Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome
Abstract
1. Introduction
2. Results
2.1. Transcriptomic Responses of KRIT1-Targeted HUVECs When Subjected to Oscillatory and Pulsatile Shear Stress or Static Conditions
2.2. Silencing KRIT1 in Endothelial Cells Experiencing Disturbed Flow Activates Protective Gene Programs Known to Enhance Resistance to Inflammation, Hypoxia, and Angiogenesis
3. Discussion
4. Material and Methods
4.1. Cell Culture and Transfection with siRNA
4.2. Flow Chamber Experiments
4.3. RNA Isolation
4.4. RNA-Sequencing (RNA-Seq) Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
CCMs | Cerebral Cavernous Malformations |
KRIT1 | Krev1 interaction trapped gene 1 |
HEG1 | Heart of glass 1 |
CCM2 | Malcavernin |
RNA-seq | RNA sequencing |
KLF2 | Krüppel-like factors 2 |
KLF4 | Krüppel-like factors 4 |
TM | Thrombomodulin |
eNOS | Endothelial nitric oxide synthase |
TSP1 | Thrombospondin-1 |
VCAM1 | Vascular cell adhesion molecule 1 |
ICAM1 | Intercellular adhesion molecule 1 |
NF-κB | Nuclear Factor kappa B |
HUVEC | Human umbilical vein endothelial cells |
HAEC | Human aortic endothelial cells |
CAD | Coronary artery disease |
References
- De Souza, F.M.; Gawryszewski, V.P.; Ordunez, P.; Sanhueza, A.; Espinal, M.A. Cardiovascular disease mortality in the Americas: Current trends and disparities. Heart 2012, 98, 1207–1212. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef]
- Gimbrone, M.A., Jr.; Garcia-Cardena, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef] [PubMed]
- Tzima, E.; Irani-Tehrani, M.; Kiosses, W.B.; Dejana, E.; Schultz, D.A.; Engelhardt, B.; Cao, G.; DeLisser, H.; Schwartz, M.A. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005, 437, 426–431. [Google Scholar] [CrossRef]
- Tzima, E.; Del Pozo, M.A.; Kiosses, W.B.; Mohamed, S.A.; Li, S.; Chien, S.; Schwartz, M.A. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 2002, 21, 6791–6800. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.; Kaazempur-Mofrad, M.R.; Natarajan, S.; Zhang, Y.; Vaughn, S.; Blackman, B.R.; Kamm, R.D.; Garcia-Cardena, G.; Gimbrone, M.A., Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. USA 2004, 101, 14871–14876. [Google Scholar] [CrossRef]
- Villarreal, G., Jr.; Zhang, Y.; Larman, H.B.; Gracia-Sancho, J.; Koo, A.; Garcia-Cardena, G. Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2010, 391, 984–989. [Google Scholar] [CrossRef]
- Blazeski, A.; Floryan, M.A.; Zhang, Y.; Fajardo Ramirez, O.R.; Meibalan, E.; Ortiz-Urbina, J.; Angelidakis, E.; Shelton, S.E.; Kamm, R.D.; Garcia-Cardena, G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. Biomaterials 2024, 311, 122686. [Google Scholar] [CrossRef]
- Hamik, A.; Lin, Z.; Kumar, A.; Balcells, M.; Sinha, S.; Katz, J.; Feinberg, M.W.; Gerzsten, R.E.; Edelman, E.R.; Jain, M.K. Kruppel-like factor 4 regulates endothelial inflammation. J. Biol. Chem. 2007, 282, 13769–13779. [Google Scholar] [CrossRef]
- Sangwung, P.; Zhou, G.; Nayak, L.; Chan, E.R.; Kumar, S.; Kang, D.W.; Zhang, R.; Liao, X.; Lu, Y.; Sugi, K.; et al. KLF2 and KLF4 control endothelial identity and vascular integrity. JCI Insight 2017, 2, e91700. [Google Scholar] [CrossRef]
- SenBanerjee, S.; Lin, Z.; Atkins, G.B.; Greif, D.M.; Rao, R.M.; Kumar, A.; Feinberg, M.W.; Chen, Z.; Simon, D.I.; Luscinskas, F.W.; et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 2004, 199, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Kawanami, D.; Mahabeleshwar, G.H.; Lin, Z.; Atkins, G.B.; Hamik, A.; Haldar, S.M.; Maemura, K.; Lamanna, J.C.; Jain, M.K. Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium. J. Biol. Chem. 2009, 284, 20522–20530. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ramirez, M.A.; Pham, A.; Girard, R.; Wyseure, T.; Hale, P.; Yamashita, A.; Koskimaki, J.; Polster, S.; Saadat, L.; Romero, I.A.; et al. Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood 2019, 133, 193–204. [Google Scholar] [CrossRef]
