The Role of Active Site Hydrophobic Interactions in Facilitating Catalysis in Human Terminal Deoxynucleotidyl Transferase
Abstract
1. Introduction
2. Results and Discussion
2.1. MD Simulations
2.1.1. Role of L397
2.1.2. Role of F400 and F404
2.1.3. MD Simulation of F404W
2.2. Structural and Binding Characterization of TdT Mutant Forms
2.2.1. Impact of the Introduced Amino Acid Substitutions on the Protein Secondary Structure
2.2.2. Impact of the Introduced Modifications on DNA and Flu-dUTP Binding Efficiency
2.3. dNTP Incorporation Efficiency
2.3.1. dNTP Incorporation by the L397A, F400A, and F404W Mutant Forms in the Presence of Mn2+
2.3.2. dNTP Incorporation by the F404W in the Presence of Mg2+
3. Materials and Methods
3.1. Enzyme and Purification
3.2. Oligonucleotides
3.3. Circular Dichroism (CD) Spectroscopy
3.4. Melting Temperature (Tm) Measurements
3.5. Determination of DNA-Primer Binding Parameters
3.6. Determination of dNTP Binding Parameters
3.7. Nucleotidyl Transferase Activity Assay
3.8. Molecular Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raper, A.T.; Reed, A.J.; Suo, Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem. Rev. 2018, 118, 6000–6025. [Google Scholar] [CrossRef]
- Fowler, J.D.; Suo, Z. Biochemical, Structural, and Physiological Characterization of Terminal Deoxynucleotidyl Transferase. Chem. Rev. 2006, 106, 2092–2110. [Google Scholar] [CrossRef]
- Wu, W.J.; Yang, W.; Tsai, M.D. How DNA Polymerases Catalyse Replication and Repair with Contrasting Fidelity. Nat. Rev. Chem. 2017, 1, 0068. [Google Scholar] [CrossRef]
- Bienstock, R.J.; Beard, W.A.; Wilson, S.H. Phylogenetic Analysis and Evolutionary Origins of DNA Polymerase X-Family Members. DNA Repair 2014, 22, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.J.; Rodriguez, Y.; Wilson, S.H. DNA Polymerase β Uses Its Lyase Domain in a Processive Search for DNA Damage. Nucleic Acids Res. 2017, 45, 3822–3832. [Google Scholar] [CrossRef]
- Braithwaite, E.K.; Kedar, P.S.; Stumpo, D.J.; Bertocci, B.; Freedman, J.H.; Samson, L.D.; Wilson, S.H. DNA Polymerases β and λ Mediate Overlapping and Independent Roles in Base Excision Repair in Mouse Embryonic Fibroblasts. PLoS ONE 2010, 5, e12229. [Google Scholar] [CrossRef]
- Braithwaite, E.K.; Kedar, P.S.; Lan, L.; Polosina, Y.Y.; Asagoshi, K.; Poltoratsky, V.P.; Horton, J.K.; Miller, H.; Teebor, G.W.; Yasui, A.; et al. DNA Polymerase λ Protects Mouse Fibroblasts against Oxidative DNA Damage and Is Recruited to Sites of DNA Damage/Repair. J. Biol. Chem. 2005, 280, 31641–31647. [Google Scholar] [CrossRef]
- García-Díaz, M.; Domínguez, O.; López-Fernández, L.A.; De Lera, L.T.; Saníger, M.L.; Ruiz, J.F.; Párraga, M.; García-Ortiz, M.J.; Kirchhoff, T.; Del Mazo, J.; et al. DNA Polymerase Lambda (Pol λ), a Novel Eukaryotic DNA Polymerase with a Potential Role in Meiosis. J. Mol. Biol. 2000, 301, 851–867. [Google Scholar] [CrossRef]
