The CTDP1 Founder Variant in CCFDN: Insights into Pathogenesis, Phenotypic Spectrum and Therapeutic Approaches
Abstract
1. Introduction
2. Genetic Basis and Molecular Mechanism
2.1. Structure and Function of CTDP1
2.2. Functional Studies Reveal Additional Roles of CTDP1 Gene
2.3. Expanding Role of CTDP1 as an Autoimmune Biomarker in Human Disease
3. CTDP1 Intronic Variant: Mechanism and Founder Origin
4. Phenotypic Spectrum of CCFDN Syndrome
4.1. Clinical Features of CCFDN Syndrome
4.2. Differential Diagnosis and Overlapping Neurodevelopmental Disorders
5. Overview of Potential Therapeutic Approaches to CTDP1-Related Disorders
5.1. Transcriptomics and Antisense Oligonucleotide (ASO) Drugs
5.2. Small Molecule Splicing Modulators
5.3. Gene Replacement Therapy
5.4. Genome and Transcriptome Editing: CRISPR-Cas and ADAR Approaches
5.5. Other Potential Therapeutic Approaches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| aa | amino acids |
| ADAR | Adenosine Deaminase Acting on RNA |
| ASOs | Antisense oligonucleotides |
| BRCT | BRCA1 C-terminal |
| Cas9 | CRISPR-associated protein 9 |
| CCFDN | Congenital Cataracts, Facial Dysmorphism, and Neuropathy |
| cDNA | complementary DNA |
| CK2 | casein kinase 2 |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| CTD | Carboxy-Terminal Domain |
| CTDP1 | Carboxy-Terminal Domain phosphatase subunit 1 |
| CUL3 | E3 ubiquitin ligase Cullin |
| DSBs | double-stranded DNA breaks (DSBs) |
| FCP1 | F-Cell Production 1 |
| FCPH | FCP homology |
| HAD | haloacid dehalogenase |
| MEFs | mouse embryonic fibroblasts |
| mRNA | microRNA |
| pegRNA | prime editing guide RNA |
| Refs | References |
| rRNA | ribosomal RNA |
| SDRE | site-directed RNA editing |
| siRNA | small interfering RNA |
| SINEs | short interspersed nuclear elements |
| SMA | spinal muscular atrophy |
| snRNPs | small nuclear ribonucleoproteins |
| TIF-IA | transcription initiation factor IA |
References
- Kalaydjieva, L.; Chamova, T. CTDP1-Related Congenital Cataracts, Facial Dysmorphism, and Neuropathy. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: http://www.ncbi.nlm.nih.gov/books/NBK25565/ (accessed on 14 July 2025).
- Varon, R.; Gooding, R.; Steglich, C.; Marns, L.; Tang, H.; Angelicheva, D.; Yong, K.K.; Ambrugger, P.; Reinhold, A.; Morar, B.; et al. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat Genet. 2003, 35, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Makrygianni, E.A.; Papadimas, G.K.; Vartzelis, G.; Georgala, M.; Tzetis, M.; Poulou, M.; Kitsiou-Tzeli, S.; Pons, R. Congenital Cataracts, Facial Dysmorphism, and Neuropathy Syndrome: Additional Clinical Features. Pediatr. Neurol. 2017, 67, e5–e6. [Google Scholar] [CrossRef]
- Morar, B.; Gresham, D.; Angelicheva, D.; Tournev, I.; Gooding, R.; Guergueltcheva, V.; Schmidt, C.; Abicht, A.; Lochmüller, H.; Tordai, A.; et al. Mutation History of the Roma/Gypsies. Am. J. Hum. Genet. 2004, 75, 596–609. [Google Scholar] [CrossRef]
- GeneCards. CTDP1 Gene—CTD Phosphatase Subunit 1. 2025. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CTDP1 (accessed on 14 July 2025).
- NCBI CTDP1 CTD Phosphatase Subunit 1 [Homo Sapiens (Human)]. 2025. Available online: https://www.ncbi.nlm.nih.gov/gene/9150 (accessed on 14 July 2025).
- Ghosh, A.; Shuman, S.; Lima, C.D. The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol. Cell. 2008, 32, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-F.; Krieger, K.L.; Lagundžin, D.; Li, X.; Cheung, R.S.; Taniguchi, T.; Johnson, K.R.; Bessho, T.; Monteiro, A.N.A.; Woods, N.T. CTDP1 regulates breast cancer survival and DNA repair through BRCT-specific interactions with FANCI. Cell Death Discov. 2019, 5, 105. [Google Scholar] [CrossRef]
- Archambault, J.; Pan, G.; Dahmus, G.K.; Cartier, M.; Marshall, N.; Zhang, S.; Dahmus, M.E.; Greenblatt, J. FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J. Biol. Chem. 1998, 273, 27593–27601. [Google Scholar] [CrossRef]
- OMIM CTDP1; C-Terminal Domain Phosphatase 1. OMIM Entry #604927. 2025. Available online: https://www.omim.org/entry/604927 (accessed on 14 July 2025).
