XPO5 Polymorphism in Colon Cancer Patients: A Cross-Sectional Study
Abstract
1. Introduction
2. Results
2.1. Patient and Control Group Findings
2.2. Genotypic and Allelic Association Analysis of XPO5 rs11544382 in CC and Control Groups
2.3. Association of CC with Smoking, Alcohol Consumption, and Family History of Cancer
3. Discussion
4. Materials and Methods
4.1. Study Population, Design, and Biosafety
4.2. Preparation of Solutions and Buffers
4.3. Blood Sample Collection
4.4. Genomic DNA Isolation
4.5. Determination of DNA Quality and Quantity
4.6. XPO5 Genotyping
4.7. Ethical Considerations
4.8. Data Processing and Statistical Analysis
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CC | Colon cancer |
| Cls | Confidence Intervals |
| CRC | Colorectal cancer |
| miRNA | microRNA |
| ORs | Odds ratios |
| qPCR | Real-time PCR |
| RISC | RNA-induced silencing complex |
| RNAPII | RNA polymerase II |
| rs11544382 | Genotyping of XPO5 |
| SPSS | SPSS software, Version 23.0 |
| XPO5 | Exportin-5 |
| χ2 | Chi-square |
References
- Cui, C.; Zhang, T.T.; Lin, Q.; Huang, T.X.; Rao, E.Y.; Du, J.H.; Fu, L. WNT2 Blockade Augments Antitumor Immunity by Attenuating Myeloid-Derived Suppressor Cells in Colorectal Cancer. MedComm–Oncology 2024, 3, e70004. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Alrushaid, N.; Alwagdani, E.; Khan, S.; Alserihi, R.; Alabiad, A.; Al-Humam, N.; Alharthy, R.; Al-Zahrani, R. Progress and Perspectives in Colon Cancer Pathology, Diagnosis, and Treatments. Cancers 2023, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Cancer Today: Data Visualization Tools for Exploring the Global Cancer Burden in 2020; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Schoen, R.E. The Case for Population-Based Screening for Colorectal Cancer. Nat. Rev. Cancer 2002, 2, 65–70. [Google Scholar] [CrossRef]
- Smith, R.A.; Cokkinides, V.; Eyre, H.J. American Cancer Society Guidelines for the Early Detection of Cancer: Update of Early Detection Guidelines for Prostate, Colorectal, and Endometrial Cancers; Also: Update 2001—Testing for Early Lung Cancer Detection. CA Cancer J. Clin. 2001, 51, 38–75. [Google Scholar] [CrossRef]
- De Vita, V.T.; Hellman, S.; Rosenberg, S.A. Principles and Practice of Oncology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Ahmed, F.E. miRNA as Markers for the Diagnostic Screening of Colon Cancer. Expert Rev. Anticancer Ther. 2014, 14, 463–485. [Google Scholar] [CrossRef]
- Smolarz, B.; Durczyński, A.; Romanowicz, H. miRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef]
- Macchi, P.; Brownawell, A.M.; Grönholm, J.; Um, J.W.; Rannikko, E.; Hemmings, B.A.; Schinder, A.F.; Krämer, A.; Kiebler, M.A. The Brain-Specific Double-Stranded RNA-Binding Protein Staufen2: Nucleolar Accumulation and Isoform-Specific Exportin-5-Dependent Export. J. Biol. Chem. 2004, 279, 31440–31444. [Google Scholar] [CrossRef]
- Gwizdek, C.; Ossareh-Nazari, B.; Brownawell, A.M.; Doglio, A.; Bertrand, E.; Macara, I.G.; Dargemont, C. Minihe-lix-Containing RNAs Mediate Exportin-5-Dependent Nuclear Export of the Double-Stranded RNA-Binding Protein ILF3. J. Biol. Chem. 2004, 279, 884–891. [Google Scholar] [CrossRef]
- Iwasaki, Y.W.; Nishihara, H.; Kanehara, Y.; Takahashi, M.; Kikkawa, T.; Qu, W.; Sakamoto, K.; Siomi, H.; Siomi, M.C. Global microRNA Elevation by Inducible Exportin 5 Regulates Cell Cycle Entry. Nat. Struct. Mol. Biol. 2013, 19, 490–497. [Google Scholar] [CrossRef]
- Shigeyasu, K.; Okugawa, Y.; Toden, S.; Boland, C.R.; Goel, A. Exportin-5 Functions as an Oncogene and a Potential Therapeutic Target in Colorectal Cancer. Clin. Cancer Res. 2017, 23, 1312–1322. [Google Scholar] [CrossRef] [PubMed]