- Kato, K.I.; Gonçalves, J.M.; Houts, G.E.; Bollum, F.J. Deoxynucleotide-Polymerizing Enzymes of Calf Thymus Gland. II. Properties of the Terminal Deoxynucleotidyltransferase. J. Biol. Chem. 1967, 242, 2780–2789. [Google Scholar] [CrossRef] [PubMed]
- Brack, C.; Hirama, M.; Lenhard-Schuller, R.; Tonegawa, S. A Complete Immunoglobulin Gene Is Created by Somatic Recombination. Cell 1978, 15, 1–14. [Google Scholar] [CrossRef]
- Saito, H.; Kranz, D.M.; Takagaki, Y.; Hayday, A.C.; Eisen, H.N.; Tonegawa, S. A Third Rearranged and Expressed Gene in a Clone of Cytotoxic T Lymphocytes. Nature 1984, 312, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Sadofsky, M. The RAG Proteins in V(D)J Recombination: More than Just a Nuclease. Nucleic Acids Res. 2001, 29, 1399–1409. [Google Scholar] [CrossRef]
- Schatz, D.G.; Ji, Y. Recombination Centres and the Orchestration of V(D)J Recombination. Nat. Rev. Immunol. 2011, 11, 251–263. [Google Scholar] [CrossRef]
- Delarue, M.; Boulé, J.B.; Lescar, J.; Expert-Bezançon, N.; Jourdan, N.; Sukumar, N.; Rougeon, F.; Papanicolaou, C. Crystal Structures of a Template-Independent DNA Polymerase: Murine Terminal Deoxynucleotidyltransferase. EMBO J. 2002, 21, 427–439. [Google Scholar] [CrossRef]
- Steitz, T.A.; Steitz, J.A. A General Two-Metal-Ion Mechanism for Catalytic RNA. Proc. Natl. Acad. Sci. USA 1993, 90, 6498–6502. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.M.S.; Bollum, F.J. Multiple Roles of Divalent Cation in the Terminal Deoxynucleotidyltransferase Reaction. J. Biol. Chem. 1990, 265, 17436–17440. [Google Scholar] [CrossRef]
- Kuznetsova, A.A.; Tyugashev, T.E.; Alekseeva, I.V.; Timofeyeva, N.A.; Fedorova, O.S.; Kuznetsov, N.A. Insight into the Mechanism of DNA Synthesis by Human Terminal Deoxynucleotidyltransferase. Life Sci. Alliance 2022, 5, e202201428. [Google Scholar] [CrossRef]
- Gouge, J.; Rosario, S.; Romain, F.; Beguin, P.; Delarue, M. Structures of Intermediates along the Catalytic Cycle of Terminal Deoxynucleotidyltransferase: Dynamical Aspects of the Two-Metal Ion Mechanism. J. Mol. Biol. 2013, 425, 4334–4352. [Google Scholar] [CrossRef]
- Kuznetsova, A.A.; Senchurova, S.I.; Gavrilova, A.A.; Tyugashev, T.E.; Mikushina, E.S.; Kuznetsov, N.A. Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function. Int. J. Mol. Sci. 2024, 25, 879. [Google Scholar] [CrossRef] [PubMed]
- Ukladov, E.O.; Tyugashev, T.E.; Kuznetsov, N.A. Computational Modeling Study of the Molecular Basis of DNTP Selectivity in Human Terminal Deoxynucleotidyltransferase. Biomolecules 2024, 14, 961. [Google Scholar] [CrossRef] [PubMed]
- Gouge, J.; Rosario, S.; Romain, F.; Poitevin, F.; Béguin, P.; Delarue, M. Structural Basis for a Novel Mechanism of DNA Bridging and Alignment in Eukaryotic DSB DNA Repair. EMBO J. 2015, 34, 1126–1142. [Google Scholar] [CrossRef]