- Bieniossek, C.; Papai, G.; Schaffitzel, C.; Garzoni, F.; Chaillet, M.; Scheer, E.; Papadopoulos, P.; Tora, L.; Schultz, P.; Berger, I. The architecture of human general transcription factor TFIID core complex. Nature 2013, 493, 699–702. [Google Scholar] [CrossRef]
- Armache, K.J.; Kettenberger, H.; Cramer, P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 2003, 100, 6964–6968. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xu, Q.; Ji, D.; Yang, B.; Ji, X. CTDP1 and RPB7 stabilize Pol II and permit reinitiation. Nat. Commun. 2025, 16, 2161. [Google Scholar] [CrossRef]
- Bierhoff, H.; Dundr, M.; Michels, A.A.; Grummt, I. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol. Cell Biol. 2008, 28, 4988–4998. [Google Scholar] [CrossRef]
- Licciardo, P.; Amente, S.; Ruggiero, L.; Monti, M.; Pucci, P.; Lania, L.; Majello, B. The FCP1 phosphatase interacts with RNA polymerase II and with MEP50 a component of the methylosome complex involved in the assembly of snRNP. Nucleic Acids Res. 2003, 31, 999–1005. [Google Scholar] [CrossRef]
- Qiao, F.; Law, H.C.-H.; Krieger, K.L.; Clement, E.J.; Xiao, Y.; Buckley, S.M.; Woods, N.T. Ctdp1 deficiency leads to early embryonic lethality in mice and defects in cell cycle progression in MEFs. Biol. Open 2021, 10, bio057232. [Google Scholar] [CrossRef]
- Woods, N.T.; Mesquita, R.D.; Sweet, M.; Carvalho, M.A.; Li, X.; Liu, Y.; Nguyen, H.; Thomas, C.E.; Iversen, E.S.; Marsillac, S.; et al. Charting the Landscape of Tandem BRCT Domain-Mediated Protein Interactions. Sci. Signal. 2012, 5, rs6. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yang, D.; Wang, C.; Xu, J.; Wang, W.; Yan, R.; Cai, Q. Carboxy-terminal domain phosphatase 1 silencing results in the inhibition of tumor formation ability in gastric cancer cells. Oncol. Lett. 2015, 10, 2947–2952. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Xu, W.; Ma, J.; Chen, S.; Ma, R. Development of novel prognostic protein signatures in ovarian cancer: Molecular structure and immune function of AQP5 protein and CTDP1 protein. Int. J. Biol. Macromol. 2025, 310, 143474. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.-J.; Pan, J.-B.; Song, G.; Wen, X.-T.; Wu, Z.-Y.; Chen, S.; Mo, W.-X.; Zhang, F.-C.; Qian, J.; Zhu, H.; et al. Identification of Novel Biomarkers for Behcet Disease Diagnosis Using Human Proteome Microarray Approach. Mol. Cell Proteom. 2017, 16, 147–156. [Google Scholar] [CrossRef]
- Deininger, P. Alu elements: Know the SINEs. Genome Biol. 2011, 12, 236. [Google Scholar] [CrossRef]
- Lassuthova, P.; Sišková, D.; Haberlová, J.; Sakmaryová, I.; Filouš, A.; Seeman, P. Congenital cataract, facial dysmorphism and demyelinating neuropathy (CCFDN) in 10 Czech Gypsy children—frequent and underestimated cause of disability among Czech Gypsies. Orphanet J. Rare Dis. 2014, 9, 46. [Google Scholar] [CrossRef]
- Molaei Ramshe, S.; Zardadi, S.; Alehabib, E.; Nourinia, R.; Jamshidi, J.; Soosanabadi, M.; Darvish, H. A Novel Ornithine Aminotransferase Splice Site Mutation Causes Vitamin B6-Responsive Gyrate Atrophy. J. Ophthalmic Vis. Res. 2024, 19, 118–132. [Google Scholar] [CrossRef]
- Barešić, A.; Peričić Salihović, M. Carrier rates of four single-gene disorders in Croatian Bayash Roma. Genet. Test. Mol. Biomark. 2014, 18, 83–87. [Google Scholar] [CrossRef]
- Tournev, I.; Kalaydjieva, L.; Youl, B.; Ishpekova, B.; Guergueltcheva, V.; Kamenov, O.; Katzarova, M.; Kamenov, Z.; Raicheva-Terzieva, M.; King, R.H.; et al. Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: Clinical and electrophysiological observations. Ann. Neurol. 1999, 45, 742–750. [Google Scholar] [CrossRef]
- Jurca-Simina, I.-E.; Chirita-Emandi, A.; Perva, I.T.; Uhrová-Mészárosová, A.; Corches, A.; Doros, G.; Puiu, M. Think about the founder effect in endogamous population—Congenital cataracts, Facial dysmorphism, and Neuropathy (CCFDN) Syndrome—Two cases. Jurnalul Pediatrului 2018, XXI, 19–25. [Google Scholar]