- Ott, C.A.; Linck, L.; Kremmer, E.; Meister, G.; Bosserhoff, A.K. Induction of Exportin-5 Expression during Melanoma Development Supports the Cellular Behavior of Human Malignant Melanoma Cells. Oncotarget 2016, 7, 62292–62304. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, P.; Yang, S.; Yang, Y.; Zhang, Q.; Zhang, W.; Xiao, H.; Gao, H.; Zhang, Q. Identification of Genes with a Correlation between Copy Number and Expression in Gastric Cancer. BMC Med. Genom. 2012, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Gao, Q.; Wang, N.; Zhang, W.; Cao, K.; Zhang, Q.; Chen, S.; Shi, L. Association of microRNA-Related Gene XPO5 rs11077 Polymorphism with Susceptibility to Thyroid Cancer. Medicine 2017, 96, e6351. [Google Scholar] [CrossRef]
- Osuch-Wójcikiewicz, E.; Bruzgielewicz, A.; Niemczyk, K.; Sieniawska-Buccella, O.; Nowak, A.; Walczak, A.; Majsterek, I. Association of Polymorphic Variants of miRNA Processing Genes with Larynx Cancer Risk in a Polish Population. Biomed. Res. Int. 2015, 2015, 298378. [Google Scholar] [CrossRef]
- Bofill-De Ros, X.; Vang Ørom, U.A. Recent Progress in miRNA Biogenesis and Decay. RNA Biol. 2024, 21, 36–43. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Y.; Li, Y.; Guo, R.; Zhang, Q.; Zhao, M.; Zhao, L.; Zhang, Y. XPO5 Promotes Primary microRNA Processing Independently of RanGTP. Nat. Commun. 2020, 11, 1845. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Jiang, J.; Chen, X.; Wang, Y. Nuclear Transport Proteins: Structure, Function and Disease Relevance. Signal Transduct. Target. Ther. 2023, 8, 425. [Google Scholar] [CrossRef]
- Leaderer, D.H.A.; Zheng, T.; Fu, A.; Weidhaas, J.; Paranjape, T.; Zhu, Y. Genetic and Epigenetic Association Studies Suggest a Role of microRNA Biogenesis Gene Exportin-5 (XPO5) in Breast Tumorigenesis. Int. J. Mol. Epidemiol. Genet. 2011, 2, 9–18. [Google Scholar]
- Rah, H.; Jeon, Y.J.; Choi, Y.D.; Lee, J.H.; Kim, Y.R.; Kim, J.H.; Shin, J.E.; Lee, W.S.; Park, W.; Kim, N.K. Association of Polymorphisms in MicroRNA Machinery Genes (DROSHA, DICER1, RAN, and XPO5) with Risk of Idiopathic Primary Ovarian Insufficiency in Korean Women. Hum. Reprod. 2013, 20, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Mathur, R.; Jha, A.K. The Impact of microRNA SNPs on Breast Cancer: Potential Biomarkers for Disease Detection. Mol. Biol. Rep. 2025, 67, 845–861. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Shah, S.; Ahmad, M.; Wang, Y.; Hanif, S.; Muhammad, S. Evaluating the Oncogenic and Tumor Suppressor Role of XPO5 in Different Tissue Tumor Types. Mol. Med. Rep. 2018, 19, 1119. [Google Scholar]
- Boni, V.; Zarate, R.; Villa, J.C.; Bandres, E.; Gomez, M.A.; Maiello, E. Role of Primary miRNA Polymorphic Variants in Metastatic Colon Cancer Patients Treated with 5-Fluorouracil and Irinotecan. Pharmacogenom. J. 2011, 11, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Li, C.; Wang, H.; Li, B.; Guo, Z. A miR-SNP of the XPO5 Gene Is Associated with Advanced Non-Small-Cell Lung Cancer. OncoTargets Ther. 2013, 6, 877–881. [Google Scholar]
- de Larrea, C.F.; Navarro, A.; Tejero, R.; Tovar, N.; Diaz, T.; Cibeira, M.T.; Rosinol, L.; Ferrer, G.; Rovira, M.; Rozman, M.; et al. Impact of miRSNPs on Survival and Progression in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation. Clin. Cancer Res. 2012, 18, 3697–3704. [Google Scholar] [CrossRef]
- Geng, J.Q.; Wang, X.C.; Li, L.F.; Zhao, J.; Wu, S.; Yu, G.P.; Zhu, K.J. MicroRNA-Related Single-Nucleotide Polymorphism of XPO5 Is Strongly Correlated with the Prognosis and Chemotherapy Response in Advanced Non-Small-Cell Lung Cancer Patients. Tumour Biol. 2016, 37, 2257–2265. [Google Scholar] [CrossRef]
