 6-Year Follow-Up Case-Control Study" International Journal of Molecular Sciences 27, no. 1: 346. https://doi.org/10.3390/ijms27010346
APA StyleDębińska, A., Danielewicz, H., Drabik-Chamerska, A., & Sozańska, B. (2026). Interactive Effects of Genetic Susceptibility and Early-Life Tobacco Smoke Exposure on the Asthma–Eczema Complex Phenotype in Children: 6-Year Follow-Up Case-Control Study. International Journal of Molecular Sciences, 27(1), 346. https://doi.org/10.3390/ijms27010346