- Mullner-Eidenbock, A.; Moser, E.; Klebermass, N.; Amon, M.; Walter, M.C.; Lochmüller, H.; Gooding, R.; Kalaydjieva, L. Ocular Features of the Congenital Cataracts Facial Dysmorphism Neuropathy Syndrome. Ophthalmology 2004, 111, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Kalaydjieva, L. Congenital cataracts-facial dysmorphism-neuropathy. Orphanet J. Rare Dis. 2006, 1, 32. [Google Scholar] [CrossRef] [PubMed]
- Tournev, I.; King, R.H.; Workman, J.; Nourallah, M.; Muddle, J.R.; Kalaydjieva, L.; Romanski, K.; Thomas, P.K. Peripheral nerve abnormalities in the congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome. Acta Neuropathol. 1999, 98, 165–170. [Google Scholar] [CrossRef]
- Shabo, G.; Scheffer, H.; Cruysberg, J.R.M.; Lammens, M.; Pasman, J.W.; Spruit, M.; Willemsen, M.A.A.P. Congenital cataract facial dysmorphism neuropathy syndrome: A clinically recognizable entity. Pediatr. Neurol. 2005, 33, 277–279. [Google Scholar] [CrossRef]
- Mastroyianni, S.D.; Garoufi, A.; Voudris, K.; Skardoutsou, A.; Stefanidis, C.J.; Katsarou, E.; Gooding, R.; Kalaydjieva, L. Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome: A rare cause of parainfectious rhabdomyolysis. Eur. J. Pediatr. 2007, 166, 747–749. [Google Scholar] [CrossRef]
- Iagaru, N.; Senderek, J.; Alexianu, M.; Cinteza, E.; Plaiasu, V. Congenital cataracts—Facial dysmorphism—Neuropathy syndrome. Maedica 2008, 3, 198–203. [Google Scholar] [CrossRef]
- Cordelli, D.M.; Garone, C.; Marchiani, V.; Lodi, R.; Tonon, C.; Ferrari, S.; Seri, M.; Franzoni, E. Progressive cerebral white matter involvement in a patient with Congenital Cataracts Facial Dysmorphisms Neuropathy (CCFDN). Neuromuscul. Disord. 2010, 20, 343–345. [Google Scholar] [CrossRef]
- Tzifi, F.; Pons, R.; Athanassaki, C.; Poulou, M.; Kanavakis, E. Congenital cataracts, facial dysmorphism, and neuropathy syndrome. Pediatr. Neurol. 2011, 45, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.C.; Bernert, G.; Zimmermann, U.; Müllner-Eidenböck, A.; Kalaydjieva, L.; Lochmüller, H.; Müller-Felber, W. Long-term follow-up in patients with CCFDN syndrome. Neurology 2014, 83, 1337–1344. [Google Scholar] [CrossRef]
- Chamova, T.; Zlatareva, D.; Raycheva, M.; Bichev, S.; Kalaydjieva, L.; Tournev, I. Cognitive Impairment and Brain Imaging Characteristics of Patients with Congenital Cataracts, Facial Dysmorphism, Neuropathy Syndrome. Behav. Neurol. 2015, 2015, 639539. [Google Scholar] [CrossRef]
- Masters, O.W.; Bergmans, E.; Thies, K.C. Anaesthesia and orphan disease: A child with Congenital Cataract Facial Dysmorphism neuropathy (CCFDN) syndrome: A case report. Eur. J. Anaesthesiol. 2017, 34, 178–180. [Google Scholar] [CrossRef]
- Dudakova, L.; Skalicka, P.; Ulmanová, O.; Hlozanek, M.; Stranecky, V.; Malinka, F.; Vincent, A.L.; Liskova, P. Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant. J. Ophthalmol. 2020, 2020, 6807809. [Google Scholar] [CrossRef] [PubMed]
- Hudec, J.; Kosinova, M.; Prokopova, T.; Filipovic, M.; Repko, M.; Stourac, P. Anesthesia of a patient with congenital cataract, facial dysmorphism, and neuropathy syndrome for posterior scoliosis: A case report. World J. Clin. Cases 2022, 10, 4207–4213. [Google Scholar] [CrossRef]
- Anttonen, A.K.; Mahjneh, I.; Hämäläinen, R.H.; Lagier-Tourenne, C.; Kopra, O.; Waris, L.; Anttonen, M.; Joensuu, T.; Kalimo, H.; Paetau, A.; et al. The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat. Genet. 2005, 37, 1309–1311. [Google Scholar] [CrossRef]
- Merlini, L.; Gooding, R.; Lochmüller, H.; Müller-Felber, W.; Walter, M.C.; Angelicheva, D.; Talim, B.; Hallmayer, J.; Kalaydjieva, L. Genetic identity of Marinesco-Sjögren/myoglobinuria and CCFDN syndromes. Neurology 2002, 58, 231–236. [Google Scholar] [CrossRef]