- Lopez-Ramirez, M.A.; Fonseca, G.; Zeineddine, H.A.; Girard, R.; Moore, T.; Pham, A.; Cao, Y.; Shenkar, R.; de Kreuk, B.J.; Lagarrigue, F.; et al. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J. Exp. Med. 2017, 214, 3331–3346. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ramirez, M.A.; McCurdy, S.; Li, W.; Haynes, M.K.; Hale, P.; Francisco, K.; Oukoloff, K.; Bautista, M.; Choi, C.H.J.; Sun, H.; et al. Inhibition of the HEG1-KRIT1 interaction increases KLF4 and KLF2 expression in endothelial cells. FASEB Bioadv. 2021, 3, 334–355. [Google Scholar] [CrossRef]
- Parmar, K.M.; Nambudiri, V.; Dai, G.; Larman, H.B.; Gimbrone, M.A., Jr.; Garcia-Cardena, G. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 2005, 280, 26714–26719. [Google Scholar] [CrossRef]
- Maurya, M.R.; Gupta, S.; Li, J.Y.; Ajami, N.E.; Chen, Z.B.; Shyy, J.Y.; Chien, S.; Subramaniam, S. Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2023236118. [Google Scholar] [CrossRef]
- Chen, L.J.; Li, J.Y.; Nguyen, P.; He, M.; Chen, Z.B.; Subramaniam, S.; Shyy, J.Y.; Chien, S. Single-cell RNA sequencing unveils unique transcriptomic signatures of endothelial cells and role of ENO1 in response to disturbed flow. Proc. Natl. Acad. Sci. USA 2024, 121, e2318904121. [Google Scholar] [CrossRef]
- He, M.; Martin, M.; Marin, T.; Chen, Z.; Gongol, B. Endothelial mechanobiology. APL Bioeng. 2020, 4, 010904. [Google Scholar] [CrossRef]
- Li, Z.; Martin, M.; Zhang, J.; Huang, H.Y.; Bai, L.; Zhang, J.; Kang, J.; He, M.; Li, J.; Maurya, M.R.; et al. Kruppel-Like Factor 4 Regulation of Cholesterol-25-Hydroxylase and Liver X Receptor Mitigates Atherosclerosis Susceptibility. Circulation 2017, 136, 1315–1330. [Google Scholar] [CrossRef]
- Deng, H.; Rukhlenko, O.S.; Joshi, D.; Hu, X.; Junk, P.; Tuliakova, A.; Kholodenko, B.N.; Schwartz, M.A. cSTAR analysis identifies endothelial cell cycle as a key regulator of flow-dependent artery remodeling. Sci. Adv. 2025, 11, eado9970. [Google Scholar] [CrossRef]
- Han, Y.; He, M.; Marin, T.; Shen, H.; Wang, W.T.; Lee, T.Y.; Hong, H.C.; Jiang, Z.L.; Garland, T., Jr.; Shyy, J.Y.; et al. Roles of KLF4 and AMPK in the inhibition of glycolysis by pulsatile shear stress in endothelial cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2103982118. [Google Scholar] [CrossRef]
- Hong, S.G.; Ashby, J.W.; Kennelly, J.P.; Wu, M.; Steel, M.; Chattopadhyay, E.; Foreman, R.; Tontonoz, P.; Tarling, E.J.; Turowski, P.; et al. Mechanosensitive membrane domains regulate calcium entry in arterial endothelial cells to protect against inflammation. J. Clin. Investig. 2024, 134, e175057. [Google Scholar] [CrossRef] [PubMed]
- Coon, B.G.; Timalsina, S.; Astone, M.; Zhuang, Z.W.; Fang, J.; Han, J.; Themen, J.; Chung, M.; Yang-Klingler, Y.J.; Jain, M.; et al. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J. Cell Biol. 2022, 221, e202109144. [Google Scholar] [CrossRef]
- Banerjee, K.; Lin, Y.; Gahn, J.; Cordero, J.; Gupta, P.; Mohamed, I.; Graupera, M.; Dobreva, G.; Schwartz, M.A.; Ola, R. SMAD4 maintains the fluid shear stress set point to protect against arterial-venous malformations. J. Clin. Investig. 2023, 133, e168352. [Google Scholar] [CrossRef]
- Schnitzler, G.R.; Kang, H.; Fang, S.; Angom, R.S.; Lee-Kim, V.S.; Ma, X.R.; Zhou, R.; Zeng, T.; Guo, K.; Taylor, M.S.; et al. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024, 626, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Laberge-le Couteulx, S.; Jung, H.H.; Labauge, P.; Houtteville, J.P.; Lescoat, C.; Cecillon, M.; Marechal, E.; Joutel, A.; Bach, J.F.; Tournier-Lasserve, E. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat. Genet. 1999, 23, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Awad, I.A.; Polster, S.P. Cavernous angiomas: Deconstructing a neurosurgical disease. J. Neurosurg. 2019, 131, 1–13. [Google Scholar] [CrossRef]
- Sahoo, T.; Johnson, E.W.; Thomas, J.W.; Kuehl, P.M.; Jones, T.L.; Dokken, C.G.; Touchman, J.W.; Gallione, C.J.; Lee-Lin, S.Q.; Kosofsky, B.; et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum. Mol. Genet. 1999, 8, 2325–2333. [Google Scholar] [CrossRef]
- Abdelilah-Seyfried, S.; Ola, R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J. Clin. Investig. 2024, 134, e172843. [Google Scholar] [CrossRef]