- Romain, F.; Barbosa, I.; Gouge, J.; Rougeon, F.; Delarue, M. Conferring a Template-Dependent Polymerase Activity to Terminal Deoxynucleotidyltransferase by Mutations in the Loop1 Region. Nucleic Acids Res. 2009, 37, 4642–4656. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Chen, M.; Han, Y.; Guo, S.; Gong, X.; Ye, S. Rational Design of Terminal Deoxynucleotidyl Transferase for RNA Primer Elongation. Int. J. Biol. Macromol. 2025, 309, 142712. [Google Scholar] [CrossRef]
- Jarchow-Choy, S.K.; Krueger, A.T.; Liu, H.; Gao, J.; Kool, E.T. Fluorescent XDNA Nucleotides as Efficient Substrates for a Template-Independent Polymerase. Nucleic Acids Res. 2011, 39, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, K.; Shevelev, I.V.; Maga, G.; Hübscher, U. De Novo DNA Synthesis by Human DNA Polymerase Lambda, DNA Polymerase Mu and Terminal Deoxyribonucleotidyl Transferase. J. Mol. Biol. 2004, 339, 395–404. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Šali, A.; Blundell, T.L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef]
- Anandakrishnan, R.; Aguilar, B.; Onufriev, A.V. H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations. Nucleic Acids Res. 2012, 40, W537–W541. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Joung, I.S.; Cheatham, T.E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. [Google Scholar] [CrossRef] [PubMed]
- Bayly, C.I.; Merz, K.M.; Ferguson, D.M.; Cornell, W.D.; Fox, T.; Caldwell, J.W.; Kollman, P.A.; Cieplak, P.; Gould, I.R.; Spellmeyer, D.C. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197, Erratum in J. Am. Chem. Soc. 1996, 118, 2309. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, T.E., 3rd; Cieplak, P.; Kollman, P.A. A Modified Version of the Cornell et al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct. Dyn. 1999, 16, 845–862. [Google Scholar] [CrossRef]
- Zgarbová, M.; Luque, F.J.; Šponer, J.; Cheatham, T.E., III; Otyepka, M.; Jurečka, P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. [Google Scholar] [CrossRef]
- Zgarbová, M.; Šponer, J.; Jurečka, P. Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field. J. Chem. Theory Comput. 2025, 21, 833–846. [Google Scholar] [CrossRef]
- Meagher, K.L.; Redman, L.T.; Carlson, H.A. Development of Polyphosphate Parameters for Use with the AMBER Force Field. J. Comput. Chem. 2003, 24, 1016–1025. [Google Scholar] [CrossRef]
- Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.Y. R.E.D. Server: A Web Service for Deriving RESP and ESP Charges and Building Force Field Libraries for New Molecules and Molecular Fragments. Nucleic Acids Res. 2011, 39, W511–W517. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, H.; Tan, T. Rational Design of Methodology-Independent Metal Parameters Using a Nonbonded Dummy Model. J. Chem. Theory Comput. 2016, 12, 3250–3260. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed]
- Bernetti, M.; Bussi, G. Pressure Control Using Stochastic Cell Rescaling. J. Chem. Phys. 2020, 153, 114107. [Google Scholar] [CrossRef]
- Miller, B.R., 3rd; McGee, T.D.J.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef] [PubMed]