- Milley, G.M.; Varga, E.T.; Grosz, Z.; Nemes, C.; Arányi, Z.; Boczán, J.; Diószeghy, P.; Molnár, M.J.; Gál, A. Genotypic and phenotypic spectrum of the most common causative genes of Charcot-Marie-Tooth disease in Hungarian patients. Neuromuscul. Disord. 2018, 28, 38–43. [Google Scholar] [CrossRef]
- Dubourg, O.; Azzedine, H.; Verny, C.; Durosier, G.; Birouk, N.; Gouider, R.; Salih, M.; Bouhouche, A.; Thiam, A.; Grid, D.; et al. Autosomal-recessive forms of demyelinating Charcot-Marie-Tooth disease. NeuroMolecular. Med. 2006, 8, 75–86. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yang, F.; Tang, J.; Xu, X.; Yang, L.; Yang, X.-A.; Wu, D. Biallelic INTS1 Mutations Cause a Rare Neurodevelopmental Disorder in Two Chinese Siblings. J. Mol. Neurosci. 2020, 70, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Namba, S.; Iwata, M.; Yamanishi, Y. From drug repositioning to target repositioning: Prediction of therapeutic targets using genetically perturbed transcriptomic signatures. Bioinformatics 2022, 38, i68–i76. [Google Scholar] [CrossRef]
- Iwata, M.; Sawada, R.; Iwata, H.; Kotera, M.; Yamanishi, Y. Elucidating the modes of action for bioactive compounds in a cell-specific manner by large-scale chemically-induced transcriptomics. Sci. Rep. 2017, 7, 40164. [Google Scholar] [CrossRef]
- van Noort, V.; Schölch, S.; Iskar, M.; Zeller, G.; Ostertag, K.; Schweitzer, C.; Werner, K.; Weitz, J.; Koch, M.; Bork, P. Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res. 2014, 74, 5690–5699. [Google Scholar] [CrossRef]
- Kosaka, T.; Nagamatsu, G.; Saito, S.; Oya, M.; Suda, T.; Horimoto, K. Identification of drug candidate against prostate cancer from the aspect of somatic cell reprogramming. Cancer Sci. 2013, 104, 1017–1026. [Google Scholar] [CrossRef]
- Dudley, J.T.; Sirota, M.; Shenoy, M.; Pai, R.K.; Roedder, S.; Chiang, A.P.; Morgan, A.A.; Sarwal, M.M.; Pasricha, P.J.; Butte, A.J. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 2011, 3, 96ra76. [Google Scholar] [CrossRef]
- Wang, R.; Helbig, I.; Edmondson, A.C.; Lin, L.; Xing, Y. Splicing defects in rare diseases: Transcriptomics and machine learning strategies towards genetic diagnosis. Brief Bioinform. 2023, 24, bbad284. [Google Scholar] [CrossRef] [PubMed]
- Gidaro, T.; Servais, L. Nusinersen treatment of spinal muscular atrophy: Current knowledge and existing gaps. Dev. Med. Child Neurol. 2019, 61, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Annemieke, A.R. FDA Approval of Nusinersen for Spinal Muscular Atrophy Makes 2016 the Year of Splice Modulating Oligonucleotides. Nucleic Acid Ther. 2017, 2767–2769. [Google Scholar] [CrossRef]
- Chen, S.; Heendeniya, S.N.; Le, B.T.; Rahimizadeh, K.; Rabiee, N.; Zahra, Q.U.A.; Veedu, R.N. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024, 38, 177–203. [Google Scholar] [CrossRef]
- Lim, K.H.; Han, Z.; Jeon, H.Y.; Kach, J.; Jing, E.; Weyn-Vanhentenryck, S.; Downs, M.; Corrionero, A.; Oh, R.; Scharner, J.; et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat. Commun. 2020, 11, 3501. [Google Scholar] [CrossRef]
- Havens, M.A.; Hastings, M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016, 44, 6549–6563. [Google Scholar] [CrossRef]
- Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 2018, 14, 9–21. [Google Scholar] [CrossRef]
- Fàbrega, C.; Aviñó, A.; Navarro, N.; Jorge, A.F.; Grijalvo, S.; Eritja, R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023, 15, 320. [Google Scholar] [CrossRef] [PubMed]
- Collotta, D.; Bertocchi, I.; Chiapello, E.; Collino, M. Antisense oligonucleotides: A novel Frontier in pharmacological strategy. Front. Pharmacol. 2023, 14, 1304342. [Google Scholar] [CrossRef]
- Cochran, M.; Marks, I.; Albin, T.; Arias, D.; Kovach, P.; Darimont, B.; Huang, H.; Etxaniz, U.; Kwon, H.W.; Shi, Y.; et al. Structure-Activity Relationship of Antibody-Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody-Phosphorodiamidate Morpholino Oligomer Conjugates for Drug Development. J. Med. Chem. 2024, 67, 14868–14884. [Google Scholar] [CrossRef]