- Abdelilah-Seyfried, S.; Rodel, C.J. Blood Flow Matters in a Zebrafish Model of Cerebral Cavernous Malformations. Circ. Res. 2020, 126, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.W.; Qiu, H.; Rezvan, A.; Kwon, K.; Nam, D.; Son, D.J.; Visvader, J.E.; Jo, H. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood 2010, 116, e66–e73. [Google Scholar] [CrossRef]
- Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thrombosis. Vasc. Biol. 1985, 5, 293–302. [Google Scholar] [CrossRef]
- Dabravolski, S.; Sukhorukov, V.; Kalmykov, V.; Grechko, A.; Shakhpazyan, N.; Orekhov, A. The Role of KLF2 in the Regulation of Atherosclerosis Development and Potential Use of KLF2-Targeted Therapy. Biomedicines 2022, 10, 254. [Google Scholar] [CrossRef]
- Zhou, G.; Hamik, A.; Nayak, L.; Tian, H.; Shi, H.; Lu, Y.; Sharma, N.; Liao, X.; Hale, A.; Boerboom, L.; et al. Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J. Clin. Investig. 2012, 122, 4727–4731. [Google Scholar] [CrossRef] [PubMed]
- Francisco, K.R.; Bruystens, J.; Varricchio, C.; McCurdy, S.; Wu, J.; Lopez-Ramirez, M.A.; Ginsberg, M.; Caffrey, C.R.; Brancale, A.; Gingras, A.R.; et al. Targeted Reversible Covalent Modification of a Noncatalytic Lysine of the Krev Interaction Trapped 1 Protein Enables Site-Directed Screening for Protein-Protein Interaction Inhibitors. ACS Pharmacol. Transl. Sci. 2023, 6, 1651–1658. [Google Scholar] [CrossRef]
- Tamargo, I.A.; Baek, K.I.; Xu, C.; Kang, D.W.; Kim, Y.; Andueza, A.; Williams, D.; Demos, C.; Villa-Roel, N.; Kumar, S.; et al. HEG1 Protects Against Atherosclerosis by Regulating Stable Flow-Induced KLF2/4 Expression in Endothelial Cells. Circulation 2024, 149, 1183–1201. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Sancho, J.; Villarreal, G., Jr.; Zhang, Y.; Garcia-Cardena, G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc. Res. 2010, 85, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Frias-Anaya, E.; Gallego-Gutierrez, H.; Gongol, B.; Weinsheimer, S.; Lai, C.C.; Orecchioni, M.; Sriram, A.; Bui, C.M.; Nelsen, B.; Hale, P.; et al. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1246–1264. [Google Scholar] [CrossRef]
- Li, Y.; Srinath, A.; Alcazar-Felix, R.J.; Hage, S.; Bindal, A.; Lightle, R.; Shenkar, R.; Shi, C.; Girard, R.; Awad, I.A. Inflammatory Mechanisms in a Neurovascular Disease: Cerebral Cavernous Malformation. Brain Sci. 2023, 13, 1336. [Google Scholar] [CrossRef]
- Swamy, H.; Glading, A.J. Contribution of protein-protein interactions to the endothelial-barrier-stabilizing function of KRIT1. J. Cell Sci. 2022, 135, jcs258816. [Google Scholar] [CrossRef] [PubMed]
- Jalali, S.; del Pozo, M.A.; Chen, K.; Miao, H.; Li, Y.; Schwartz, M.A.; Shyy, J.Y.; Chien, S. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 2001, 98, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meecham, A.; McCurdy, S.; Frias-Anaya, E.; Li, W.; Gallego-Gutierrez, H.; Nguyen, P.; Li, Y.-S.; Chien, S.; Shyy, J.Y.-J.; Ginsberg, M.H.; et al. Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome. Int. J. Mol. Sci. 2025, 26, 4340. https://doi.org/10.3390/ijms26094340
Meecham A, McCurdy S, Frias-Anaya E, Li W, Gallego-Gutierrez H, Nguyen P, Li Y-S, Chien S, Shyy JY-J, Ginsberg MH, et al. Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome. International Journal of Molecular Sciences. 2025; 26(9):4340. https://doi.org/10.3390/ijms26094340
Chicago/Turabian StyleMeecham, Amelia, Sara McCurdy, Eduardo Frias-Anaya, Wenqing Li, Helios Gallego-Gutierrez, Phu Nguyen, Yi-Shuan Li, Shu Chien, John Y.-J. Shyy, Mark H. Ginsberg, and et al. 2025. "Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome" International Journal of Molecular Sciences 26, no. 9: 4340. https://doi.org/10.3390/ijms26094340
APA StyleMeecham, A., McCurdy, S., Frias-Anaya, E., Li, W., Gallego-Gutierrez, H., Nguyen, P., Li, Y.-S., Chien, S., Shyy, J. Y.-J., Ginsberg, M. H., & Lopez-Ramirez, M. A. (2025). Silencing KRIT1 Partially Reverses the Effects of Disturbed Flow on the Endothelial Cell Transcriptome. International Journal of Molecular Sciences, 26(9), 4340. https://doi.org/10.3390/ijms26094340