- Horikawa, Y.; Wood, C.G.; Yang, H.; Zhao, H.; Ye, Y.; Gu, J.; Lin, J.; Habuchi, T.; Wu, X. Single Nucleotide Polymorphisms of microRNA Machinery Genes Modify the Risk of Renal Cell Carcinoma. Clin. Cancer Res. 2008, 14, 7956–7962. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, K.K.; Gu, J.; Yang, H.; Lin, J.; Ajani, J.A.; Wu, X. Genetic Variations in microRNA-Related Genes Are Novel Susceptibility Loci for Esophageal Cancer Risk. Cancer Prev. Res. 2008, 1, 460–469. [Google Scholar] [CrossRef]
- Melo, S.A.; Ropero, S.; Moutinho, C.; Azevedo, N.; Yamashita, H.; Calin, G.A.; Rossi, S.; Fernández, A.F.; Carneiro, F.; Oliveira, C.; et al. A Genetic Defect in Exportin-5 Traps Precursor MicroRNAs in the Nucleus of Cancer Cells. Cancer Cell 2010, 18, 303–315. [Google Scholar] [CrossRef]
- Ağbektaş, T.; Taş, A.; Atabey, M.; Sarı, İ.; Bostancı, M.E.; Topçu, Ö.; Siliğ, Y. Mir146a Polymorphism in Gastric, Colon and Rectum Cancers. J. Health Sci. Inst. 2023, 8, 193–198. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A Simple Salting-Out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
| Variable | Controls n (%) | CC n (%) | p Value |
|---|---|---|---|
| Sample size | 60 | 60 | |
| Gender | |||
| Males | 49 (48.0) | 53 (52.0) | 0.306 |
| Females | 11 (61.1) | 7 (38.9) | |
| Age (year) | |||
| Range | 48–90 | 40–85 | |
| Median (min–max) | |||
| Males | 60 (46–85) | 64 (34–76) | 0.237 |
| Females | 60 (47–75) | 71 (43–85) | 0.053 |
| Smoking History | |||
| Smoker | 34 (76.4) | 14 (46.6) | 0.001 * |
| Males | 33 (67.3) | 13 (43.3) | |
| Females | 1 (9.1) | 1 (3.3) | |
| Alcohol Consumption | |||
| Yes | 4 (8.2) | 13 (43.3) | 0.018 * |
| Males | 4 (8.2) | 10 (33.3) | |
| Females | 0 (0.0) | 3 (10.0) | |
| Family history of cancer | 10 (48.6) | 8 (26.6) | 0.609 |
| Allele | Controls n:60 (%) | CC n:60 (%) | χ2 | p | Crude OR (95% CI) |
|---|---|---|---|---|---|
| A | 65 (54.1) | 68 (56.6) | 0.15 | 0.696 a | 0.90 (0.53–1.55) |
| G | 55 (45.9) | 52 (43.4) |
| Genotype (Rs11544382) | Controls (Expected) | CC (Expected) | Crude OR (95% CI) |
|---|---|---|---|
| AA | 5 (17.6) | 8 (19.2) | 0.59 (0.18–1.92) |
| AG | 55 (29.8) | 52 (29.5) | |
| GG | 0 (12.6) | 0 (11.3) |
| Variable | Crude OR (95% CI) | Adjusted OR (95% CI) | p Value |
|---|---|---|---|
| Genotype | 0.59 (0.18–1.92) | 0.62 (0.19–2.01) | 0.41 |
| Smoking | 3.84 (1.72–8.55) | 3.12 (1.25–7.76) | 0.014 * |
| Alcohol | 3.87 (1.18–12.67) | 2.93 (1.03–9.24) | 0.042 * |
| Family history | 0.76 (0.28–2.10) | 0.49 (0.14–1.64) | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Agbektas, T.; Genc, H.C.; Zontul, C.; Tas, A. XPO5 Polymorphism in Colon Cancer Patients: A Cross-Sectional Study. Int. J. Mol. Sci. 2026, 27, 345. https://doi.org/10.3390/ijms27010345
Agbektas T, Genc HC, Zontul C, Tas A. XPO5 Polymorphism in Colon Cancer Patients: A Cross-Sectional Study. International Journal of Molecular Sciences. 2026; 27(1):345. https://doi.org/10.3390/ijms27010345
Chicago/Turabian StyleAgbektas, Tugba, Husnu Cagrı Genc, Cemile Zontul, and Ayca Tas. 2026. "XPO5 Polymorphism in Colon Cancer Patients: A Cross-Sectional Study" International Journal of Molecular Sciences 27, no. 1: 345. https://doi.org/10.3390/ijms27010345
APA StyleAgbektas, T., Genc, H. C., Zontul, C., & Tas, A. (2026). XPO5 Polymorphism in Colon Cancer Patients: A Cross-Sectional Study. International Journal of Molecular Sciences, 27(1), 345. https://doi.org/10.3390/ijms27010345