- Weeden, T.; Picariello, T.; Quinn, B.; Spring, S.; Shen, P.-Y.; Qiu, Q.; Vieira, B.F.; Schlaefke, L.; Russo, R.J.; Chang, Y.-A.; et al. FORCE platform overcomes barriers of oligonucleotide delivery to muscle and corrects myotonic dystrophy features in preclinical models. Commun. Med. 2025, 5, 22. [Google Scholar] [CrossRef]
- Baylot, V.; Le, T.K.; Taïeb, D.; Rocchi, P.; Colleaux, L. Between hope and reality: Treatment of genetic diseases through nucleic acid-based drugs. Commun. Biol. 2024, 7, 489, Correction in Commun. Biol. 2025, 8, 1036. [Google Scholar] [CrossRef]
- Bouton, L.; Ecoutin, A.; Malard, F.; Campagne, S. Small molecules modulating RNA splicing: A review of targets and future perspectives. RSC Med. Chem. 2024, 15, 1109–1126. [Google Scholar] [CrossRef] [PubMed]
- US Food & Drug Administration. FDA Approves Oral Treatment for Spinal Muscular Atrophy. August 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-oral-treatment-spinal-muscular-atrophy (accessed on 26 July 2025).
- Ratni, H.; Scalco, R.S.; Stephan, A.H. Risdiplam, the First Approved Small Molecule Splicing Modifier Drug as a Blueprint for Future Transformative Medicines. ACS Med. Chem. Lett. 2021, 12, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Poetsch, T.; Chhipi-Shrestha, J.K.; Yoshida, M. Splicing modulators: On the way from nature to clinic. J. Antibiot. 2021, 74, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Sig Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Thenmozhi, R.; Lee, J.S.; Park, N.Y.; Choi, B.O.; Hong, Y.B. Gene Therapy Options as New Treatment for Inherited Peripheral Neuropathy. Exp. Neurobiol. 2020, 29, 177–188. [Google Scholar] [CrossRef]
- Asmamaw, M.; Zawdie, B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021, 15, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Takata, M.; Sasaki, M.S.; Sonoda, E.; Morrison, C.; Hashimoto, M.; Utsumi, H.; Yamaguchi-Iwai, Y.; Shinohara, A.; Takeda, S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998, 17, 5497–5508. [Google Scholar] [CrossRef]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Zhou, K.; Li, T.; VanDusen, N.J.; Hua, Y. Precise genome-editing in human diseases: Mechanisms, strategies and applications. Signal Transduct. Target. Ther. 2024, 9, 47. [Google Scholar] [CrossRef]
- Smirnikhina, S.A.; Zaynitdinova, M.I.; Sergeeva, V.A.; Lavrov, A.V. Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Cell Cycle. Int. J. Mol. Sci. 2022, 23, 5992. [Google Scholar] [CrossRef]
- Matsumoto, D.; Tamamura, H.; Nomura, W. A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy. Commun. Biol. 2020, 3, 601. [Google Scholar] [CrossRef]
- Li, G.; Yang, X.; Luo, X.; Wu, Z.; Yang, H. Modulation of cell cycle increases CRISPR-mediated homology-directed DNA repair. Cell Biosci. 2023, 13, 215. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef]
- Wiley, L.; Cheek, M.; LaFar, E.; Ma, X.; Sekowski, J.; Tanguturi, N.; Iltis, A. The Ethics of Human Embryo Editing via CRISPR-Cas9 Technology: A Systematic Review of Ethical Arguments, Reasons, and Concerns. HEC Forum 2025, 37, 267–303. [Google Scholar] [CrossRef]
- Rainaldi, J.; Mali, P.; Nourreddine, S. Emerging clinical applications of ADAR based RNA editing. Stem Cells Transl. Med. 2025, 14, szaf016. [Google Scholar] [CrossRef]
- Schneider, N.; Valensi, J.; Sharon, D. The Interplay between ADAR-based RNA Editing and Splicing-related Variants in ABCA4. Investig. Ophthalmol. Vis. Sci. 2024, 65, 4689. [Google Scholar]
- Sagredo, E.A.; Karlström, V.; Blanco, A.; Moraga, P.; Vergara, M.; Jarvelin, A.I.; Visa, N.; Marcelain, K.; Castello, A.; Armisén, R. ADAR1 regulates alternative splicing through an RNA editing-independent mechanism. bioRxiv 2025. bioRxiv:2025.03.12.642916. [Google Scholar] [CrossRef]
- Zhao, Q.; Peng, H.; Ma, Y.; Yuan, H.; Jiang, H. In vivo applications and toxicities of AAV-based gene therapies in rare diseases. Orphanet J. Rare Dis. 2025, 20, 368. [Google Scholar] [CrossRef] [PubMed]