| WT | L397A | F400A | F404A | F404W | |
|---|---|---|---|---|---|
| Number of H-bonds | 8.0 ± 0.5 | 7.8 ± 0.6 | 7.5 ± 0.3 | 7.2 ± 0.2 | 7.9 ± 0.7 |
| ΔGMMPBSA, kcal/mol | −85 ± 5 | −76 ± 5 | −77 ± 4 | −64 ± 4 | −85 ± 5 |
| WT | L397A | F400A | F404A | F404W | |
|---|---|---|---|---|---|
| Tm, °C | 46.2 ± 0.2 | 44.4 ± 0.4 | 46.2 ± 0.5 | 44.7 ± 0.4 | 46.0 ± 0.3 |
| Enzyme | Kd, μM | |
|---|---|---|
| Flu-dUTP | FAM-M44 | |
| WT | 0.9 ± 0.1 | 0.88 ± 0.08 |
| L397A | 1.5 ± 0.2 | 0.97 ± 0.08 |
| F400A | 1.1 ± 0.1 | 0.98 ± 0.07 |
| F404A | 1.5 ± 0.2 | 1.10 ± 0.09 |
| F404W | 1.0 ± 0.1 | 1.0 ± 0.1 |
| kobs, s−1 | dATP | dCTP | dGTP | dTTP |
|---|---|---|---|---|
| WT | 0.5 ± 0.1 | 2.5 ± 0.5 | 4.3 ± 0.6 | 0.37 ± 0.05 |
| L397A | 0.06 ± 0.02 | 0.10 ± 0.01 | 0.10 ± 0.02 | 0.019 ± 0.006 |
| F400A | 0.011 ± 0.003 | 0.095 ± 0.009 | 0.23 ± 0.05 | 0.044 ± 0.006 |
| F404W | 0.5 ± 0.1 | 1.2 ± 0.1 | 7 ± 2 | 0.48 ± 0.04 |
| kobs, s−1 | dATP | dCTP | dGTP | dTTP |
|---|---|---|---|---|
| WT | 0.033 ± 0.003 | 0.014 ± 0.003 | 0.14 ± 0.02 | 0.009 ± 0.001 |
| F404W | 0.06 ± 0.01 | 0.018 ± 0.004 | 0.19 ± 0.02 | 0.033 ± 0.006 |
| Mutant Form | Sequence |
|---|---|
| L397A | Fwd 5′ GCCTAGCAGGAAGGTTGATGCTGCGGATCATTTTCAAAAGTGC 3′ Rev 5′ GCACTTTTGAAAATGATCCGCAGCATCAACCTTCCTGCTAGGC 3′ |
| F400A | Fwd 5′ GCAGGAAGGTTGATGCTTTGGATCATGCTCAAAAGTGCTTTCTG 3′ Rev 5′ CAGAAAGCACTTTTGAGCATGATCCAAAGCATCAACCTTCCTGC 3′ |
| F404A | Fwd 5′ GGATCATTTTCAAAAGTGCGCTCTGATTTTCAAATTGCCTCGTCAAAG 3′ Rev 5′ CTTTGACGAGGCAATTTGAAAATCAGAGCGCACTTTTGAAAATGATCC 3′ |
| F404W | Fwd 5′ GGATCATTTTCAAAAGTGCTGGCTGATTTTCAAATTGCCTCGTCAAAG 3′ Rev 5′ CTTTGACGAGGCAATTTGAAAATCAGCCAGCACTTTTGAAAATGATCC 3′ |
| Mutant Form | Sequence |
|---|---|
| FAM-M44 | 5′ FAM-ATGCTATGGATTGATGTGACTAAGGTTGGAATGATGTGAAGAGA 3′ |
| FAM-M6 | 5′ FAM-GGAAGA 3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Senchurova, S.I.; Tyugashev, T.E.; Kuznetsov, N.A. The Role of Active Site Hydrophobic Interactions in Facilitating Catalysis in Human Terminal Deoxynucleotidyl Transferase. Int. J. Mol. Sci. 2026, 27, 178. https://doi.org/10.3390/ijms27010178
Senchurova SI, Tyugashev TE, Kuznetsov NA. The Role of Active Site Hydrophobic Interactions in Facilitating Catalysis in Human Terminal Deoxynucleotidyl Transferase. International Journal of Molecular Sciences. 2026; 27(1):178. https://doi.org/10.3390/ijms27010178
Chicago/Turabian StyleSenchurova, Svetlana I., Timofey E. Tyugashev, and Nikita A. Kuznetsov. 2026. "The Role of Active Site Hydrophobic Interactions in Facilitating Catalysis in Human Terminal Deoxynucleotidyl Transferase" International Journal of Molecular Sciences 27, no. 1: 178. https://doi.org/10.3390/ijms27010178
APA StyleSenchurova, S. I., Tyugashev, T. E., & Kuznetsov, N. A. (2026). The Role of Active Site Hydrophobic Interactions in Facilitating Catalysis in Human Terminal Deoxynucleotidyl Transferase. International Journal of Molecular Sciences, 27(1), 178. https://doi.org/10.3390/ijms27010178