- Daci, R.; Flotte, T.R. Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int. J. Mol. Sci. 2024, 25, 1050. [Google Scholar] [CrossRef]
- Liang, X.H.; Shen, W.; Sun, H.; Migawa, M.T.; Vickers, T.A.; Crooke, S.T. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 2016, 34, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Sun, H.; Shen, W.; Wang, S.; Yao, J.; Migawa, M.T.; Bui, H.-H.; Damle, S.S.; Riney, S.; Graham, M.J.; et al. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res. 2017, 45, 9528–9546. [Google Scholar] [CrossRef]
- Winkelsas, A.M.; Grunseich, C.; Harmison, G.G.; Chwalenia, K.; Rinaldi, C.; Hammond, S.M.; Johnson, K.; Bowerman, M.; Arya, S.; Talbot, K.; et al. Targeting the 5′ untranslated region of SMN2 as a therapeutic strategy for spinal muscular atrophy. Mol. Ther. Nucleic Acids. 2021, 23, 731–742. [Google Scholar] [CrossRef]
- Hedaya, O.M.; Venkata Subbaiah, K.C.; Jiang, F.; Xie, L.H.; Wu, J.; Khor, E.-S.; Zhu, M.; Mathews, D.H.; Proschel, C.; Yao, P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. Nat. Commun. 2023, 14, 6166. [Google Scholar] [CrossRef] [PubMed]




| Author | Year | Article Type | No. | Age (Years) | Origin | Reported Phenotype/Main Findings | Paper Highlights |
|---|---|---|---|---|---|---|---|
| Tournev et al. [25] | 1999 | OA | 50 | Infants–44 | Balkan Roma | Congenital cataracts, microcorneas, lower and upper limb motor neuropathy, moderate nonprogressive cognitive deficit, pyramidal signs and mild chorea, short stature, characteristic facial dysmorphism, hypogonadotrophic hypogonadism | Early electro-physiological characterization |
| Tournev et al. [29] | 1999 | OA | 4 | 4–32 | Bulgaria | Peripheral neuropathy, diffuse hypomyelination, reduced nerve conduction velocity with relative preservation of sensory action potentials, progressive demyelination/remyelination and axonal degeneration for adults | A developmental hypomyelination process with superimposed degenerative changes over time |
| Varon et al. [2] | 2003 | OA | 85 | 4–47 | Vlax Roma | Congenital cataracts, facial dysmorphism, demyelinating neuropathy, short stature, hypogonadism, mild cognitive impairment, cerebellar signs; The disease-causing variant determines aberrant splicing with insertion of Alu element in CTDP1 mRNA, disrupting FCP1 phosphatase function | Genetic homogeneity and founder disease-causing variant in the Vlax Roma population with an inferred variant origin within ~16 generations; CCFDN is caused by a rare aberrant splicing mechanism involving an Alu insertion |
| Müllner-Eidenböck et al. [27] | 2004 | OA | 9 | 1.3–16.8 | Eastern part of Serbia, close to the border with Romania | Peripheral, demyelinating neuropathy, ataxia, muscular atrophy, facial dysmorphism, bilateral congenital cataracts, microcornea, microphthalmos, and micropupil, floppy eyelid syndrome, pseudoptosis, nystagmus and congenital esotropia, visual impairment | Increased inflammatory reaction to contact lenses and intraocular lenses |
| Shabo et al. [30] | 2005 | CR | 1 | 5 | Hungarian Roma | Bilateral congenital cataract, normal intellect, motor development delay, congenital hip dysplasia, progressive pes equinovarus adductus, demyelinating neuropathy, reduced conduction velocities | Orthopedic deformities reported, no onion bulbs or Schwann cell inclusions were observed at sural nerve biopsy |
| Mastroyianni et al. [31] | 2007 | CR | 1 | 3 | Greek Roma | Congenital cataracts, hypotonia, absent tendon reflexes, pesequinovarus, paretic flexion position of the hands, recurrent infectious rhabdomyolysis | Anti-influenza Vaccination recommendation |
| Iagaru et al. [32] | 2008 | CR | 1 | 9 | Romanian Roma | Congenital cataracts, mild ataxia, hypotonia, acute rhabdomyolysis, somatic and mental retardation | Initially considered as a possible case of MSS |
| Cordelli et al. [33] | 2010 | CR | 1 | 10 | Roma (mother from Bosnia and father from Serbia) | Bilateral congenital cataracts, hypotonia, motor and speech delay, progressive demyelinating motor and sensory polyneuropathy, mild facial abnormalities; CNS changes reveal a likely process of deficient or damaged myelin (hypomyelination and demyelination) paralleling peripheral nerve pathology; Diffusion Tensor Imaging detected microstructural damage of white matter and involvement of the basal ganglia; Magnetic Resonance Spectroscopy indicates preserved neurons but altered glial cell | First longitudinal study demonstrating progressive involvement of cerebral white matter; Supports hypothesis that the disease-causing variant in CTDP1 disrupts transcription regulation affecting both central and peripheral nervous system myelin integrity; Emphasizes importance of clinical and neuroimaging follow-up |
| Tzifi et al. [34] | 2011 | CR | 1 | Early infancy | Greek Roma | Variable clinical presentation; not all diagnostic criteria need to be present early to suspect disease, especially in high-risk population; Clinical features, especially motor delay and peripheral neuropathy, evolve slowly but progression occurs into severe disability in adulthood | Demonstrates utility of molecular genetic testing for definitive diagnosis and prenatal counseling |
| Petra Lassuthova et al. [22] | 2014 | OA | 10 | 3–18 | Czech Roma | Bilateral congenital cataract, microphthalmos, early cataract surgery, delayed motor milestones, paleocerebellar gait, mild mental retardation; Ophthalmological complications include dense bilateral cataracts, microphthalmos, nystagmus, and secondary glaucoma | Largest pediatric cohort with CCFDN outside Bulgaria; Highlights need for lifelong ophthalmologic and neurologic monitoring to manage progressive complications |
| Walter et al. [35] | 2014 | OA | 10 | 1–30 | Balkan and Central Europe Roma | Presenting features: bilateral congenital cataracts, strabismus, facial dysmorphism, short stature, and demyelinating sensory-motor neuropathy; Progressive worsening of distal muscle weakness (small hand muscles, foot extensors); ataxia scores remained stable or improved over time; Sensory nerve conduction velocities slowed initially with normal amplitudes but later showed reduced amplitudes indicating axonal loss in sensory and motor nerves; Vitamin deficiencies (notably vitamin E and D) were observed in some patients; Brain MRI showed no cerebellar atrophy but unspecific changes like accentuated ventricles | Provides the first detailed 10-year longitudinal clinical and paraclinical follow-up in CCFDN, illustrating its progressive disabling course; Shows benefit of early and ongoing physiotherapy in improving ataxia and maintaining function; Suggests potential role for liposoluble vitamin supplementation |
| Chamova et al. [36] | 2015 | OA | 22 | 4–47 | Bulgaria | Mild intellectual deficit, and borderline intelligence; Brain MRI: diffuse cerebral atrophy, lateral ventricle enlargement, and localized lesions in the subcortical white matter, varying in size and quantity; more severe demyelination in older patients | When compared to the healthy control group, CCFDN patients scored significantly lower on all psychometric tests that assessed several cognitive domains. Only the impairment of short-term verbal memory was shown to be statistically significantly correlated with the MRI changes in the correlation study of structural brain changes and cognitive impairment |
| Makrygianni et al. [3] | 2017 | CR | 2 | 5 | Greek Roma | Report of two siblings showing pronounced intrafamilial variability including a novel clinical feature: cardiomyopathy in the brother, not previously documented in CCFDN; One sibling had microcephaly, dystonia, ataxia, and sensorimotor demyelinating neuropathy with axonal loss; The deceased brother had acquired microcephaly, developmental delay, and fatal cardiorespiratory collapse due to severe dilated cardiomyopathy triggered by febrile illness | Expands the clinical spectrum of CCFDN syndrome to include cardiomyopathy and acquired microcephaly, underscoring variable expressivity; Highlights heat shock protein dysregulation as a potential pathogenic mechanism for rhabdomyolysis and cardiac complications |
| Masters et al. [37] | 2017 | CR | 1 | 9 | Romanian Roma | Initially misdiagnosed case with Guillan Bare syndrome; apart from classical clinical features of CCFDN, the case presented with tibialis tendon transfer and bilateral orchidopexy | Clarifies that CCFDN syndrome patients are at high risk for rhabdomyolysis with certain anesthetic agents but should not be labeled as malignant hyperthermia susceptible; Suggests avoidance of depolarising muscle relaxants, caution use of nondepolarising muscle relaxants, and minimal exposure to volatile anaesthetics. |
| Jurca et al. [26] | 2018 | CR | 2 | 11, 13 | Romanian Roma | Two siblings diagnosed with CCFDN. Both siblings exhibit the pathognomonic triad of CCFDN. The boy experienced a life-threatening episode of parainfectious rhabdomyolysis. Additional phenotypic features included congenital right inguinal hernia in both siblings. The girl also presented epilepsy with generalized tonic–clonic seizures responsive to usual antiepileptic drugs | Identification of a novel possible phenotype feature (inguinal hernia) in CCFDN |
| Dudakova et al. [38] | 2020 | CR | 1 | 41 | Czech Roma | Severe peripheral polyneuropathy, history of bilateral congenital cataracts, microcornea, and horizontal nystagmus, intellectual disability, facial dysmorphism, delayed psychomotor development; delayed definitive diagnosis, which was not made until 41 years [39] | Demonstrates the coexistence of two distinct monogenic ocular disorders (nanophthalmos and CCFDN) segregating within one consanguineous Roma family; Stresses the need for increased awareness of rare founder diseases in minority populations to improve timely diagnosis and care |
| Hudec et al. [39] | 2022 | CR | 1 | 13 | Czech Roma | Case presenting with extensive posterior neuromuscular scoliosis (Cobb angle 83°) that underwent corrective surgery | First documented successful endotracheal intubation in a 13-year-old patient with CCFDN syndrome undergoing major orthopedic surgery; Demonstrates the safety and efficacy of total intravenous anesthesia protocols with rocuronium and sugammadex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sabau, I.M.; Chera, A.; Ungureanu, V.G.; Cretu Stancu, M.; Chirita-Emandi, A.; Wood, M.; Puiu, M.; Bucur, O. The CTDP1 Founder Variant in CCFDN: Insights into Pathogenesis, Phenotypic Spectrum and Therapeutic Approaches. Int. J. Mol. Sci. 2026, 27, 34. https://doi.org/10.3390/ijms27010034
Sabau IM, Chera A, Ungureanu VG, Cretu Stancu M, Chirita-Emandi A, Wood M, Puiu M, Bucur O. The CTDP1 Founder Variant in CCFDN: Insights into Pathogenesis, Phenotypic Spectrum and Therapeutic Approaches. International Journal of Molecular Sciences. 2026; 27(1):34. https://doi.org/10.3390/ijms27010034
Chicago/Turabian StyleSabau, Iulia Maria, Alexandra Chera, Victor Gabriel Ungureanu, Mircea Cretu Stancu, Adela Chirita-Emandi, Matthew Wood, Maria Puiu, and Octavian Bucur. 2026. "The CTDP1 Founder Variant in CCFDN: Insights into Pathogenesis, Phenotypic Spectrum and Therapeutic Approaches" International Journal of Molecular Sciences 27, no. 1: 34. https://doi.org/10.3390/ijms27010034
APA StyleSabau, I. M., Chera, A., Ungureanu, V. G., Cretu Stancu, M., Chirita-Emandi, A., Wood, M., Puiu, M., & Bucur, O. (2026). The CTDP1 Founder Variant in CCFDN: Insights into Pathogenesis, Phenotypic Spectrum and Therapeutic Approaches. International Journal of Molecular Sciences, 27(1), 34. https://doi.org/10.3390/ijms27010034

